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Abstract: The purpose of this study was to determine the differences in the muscle cross-sectional 

area (MCSA) of the triceps surae in the supine and sitting positions using magnetic resonance 

imaging (MRI), and the relationship between the MCSA of the triceps surae in the sitting position 

and muscle thickness (MT), assessed using MRI and ultrasonography, respectively. This study 

included 16 healthy young male participants. The measurement positions were 90° flexion of the 

knee joint and neutral position of the ankle joint in the sitting or supine positions. Using an open-

configuration MRI system with a vertical gap and ultrasonography, we measured the MCSA and 

MT of the soleus muscle and the medial and lateral heads of the gastrocnemius muscle at three 

selected locations in the ventral part of the muscle. As a result, the 50% portion of the soleus muscle 

and the 25% and 50% portions of the gastrocnemius medial and lateral heads were higher in the 

sitting position than in the supine position. Furthermore, only 50% of the gastrocnemius medial 

head showed a correlation between the MCSA and MT. When using the MT of the triceps surae as 

an indicator of muscle volume in the sitting position, the muscle site should be considered. 
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1. Introduction 

The triceps surae is the major ankle plantar flexor muscle. It is said that the triceps surae is 

involved in several movements such as postural control, walking, running, and jumping and has an 

effect not only on the ankle joint but also on the proximal joint [1–3]. It is important to maintain and 

strengthen the triceps surae because a weakened triceps surae increases the risk of falling and 

interferes with several activities of daily living [4]. The relationship between muscle strength and 

volume is well known, and the circumference of the lower leg is often measured as a rough indicator 

of muscle volume. However, this circumference is affected by several factors such as fat, bone, and 

nerves, and therefore, is not an accurate measurement of muscle volume. Hence, the importance of 

evaluating muscle volume using images has been indicated [5]. The muscle cross-sectional area 

(MCSA) assessed using magnetic resonance imaging (MRI) and muscle thickness (MT) determined 

from ultrasonography (US) are often used as nonexplosive and noninvasive methods to measure the 

muscle volume from images. Physiological MCSA perpendicular to the muscle fibers and anatomical 

MCSA perpendicular to the long axis of the entire muscle have been reported to be related to muscle 

strength [6–8], and the MCSA has been reported to be a useful indicator of muscle strength [9]. 

Previous studies have reported that muscle morphology in the lying position is affected by muscle 
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deflection and compression, and the MCSA and MT measured in the lying position are lower than in 

the standing position [10,11]. Conventional MRI is generally limited to the lying position only 

because of the structure of the equipment. However, the recently developed open-configuration MRI 

system with a vertical gap (vertical MRI) can be used in any limb position [12,13]. To obtain basic 

information on the MCSA in the lower leg muscles in the sitting position, we analyzed and examined 

the MCSA in the sitting position using vertical MRI [14]. However, our previous study only measured 

the sitting position and did not investigate the difference in the MCSA between the lying and sitting 

positions. In addition, although vertical MRI can provide clear, wide-area images for MCSA 

measurements, its major disadvantages are its rarity and lack of ease of imaging. US is widely used 

as a safe and easy method for image evaluation in several facilities. The US evaluation of triceps surae 

thickness has a high interclass correlation coefficient and is reported to be reliable [9,15–17]. On the 

other hand, US evaluation requires proficiency in probe operation and image evaluation [18], and it 

is challenging to obtain more than two-dimensional values when measuring muscle volume because 

of the difficulty in evaluating a wide area. Therefore, there are few studies that have examined the 

correlation between the MT evaluated by US and MCSA in previous studies [19,20], but none have 

examined the antigravity position. If MT determined by US in the antigravity position is associated 

with MCSA obtained by MRI, then MT can be used in the clinical evaluation of the triceps surae 

muscle volume in the antigravity position. 

