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Abstract: Background: Cognitive decline is age relevant and it can start as early as middle age.
The decline becomes more obvious among older adults, which is highly associated with increased risk
of developing dementia (e.g., Alzheimer’s disease). White matter damage was found to be related
to cognitive decline through aging. The purpose of the current study was to compare the effects
of Tai Chi (TC) versus walking on the brain white matter network among Chinese elderly women.
Methods: A cross-sectional study was conducted where 42 healthy elderly women were included.
Tai Chi practitioners (20 females, average age: 62.9 ± 2.38 years, education level 9.05 ± 1.8 years) and
the matched walking participants (22 females, average age: 63.27 ± 3.58 years, educational level:
8.86 ± 2.74 years) underwent resting-state functional magnetic resonance imaging (rsfMRI) scans.
Diffusion tensor imaging (DTI) and graph theory were employed to study the data, construct the white
matter matrix, and compare the brain network attributes between the two groups. Results: Results
from graph-based analyses showed that the small-world attributes were higher for the TC group than
for the walking group (p < 0.05, Cohen’s d = 1.534). Some effects were significant (p < 0.001) with
very large effect sizes. Meanwhile, the aggregation coefficient and local efficiency attributes were also
higher for the TC group than for the walking group (p > 0.05). However, no significant difference was
found between the two groups in node attributes and edge analysis. Conclusion: Regular TC training
is more conducive to optimize the brain functioning and networking of the elderly. The results of the
current study help to identify the mechanisms underlying the cognitive protective effects of TC.

Keywords: exercise; Tai Chi; DTI; brain network of white matter; small world attributes

1. Introduction

Aging is associated with serious changes in neurocognition. For instance, age-related cognitive
decline can start as early as in one’s 20s and 30s and becomes more obvious among older adults [1].
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When the age-related cognitive decline becomes sufficiently serious, it is highly associated with
increased risk of developing dementia (e.g., Alzheimer’s disease) [2–4]. As cognition relies on
proper brain functioning, it is natural to assume that the aging-related changes in cognition may be
accompanied by age-related changes in the brain, too. Indeed, solid evidence shows that aging leads to
considerable changes in functional connectivity and grey matter as well as white matter in the human
brain [5,6]. In this context, a recent study showed that there is a significant ageing-related loss of white
matter volume in fronto-striatal projections [7]. The white matter plays a key role in cognitive processes
because it connects different grey matter regions throughout the human brain [8]. The important role
of white matter in cognition is buttressed by the evidence that white matter damage was found to be
related to cognitive decline through aging and that reduced integrity of white matter is associated with
worsening of cognitive performance (e.g., executive functions, information processing speed) [9–11].
Furthermore, older individuals are more cognitively deficient than other individuals. Such differences
were thought to be caused by brain networks with cognitively deficient older individuals tending to
recruit a similar brain network as young adults but used it ineffectively, whereas cognitively deficient
older adults compensated for cognitive decline by reorganizing their brain network [12]. Thus, it is
of great importance to investigate whether aging influences brain white matter networks so we can
determine methods to slow down these processes via lifestyle changes, such as physical exercise [8].

Notably, it was observed that (i) one year of aerobic exercise intervention positively influenced
white matter structure and cognition [13]; (ii) a six-month dance intervention increased white matter
volume in healthy older adults [14]; (iii) individuals who performed life-long physical exercises
preserved their white matter integrity [15]; (iv) white matter microstructure mediated the relationship
between cardiorespiratory fitness and cognitive performance (i.e., spatial memory) [16]. This evidence
suggests that physical training and a relatively high level of cardiorespiratory fitness (e.g., achieved
through regular physical training) are beneficial to preserving white matter integrity and cognition.
However, no evidence determined the type of physical exercise (e.g., aerobic exercise, resistance
exercise, motor-cognitive exercise) that is the most beneficial to preserve white matter integrity and
cognition. The current study examines if dual-task training, which includes physical/or motor activity
in combination with cognitive demands, is more effective in improving cognitive functions than a
single task [17].