The purpose of this study was to compare the MCSA of the triceps surae determined by MRI in 

the lying and sitting positions and investigate its relationship with MT assessed using US in the 

antigravity position to establish a simple method to obtain information on the muscle volume of the 

triceps surae. 

2. Materials and Methods 

2.1. Participants 

This study included 16 healthy young male participants without any pain reported in their 

activities of daily life; more specifically, it focused on the dominant leg that the participants would 

use to kick a ball. The mean (± standard deviation) age, height, weight, and lower leg length (fibular 

head to lateral malleolus) were 20.9 ± 1.4 years, 169.2 ± 3.7 cm, 61.1 ± 6.1 kg, and 33.1 ± 1.5 cm, 

respectively. None of the participants had a history of orthopedic problems of the legs or the 

vertebrae. 

The protocol for this study was approved by the Ethics Committee of Kanazawa University 

(approval number: 687). Before conducting the study, we explained the objective and content of the 

study to the participants and informed them that the data obtained from this study would not be 

used for any purpose other than this study, assuring them that the data would be handled strictly in 

confidence to prevent the dissemination of personal information. Written informed consent was 

obtained from all participants before the study. 

2.2. Measurement 

Measurements were taken in three conditions: (1) MRI in the supine position, (2) MRI in the 

sitting position, and (3) US imaging in the sitting position. The sitting position was chosen for the 

measurement of the antigravity position because it is easy to hold the limb position with little motion 

in the antigravity position. In the supine position for MRI, the foot was placed on a pedestal in a 

supine position in which the hip and knee joints were flexed at 90°, and the foot was supported only 

by the heel to prevent the triceps surae from changing its shape due to contact with the pedestal. In 

addition, a plate was placed perpendicular to the floor at the plantar part of the foot to maintain 

dorsiflexion at 0°. MRI and US imaging in the sitting position were performed in a chair (with a 

backrest) with the knee joint flexion at 90°, the lower leg perpendicular to the floor, and the ankle 

joint dorsiflexion at 0° as in the supine position. In all measurements, the thigh was fixed with 

cushions and bands to prevent the lower leg from moving during the imaging, and the participants 

were instructed to hold it as much as possible. Using vertical MRI with a 0.4 T permanent magnet, 
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(Hitachi Healthcare, Ltd., Tokyo, Japan), horizontal T1-weighted images were obtained from the 

fibular head to the 290 mm distal end at 10 mm intervals (Figure 1). The imaging parameters were as 

follows: slice plane axial; pulse sequence RF-spoiled steady-state gradient echo; field of view, 280 

mm; repetition time, 110.0 ms; echo time, 8.6 ms; flip angle, 35°; slice thickness, 10.0 mm; slice interval, 

10.0 mm; matrix size, 256 × 256; number of signals, average of 2; receiver bandwidth, 20.6 kHz; and 

scan time, 4 min and 32 s. Using the image analysis program ZedView (LEXI Co., Ltd., Tokyo, Japan), 

the muscles were identified based on the boundary of the fascia of the soleus (SOL), gastrocnemius 

medial head (GM), and gastrocnemius lateral head (GL) using the acquired images, and the areas 

marked on the images were measured as the MCSA of each muscle (Figure 2). The 10 mm slice areas 

of MRI were summed, and the volume of each muscle was calculated using a ZedView. The images 

of the SOL, GM, and GL were taken by US using a linear probe (7.5 MHz) in B-mode MyLab25 

(Esaote, Florence, Italy). Short-axis images were taken at 20.0 mm intervals from the peroneal head 

in each muscle by applying a probe to the center of the ventral region of the muscle on the horizontal 

plane. We used a hard-type gel (LOGIQLEAN, GE Healthcare Japan, Tokyo, Japan), which is flexible 

and easy to keep in shape, to avoid direct contact between the probe and the lower leg. Indirect 

contact through the gel avoids the effects of pressure exerted by the probe on the lower leg. In 

addition, to maintain the position of the probe at the time of measurement, we marked the lower leg 

prior to the measurement, following which assessments were made based on the marking. For the 

measurement of MT, the maximum length of each muscle was measured with respect to the 

boundary of the fascia using the image analysis program Image J (Figure 3). The average value of the 

two measurements was calculated and used as the MT value. MRI, US imaging, and MCSA and MT 

measurements were performed by the same examiner. 

 

Figure 1. Measurement of position on vertical MRI: (a) sitting position; (b) lying position. 
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Figure 2. Measurement of muscle cross-sectional area by MRI. 

 

Figure 3. Measurement of muscle thickness by ultrasonography: (a) soleus; (b) gastrocnemius lateral 

head; (c) gastrocnemius medial head. Arrows indicate muscle thickness. 

2.3. Statistical Analysis 

Statistical analyses were performed using SPSS Ver. 24 (IBM SPSS Statistics, Japan IBM, Tokyo, 

Japan). For statistical analysis, three portions were selected: 25%, 50%, and 75% (0% is fibular head 

and 100% is lateral malleolus) of the muscle (Figure 4). The lower leg length of the participant with 

the longest lower leg length was 35.0 cm; therefore, all participants were able to obtain 75% portion 

image by MRI. p values < 0.05 were considered significant. After confirming the normality of the data 

with the Shapiro–Wilk test, paired t-test was used for the comparison of the MCSA in the lying and 

sitting positions and muscle volume on the MRI. Pearson’s correlation coefficients were used to 

determine the relationship between MCSA and MT. One-way analysis of variance and the Bonferroni 

test were used to compare the MCSA in the same region, the volume of each muscle, and the MCSA 

in each region in the same muscle in the lying position. All measurements are presented as the mean 

± standard deviation. 
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Figure 4. Measurement portion of each muscle. 

3. Results 

Tables 1–3 show the MCSA in the lying and sitting positions, MT, and muscle volume for each 

muscle, respectively. Furthermore, 75% portions of the GM and GL were excluded from the statistical 

analysis because of the absence of muscle belly. On comparing the MCSA in the lying and sitting 

positions, the 50% portion of the SOL was found to be significantly greater in the sitting position than 

in the lying position. Both 25% and 50% portions of the GM were significantly greater in the sitting 

position than in the lying position. However, no significant difference was observed in the MCSA 

between the lying and sitting positions in either the 25% or the 50% portions of the GL. Furthermore, 

no significant difference was found in the muscle volume between the lying and sitting positions in 

all muscles. The relationship between MCSA and MT in the sitting position was not correlated with 

SOL and GL (Figure 5). However, for GM, there was a significant correlation, albeit only in the 50% 

portion (p < 0.05, r = 0.57). In the comparison of the MCSA in each muscle in the same region in the 

lying position, the 25% portion of the GM and SOL was significantly greater than that of the GL. In 

addition, the 50% portion of SOL, GM, and GL was significantly large. Muscle volume in the lying 

position was significantly high in SOL, GM, and GL, in that order. Comparisons of MCSA in the lying 

position between the regions indicated that the SOL was significantly high in the 50%, 25%, and 75% 

portions in that order. As for the GM, the measurement was significantly greater in the 50% portion 

than in the 25% portion. There was no significant difference in the GL between the 25% and 50% 

portions. 

Table 1. Muscle cross-sectional area in the sitting and lying positions (cm2). 