The literature provides evidence suggesting that motor-cognitive exercise (e.g., Tai-Chi, dancing)
could be the most beneficial type of physical exercise to preserve or improve neurocognition in older
individuals because they combine motor (physical) and cognitive demands [18,19]. Tai-Chi (TC) is a
cognitive-motor exercise, which is commonly performed at mild-to-moderate exercise intensities [20,21].
Its choreographed routine typically consists of graceful, slow, fluid movements and it is performed
in coordination with deep breathing, relaxation, and mental focus [22,23]. Such unique features
have attracted people worldwide in pursuit of health and longevity, especially the frail elderly who
experience functional decline [24,25]. Early studies have extensively investigated the health benefits of
TC, suggesting that it effectively improved physical (e.g., balance, lower-limb strength, flexibility, and
cardiovascular fitness) [26,27] and mental (e.g., stress, anxiety, pain, and depression) health outcomes
of different age groups [28,29].

Scholars have also been interested in examining the neurocognitive benefits of TC [30]. Notably,
the majority of early studies mainly focused on the effects of TC on behavioral outcome measures related
to cognition [31,32]. With recent advances in neuroimaging techniques, scholars started to pay great
attention to understanding the neurobiological mechanisms and processes underlying the cognitive
protective effects of TC, suggesting that patients with brain damage demonstrate neuropsychological
improvements after practicing TC [33]. Despite the brain decline through age, previous studies
have indicated that the regional homogeneity of brain functions and cognition were significantly
different between TC practitioners and TC-naïve individuals. Specifically, TC was shown to improve
brain functions among older adults [34]. Furthermore, after a 12-week TC training, low frequency
fluctuations of the brain increased in the dorsal prefrontal cortex in the TC group and higher prefrontal
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cortex activity was associated with better behavioral performance in the TC group [35,36]. However,
little research has examined the changes in brain white matter due to TC practice, and compared it to a
different form of regular physical exercise, such as walking, which is considered to be most feasible
and low cost among many physical exercises. Hence, the current study aimed to examine whether TC
practice and walking practice changes brain white matter and the brain network.

2. Materials and Methods

2.1. Participants

From 2017 to 2019, healthy elderly women were recruited to attend this study in Suzhou,
China. Volunteers were screened against the exclusion criteria, including metal implants, abnormal
hearing, serious physical diseases, family history of mental illnesses, drug or alcohol abuse,
musculoskeletal diseases, injuries caused by sports, and claustrophobia. Forty-two females were
included: (1) 20 practitioners (62.81 ± 3.02 years) in the TC group reporting exercise training
exceeding 6 years, with 90 min × 5 sessions per week and education level of 9.05 ± 1.96 years;
(2) 22 participants (63.55 ± 3.04 years) in Walking group where they regularly performed walking
for 6 years, with 90 min × 5 sessions per week and educational level of 8.73 ± 2.21 years. Research
assistants explained the purpose of the experimental procedures. All participants who volunteered
to engage this study completed the written informed consent, which was approved by the ethics
committee of the university (Approval No. ECSU-2019000209). Furthermore, all study procedures
were in accordance with the latest version of the Declaration of Helsinki.

2.2. MRI Data Acquisition

The MRI images were captured by a Philips 3.0T MRI scanner with standard 32 channel head coil
array in the MRI room of the Second Affiliated Hospital of Soochow University, Suzhou. During the
whole scanning process, we used cushions to minimize head motion of participants and earplugs to
reduce noise generated by the scanning. Then diffusion tensor imaging (DTI) data and T1-weighted
terms data of all the participants were collected. Diffusion tensor imaging data were required by
echo plane imaging sequences (EPI) with field of view: 220 × 220 mm2; matrix: 112 × 109 mm2; TR:
6000 ms; TE: 95ms and directions: 32. The number of layers was 50 and the slice thickness was 3 mm.
Participants were scanned continuously using sagittal three dimensional T1-weighted high resolution
magnetization-prepared rapid gradient echo sequence (MPRAGE) for their whole brains: 155 sagittal
slices, voxel size: 0.625 × 0.625 × 1 mm3, TR: 7.1 ms, TE: 3.5 ms, flip angle: 8◦, slice thickness: 1.0 mm;
field of view: 220 × 220 mm2; matrix = 352 × 352 mm2.