Portion 25% Portion 50% Portion 75% Portion 

Position 
Sitting 

Position 

Lying 

Position 

Sitting 

Position 

Lying 

Position 

Sitting 

Position 

Lying 

Position 

SOL 786 ± 300 650 ± 288 †,# 2260 ± 345 * 1990 ± 359 †,‡ 1258 ± 558 1329 ± 498 # 

GM 1018 ± 205 * 858 ± 230 † 1333 ± 327 * 1215 ± 272 †,#   

GL 655 ± 186 613 ± 193 705 ± 225 656 ± 208   

Data are presented as mean ± standard deviation. SOL, soleus; GM, gastrocnemius medial head; GL, 

gastrocnemius lateral head * Significant difference in the muscle cross-sectional area between the 

sitting and lying positions (p < 0.05). † Significant difference compared with the gastrocnemius lateral 

head (p < 0.05). ‡ Significant difference compared with the gastrocnemius medial head (p < 0.05). # 

Significant difference compared with the 50% portion (p < 0.05). Significant difference compared with 

the 75% portion (p < 0.05). 
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Table 2. Muscle thickness by ultrasonography in the sitting position (cm). 

Portion 25% Portion 50% Portion 75% Portion 

SOL 3.04 ± 0.52 3.02 ± 0.66 1.67 ± 0.90 

GM 1.83 ± 0.26 0.72 ± 0.59  

GL 1.49 ± 0.19 0.25 ± 0.24  

Data are presented as mean ± standard deviation. SOL, soleus; GM, gastrocnemius medial head; GL, 

gastrocnemius lateral head. 

Table 3. Muscle volume of each muscle (cm3). 

Position Sitting Position Lying Position 

SOL 3.64 ± 0.62 3.39 ± 0.76 *,† 

GM 2.13 ± 0.43 2.05 ± 0.49 * 

GL 1.24 ± 0.17 1.15 ± 0.15 

Data are presented as mean ± standard deviation. SOL, soleus; GM, gastrocnemius medial head; GL, 

gastrocnemius lateral head * Significant difference compared with the gastrocnemius lateral head (p 

< 0.05). † Significant difference compared with the gastrocnemius medial head (p < 0.05). 

 

Figure 5. Correlation coefficient between muscle cross-sectional area in sitting position and muscle 

thickness: (a) Soleus of 25% portion; (b) Soleus of 50% portion; (c) Soleus of 75% portion; (d) 

Gastrocnemius medial head of 25% portion; (e) Gastrocnemius medial head of 50%; (f) Gastrocnemius 

lateral head of 25% portion; (g) Gastrocnemius lateral head of 50% portion. The blue point indicates 

value of muscle thickness and muscle cross-sectional area. * Significant correlation with the muscle 

cross-sectional area on MRI (p < 0.05). 



Healthcare 2020, 8, 166 7 of 9 

 

4. Discussion 

The purpose of this study was to compare the MCSA of the triceps surae in the lying and sitting 

positions measured using vertical MRI and clarify the differences in the MCSA depending on the 

posture. In addition, we aimed to clarify the relationship between the MT measured using US, which 

is a commonly used instrument, and MCSA, and use the MT as an indicator of MCSA in the sitting 

position. The results of this study are important as an indicator of the structural factors related to 

muscle strength, such as the measurement of leg circumference and MT measured by US in the 

antigravity limb position. 

There was no difference in the muscle volumes between the lying and sitting positions, 

suggesting that there was no change in the muscle volumes due to posture, and either the lying or 

sitting position did not under- or over-measure the muscle. On the other hand, for the MCSA, as in 

previous studies [10,11], the difference was greater in the sitting position than in the lying position. 

Kinugasa et al. [21] reported that the MCSA decreases when the muscle is stretched in the 

longitudinal direction because the muscle volume is constant. In the present study, in the sitting 

position, the MCSA increased in the area where the muscles moved caudally due to the effect of 

gravity, while it decreased in some areas due to stretching. In the SOL, there was no difference in the 

MCSA between the lying and sitting positions at the 25% portion, though the MCSA in the sitting 

position was greater at the 50% portion. The 25% portion was located more proximally than the 50% 

portion; therefore, the amount of muscle that could be moved caudally was expected to be less than 

in the 50% portion when the whole muscle belly was considered. Furthermore, the MCSA in the 25% 

portion was lower than that in the 50% portion, suggesting that the muscle volume in the 25% portion 

was smaller than that in the 50% portion and less susceptible to the effects of gravity. Similarly, the 

MCSA in the 75% portion was smaller than that in the 50% portion, suggesting that the area was less 

susceptible to muscular deflection. For the GM, the MCSA in the sitting position was greater than in 

the lying position in both 25% and 50% portions, suggesting that the GM is more susceptible to 

postural changes than the SOL in the whole muscle. It is considered that the GM is more susceptible 

to gravitational deflection than the SOL because it is located in the superficial region. Furthermore, 

there was no difference in the MCSA between the lying and sitting positions for the GL located in the 

superficial region as well as for the GM. It has been reported that the muscle strength of the GL is 

smaller than that of the GM [1]. In the present study, the MCSA of the GL was smaller than that of 

the SOL and GM in both the 25% and 50% portion. This suggests that the muscle volume of the GL is 

smaller than that of the other muscles and less susceptible to caudal movement due to gravity. These 

results, taken together, suggest that it is necessary to consider the effect of posture on the 

measurement of the MCSA and MT, because the 50% portion of the SOL and the 25% and 50% 

portions of the GM are especially susceptible to postural change. 

From the aforementioned results, the relationship between the MCSA and the MT is important; 

however, only the 50% portion of the GM was correlated, and the other sites and muscles were not. 

Previous studies have reported that MCSA is associated with MT [19,20]. However, these studies 

were conducted in the lying position, and not in the antigravity position. It is considered that the 

MCSA and MT were not related in the sitting position, because the muscle moved caudally and 

changed its morphology in three dimensions compared with the lying position. The results of this 

study indicate that there was a difference in the MCSA between the lying and sitting positions in the 

50% portion of the GM, and that there was a correlation. Therefore, MT is considered a useful 

indicator of the MCSA in the sitting position. In addition, the conventional MT measured by US in 

the lying position may be used as an indicator of the MCSA in the sitting and lying positions because 

there was no difference in the MCSA between the two positions at the 25% portion of the GL and 

SOL. The MCSA of the 50% portion of the SOL and the 25% portion of the GM differed between the 

lying and sitting positions, and there was no correlation with the MT. Therefore, it would be difficult 

to use the MT of these sites as an indicator of MCSA in the sitting position. 

One of the limitations of this study is that it only measured the MT and MCSA, which are 

indicators of structural factors of muscle strength, and did not directly measure muscle strength itself, 

or the neural factors. Some reports suggest that the MT and MCSA are correlated with muscle 
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strength, but not strongly, and are not sufficient as direct indicators of muscle strength [22–24]. 

Therefore, the results of this study should be used only as a structural indicator. However, it is 

important to note that structural muscle assessment may be a more useful assessment when 

combined with the assessment of neurological factors such as muscle activity and fatigue by 

electromyography. The MT in the 50% portion of the SOL and 25% portion of the GM, which could 

not be used as an indicator of the MCSA in the sitting position, may be useful as an indicator of 

muscle strength and therefore should be investigated in the future. The number of participants in this 

study was only 16, which is not sufficient. Further studies with more participants are needed to verify 

the study findings. In addition, the MCSA measured in this study was anatomical MCSA, and 

physiological MCSA was not measured. Fukunaga et al. [6] suggested that physiological MCSA is 

necessary because anatomical MCSA alone is insufficient to assess maximal muscle strength. 

Therefore, the relationship between physiological MCSA and maximal muscle strength should be 

investigated in the future. 

5. Conclusions 

The present study investigated the differences in the MCSA of the triceps surae between the 

lying and sitting positions and the relationship between the MCSA and MT in the sitting position. 

The results indicated that the MCSA of the SOL and GM changed in the lying and sitting positions, 

and only the 50% portion of the GM showed a correlation between MCSA and MT in the sitting 

position. Therefore, it is necessary to consider the muscle and the region when the MT in the sitting 

position is used as an indicator of the MCSA. 
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