2.3. Statistical Analysis

2.3.1. Image Preprocessing

The data processing software PANDA (Positioning And Navigation Data Analyst) based on FSL
(FMRIB Software Library) 5.0.9 was used for preprocessing and network construction (Figure 1). First,
we converted DTI data from DICOM (Digital Imaging and Communications in Medicine) format to
NIfTI (Neuroimaging Informatics Technology Initiative), and then corrected eddy current and head
motion to eliminate the influence of gradient coil. Skull images were removed and the scalp and other
non-brain tissue structures were stripped. The estimation of dispersion tensor model and the fractional
anisotropy (FA) of every voxel were calculated. Fiber assignment by a continuous tracking (FACT)
algorithm was used to reconstruct the direction of white matter fiber bundles in the brain network.
High FA values indicate tight connections between the microstructures. Conversely, the lower FA
value usually indicates white matter damage. All traces were calculated based on voxel seed point and
the traced streamlines were terminated when the fold angle of the fibers was greater than 45 degrees or
the FA value was less than 0.2.
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network matrix of two groups was constructed at the group level, and then the brain network 
attributes were calculated. 
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We used the GRETNA (GRaph thEoreTical Network Analysis) 2.0 toolbox and the topological 
attributes of brain functional networks were calculated with the number of fibers with a minimum 
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0.59: moderate correlation; 0.60–0.79: moderately high correlation; ≥ 0.80: high correlation. The level 
of statistical significance was set in all statistical tests to α = 0.05. 

Figure 1. Construct flow chart of white matter network by using diffusion magnetic resonance imaging
(MRI). Note: Individual fractional anisotropy (FA) image was registered to structural image, which
were then non-linearly registered to ICBM152 standard space. Then, a transform matrix was obtained.
The automated anatomical labeling (AAL) anatomical marker map was registered to individual spaces
by means of the above two inverse transformation matrix steps. Whole brain white matter fibers were
reconstructed as shown in (C). Each participant’s weighted network (G) was created by calculating the
number of fibers which connected each pair of brain regions. The brain network matrix of two groups
was constructed at the group level, and then the brain network attributes were calculated.

2.3.2. Construction of Deterministic Fiber Tracking Network

Nodes and edges are two basic elements of the brain network. In this study, the whole brain was
divided into 90 regions of interest as 90 nodes by using an automated anatomical labeling (AAL) atlas,
and each unilateral hemisphere contained 45 nodes. For the edge connection between two brain regions,
one brain region has a fiber connection to the other and terminates in it, which is called a fibrous
connection. The FA image was registered with the corresponding T1-weighted image in the original
space by affine transformation. Then, the structural image was matched to the standard template
through the nonlinear transformation. After the last two steps, the AAL atlas from the standard space
could be mapped back to the individual space of each subject through inverse transformation. At the
same time, we recorded the number of fiber connections between each pair of brain regions of every
participant and stored the values to construct a 90 × 90 matrix.

2.3.3. Characteristic Analysis of Topological Attributes of Complex Brain Networks

We used the GRETNA (GRaph thEoreTical Network Analysis) 2.0 toolbox and the topological
attributes of brain functional networks were calculated with the number of fibers with a minimum
threshold of 10 to reduce the influence of false edges on network attributes. In the process of complex
network research, regular networks and random networks have been used to describe and simulate the
complex real system. The shortest path length and global efficiency reflect the capability to transmit
global information about the network. Short paths indicate high global efficiency of the networks as
well as the high efficiency information transmission between nodes in the network [37].

2.3.4. Statistical Calculation

The statistical analysis was performed using SPSS (SPSS Inc., Chicago, IL, USA). We calculated
a two-sample two-tail t-test (if the data was normally distributed) or Mann–Whitney (if the
data was not normally distributed) in order to compare baseline demographic characteristics
(see Table 1). To investigate the relationship between white matter brain network parameters and
cognitive performance, we conducted a correlational analysis using Pearson’s correlation coefficient.
The correlation coefficients were rated as follows: 0–0.19: no correlation; 0.2–0.39: low correlation,
0.40–0.59: moderate correlation; 0.60–0.79: moderately high correlation; ≥ 0.80: high correlation.
The level of statistical significance was set in all statistical tests to α = 0.05.
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Table 1. Demographic Data.

Tai Chi Walking
t p Cohen’s d(n = 20) (n = 22)

Age, years 62.9 ± 2.4 63.27 ± 3.6 −0.393 0.193 a
−0.121

Education, years 9.05 ± 1.8 8.86 ± 2.74 0.188 0.074 b 0.082
Handedness (left/right) 0/20 0/22

MMSE 28.5 ± 1.1 28.14 ± 1.0 1.1 0.636 b 0.342
Moca 28.4 ± 1.5 27.5 ± 1.5 1.94 0.83 b 0.6

RT(1-back)ms 629.26 ± 185.58 685.06 ± 111.94 0.133 0.196 a
−0.364

RT(2-back)ms 761.03 ± 146.61 855.73 ± 138.39 2.198 0.037 a
−0.664

Accuracy(1-back) 0.95 ± 0.03 0.93 ± 0.08 1.078 0.30 a 0.331
Accuracy(2-back) 0.91 ± 0.04 0.87 ± 0.06 2.522 0.016 a 0.784

Abbreviation: a—The p value was obtained using a two-sample two-tailed t-test; b—The p-value was obtained
using non-parametric (Mann–Whitney) test. Note: MMSE: The Mini-Mental State Exam; MoCA: The Montreal
Cognitive Assessment.

3. Results

3.1. Demographic Data

No significant differences were observed between the two groups in age, education level,
handedness, MoCA, and MMSE scores. Detailed information is displayed in Tables 1 and 2. Participants
in walking group showed significantly lower scores in 2-back test (p = 0.016, Cohen’s d = 0.784),
and significantly longer response times (p = 0.037, Cohen’s d = −0.664) in 2-back test compared with
participants in Tai Chi group.

Table 2. Topological parameters of brain functional networks used in this study.

Network Properties Characters Descriptions

Small-world
properties

Cp The clustering coefficient of a network that is the average of the
clustering coefficient, Cp-nodal, over all nodes. It measures the extent
of local cluster or cliquishness of the network.

Lp The characteristic path length of a network that is the average minimum
number of connections linking any two nodes of the network. It
measures the extent of overall routing efficiency of the network.

Eloc The local efficiency of a network that is the average of the local
efficiency, Eloc-nodal, over all nodes. It measures the mean local
efficiency of the network.

Eglob The global efficiency of a network that is the inverse of the harmonic
mean of the minimum path length between any two nodes. It measures
the extent of information propagation through the whole network.

S, K The sparsity or the cost to build a network.

Degree distribution a A scalar parameter, which reflects the extent that the node degree spans
within a network.

kc A cutoff value, which evaluates the extent of an exponential decay.

Nodal properties knodal The number of edges linking a single node.

Cp-nodal The nodal clustering coefficient that measures the extent of
inter-connectivity among the neighbors of the node.

Eloc-nodal The nodal local efficiency that measures the extent of information
transmission among the neighbors of the node.

Enodal The nodal global efficiency that measures the extent of information
transmission of the node with all other nodes in the network.

(Notes: Cp: clustering coefficient; Lp: characteristic path length; Eloc: local efficiency; Eglob: global efficiency;
S, K: sparsity (S) and wiring cost (K); a: a scalar parameter, a; Kc: a cutoff degree, Kc; Knodal: degree of a node; Cp-nodal:
nodal cluster coefficient; Eloc-nodal: nodal local efficiency; Enodal: nodal efficiency).
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3.2. fMRI Results

In both groups, λ (normalized characteristic path length of network) was close to one, and γ

(normalized clustering coefficient) was greater than one, resulting in the small-world parameter greater
than one (the white-matter correlation network of both groups followed a small-world property).
There was no significant difference in the length of characteristic path between networks (p = 0.235),
but the normalized clustering coefficient of the network was significantly higher in the TC group than
in the Walking group (p < 0.05). Consequently, the small-world parameter (brain white matter network)
was found to be greater in the TC group than in the walking group and the observed difference was
greatly significant (p = 0.000). Changes in network parameters are depicted in Table 3 and Figure 2.

Table 3. Comparison of network attributes between Tai Chi group and Walking group.

Tai Chi Group Walking Group
T p Cohen’s d

M SD M SD

Lp 3.131 0.215 3.051 0.255 1.071 0.291 0.339
Cp 0.31 0.035 0.295 0.04 1.236 0.224 0.399

sigma 5.021 0.345 4.503 0.33 4.835 0.000 * 1.534
λ 1.151 0.036 1.137 0.037 1.207 0.235 0.384
γ 5.774 0.373 5.125 0.448 4.951 0.000 * 1.574

Eloc 0.395 0.054 0.384 0.062 0.609 0.546 0.189
Eglob 0.321 0.021 0.33 0.026 −1.233 0.225 −0.38

Notes: Lp: Shortest Path Length; Cp: Aggregation Coefficient; sigma: small-world Attribute; λ: normalized
characteristic path length of network; γ: normalized clustering coefficient; Eloc: Local Efficiency. Eglob: Global
Efficiency; M = mean; SD = standard deviation. *p < 0.05.
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Figure 2. Comparison of brain networks between Tai Chi and Walking groups (*p < 0.05).

When looking into the relationship between small-world properties at the fMRI scan and individual
performance, we found that the small-world attribute (Sigma) exhibited a low, negative correlation
with reaction time (r (42) = −0.313; p = 0.044) in the 2-back condition and a moderately high, positive
correlation with accuracy score (r (42) = 0.673; p ≤ 0.000) across all subjects from the two groups
(Figure 3). The other computed correlations did not reach statistical significance and thus they were
not reported.
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4. Discussion

Previous experimental work has shown that TC can improve multiple forms of psychological
well-being and influence the functional architecture of the brain in older adults [34,38]. However, so
far only a few studies have examined the effects of TC on the human brain and available studies have
focused on changes in functional brain activation during standardized cognitive tests or structural
brain changes in response to a long-term TC training [36,39]. To the best of our knowledge, we are
the first to investigate in a cross-sectional study the influence of long-term TC training on brain white
matter and the brain network in comparison to walking training. Results of the current study indicate
that TC can improve small-world attributes compared to walking (M = 5.02 ± 0.35 vs. 4.50 ± 0.33,
p < 0.05, Cohen’s d = 1.534). The significant effects were huge. Although the aggregation coefficient
and local efficiency attributes expressed positive trends in favor of TC compared to walking, these
results were not statistically significant (p > 0.05).

The principal focus of the present paper was whether TC compared to walking could influence
characteristics of brain white matter. Statistical evidence showed that TC could attenuate small-world
attributes. Watts and Strogatz (1998), in their work have creatively and quantitatively described the
small-world characteristics to define this kind of network with small, average short path and large
clustering coefficients similar to the corresponding random network as in the small world network,
which can be represented by two proportions [40]. The network with small world characteristics has
high local efficiency and global efficiency, and the network can transfer information effectively both
locally and globally. The results showed that TC affected Sigma in the small-world parameter. Moreover,
Sigma might be linked to better individual cognitive performance in the 2-back task. The N-back test is
considered to be an important paradigm for measuring the updating function in working memory [41].
Friedman et al. (2006) found that the updating function of working memory is most closely related
to higher cognitive activities compared with other central executive functions. This finding aligns
with similar results from several other studies on this general topic [42]. Wei et al. (2014) evaluated
the effects of TC on intrinsic human brain architecture in older adults [34]. Age-matched older
adults separated into two groups (TC versus healthy controls matched for sex, age, and education)
completed a computerized flanker-type test measuring different behavioral aspects of attention. That is,
participants had to rapidly and accurately respond to stimuli presented on a computer screen using
either hand (left or right). The target stimulus was an arrow pointing in either direction (left or right)
flanked by additional stimuli on each side. Furthermore, participants were instructed to press the
left mouse button with their left thumb or the right mouse button with their right thumb as fast as
possible when the target arrow pointed to the left or right, respectively. Significant decreases were
detected by the fMRI in the left anterior cingulate cortices and the right superior frontal cortices of the
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dorsal lateral prefrontal cortices of the TC group compared to the controls. However, increases in the
right post-central gyrases were observed in TC groups relative to the controls [34]. In this experiment,
TC expressed greater functional brain activity within the post-central gyrases which may indicate a
benefit of TC training. Moreover, TC training produced a greater beneficial effect on executive and
non-executive cognitive functions compared to brisk walking, and this finding may be related to the
inherent demands of TC (e.g., higher cognitive demands of TC compared to walking) [43].

Due to the mind-body component of TC, the combination of meditation with slow movements,
deep rhythmic breathing, and relaxation has been shown to influence different regions of the human
brain in a multitude of ways [44]. For example, TC is believed to influence the slow frequency
fluctuations in resting brain activity by generating numerous combinations of oscillatory waves.
As a result, changes in brain activity (throughout different regions) can be observed and quantified.
Therefore, we speculate that the differences between TC and walking may be due to the different
exercised-induced characteristics placed upon the body. As previously mentioned, TC involves
a calming mind-body component that differs from walking (excitatory), thus producing different
mechanisms acting upon the human brain and its associated networks.

In support of the present findings, it appears that TC may attenuate neural network changes in the
human brain, therefore influencing the age-associated cognitive decline in elderly populations. Neural
networks with high clustering and short path lengths are the direct benefit of long-term TC training, thus
making the transmission of global and local information more efficient from network to network. From
a public health perspective, our findings suggest that a positive influence of TC on white matter brain
network could be of great interest because evidence suggests that white matter brain changes occur in
aging and in neurological diseases (e.g., Alzheimer disease, Multiple sclerosis) [45,46]. For instance,
alterations in brain white matter occurring in individuals suffering from Alzheimer disease and
individuals with mild cognitive impairment (MCI) show white matter changes prior to development of
dementia [9]. Hence, given our findings that long-term TC training positively influences white matter
brain network and cognitive performance, it seems reasonable to speculate that physical interventions
using TC training could be a promising strategy in dementia prevention. This idea is supported
by the finding that engaging in long-term TC training significantly improved executive function
performance in older adults with MCI [46,47]. With regard to Multiple sclerosis (MS), evidence in
the literature indicates that (1) brain white matter changes are associated with changes in cognitive
performance in MS [48,49] and (2) TC interventions in MS improve both motor-cognitive abilities
(e.g., balance) and quality of life [26,50]. Whether such cognitive and motor-cognitive performance
improvements after long-term TC training are caused by changes in brain white matter networks
among other factors (e.g., upregulation of neurotrophic factors, grey matter changes) is a promising
area for further investigations.

Our findings should be interpreted in light of the limitations of the current study and in light of
the work from other laboratories, as few research studies have examined the effects of TC on the brain
white matter network. A limitation of the current study is the homogenous sample of elderly women
which inhibits the generalization of our findings. Likewise, considering the small sample size, until
data is replicated using a larger sample size, results should be interpreted with caution. Future research
should consider investigating the effects of TC on elderly men to determine gender influences in the
long-term TC effects on changes in brain network activity. A strength of our investigation, however,
is the comprehensive assessment of functional brain activity utilizing rsfMRI to capture changes in
human brain network activity in response to long-term TC training.

5. Conclusions

In conclusion, our findings have shown that long-term TC training is more conducive to optimize
the brain structure and to promote the efficient brain function network of older women. Long-term
TC training produced significant changes in white matter small-world attributes. Changes as such
may indicate improvements in the efficiency and transmission of neural data between human brain
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networks. This long-term TC training would prove useful in elderly populations where cognitive
decline is prevalent. In contrast, non-significant changes were also noted for the aggregation coefficient,
global efficiency and local efficiency attributes in favor of the TC group. Collectively, these attributes
are used to measure the efficiency of neural transmission between networks in the human brain.
Furthermore, findings may suggest that rsfMRI can be an appropriate tool for measuring the effects of
TC on the characteristics of brain white matter in the human brain. As such, findings from this study
encourage further investigations to test whether long-term TC training could be a promising strategy
to protect against cognitive decline and alterations of white matter brain networks, which both occur in
aging and in neurological diseases such as Multiple sclerosis, mild cognitive impairment, Alzheimer’s
disease, and dementia.
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