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Abstract: Environmental pollutant emissions have become increasingly serious, and the resulting
human health problems have become the focus of social attention. In this study, 30 provinces in China
were selected as the object of study, SO2, NOX (nitrogen oxide), and PM2.5 were taken as undesirable
outputs, and a meta-frontier dynamic data envelopment analysis model was adopted to avoid the
disadvantages of static analysis. In this paper, energy efficiency, environmental pollution efficiency,
and human health efficiency were incorporated into a unified analysis framework by constructing a
two-stage model of the production and health stages. The study shows that the total efficiency score
of nine provinces and cities, including Beijing, is 1. However, the score of two-stage efficiency in most
provinces, such as Anhui, is less than 1, and the score of production efficiency is higher than that of
health efficiency. In the second stage, the average efficiency of health expenditure and medical staff

input is low, so it is necessary to make targeted improvement. In this regard, it is necessary for the
government to increase health expenditure to improve the overall level of health efficiency.

Keywords: pollutant emissions; two-stage dynamic DEA; meta-frontier; health efficiency; undesirable
outputs

1. Introduction

Energy is the material basis for the survival and development of human society and plays an
important role in national economic systems. Due to the continuous progress of China’s industrialization
and urbanization and the continuous growth of energy demand, the exhaustion of energy resources
and environmental pollution have increasingly become the focus of national life and society as a whole.
According to the BP (British Petroleum) Statistical Review of World Energy, China’s energy consumption
growth rate increased from 3.3% in 2017 to 4.3% in 2018, exceeding the average growth rate of 3.9% of
the past decade. Moreover, China is the world’s largest supplier of industrial products, which accounts
for about 70% of China’s total energy consumption [1]. This continuous growth of industrial energy
consumption has led to increasingly prominent energy environment problems. At present, SO2 and NOX

emissions and serious haze pollution are affecting people’s health, and industrial pollution emission is
one of the main sources of air pollution. A 2013 assessment by the World Health Organization (WHO)
International Agency for Research on Cancer concluded that air pollution is carcinogenic to humans.
The particulate matter composition of air pollution is closely related to the increased incidence of cancer,
especially lung cancer. These threats are likely to undermine the progress made in public health over the
past half-century. At present, the analysis of economics, energy, environmental pollution, and human
health mainly includes the following three aspects. First, exploring the causal relationship between
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economic growth, energy consumption, and environmental pollution, such as in Ang [2], Chang [3], and
Usman et al. [4]. Second, exploring the energy efficiency of each city or the influencing factors of energy
efficiency, such as in Jebali et al. [5], and Yang [6]. Third, Neidell [7], Cao [8], Lou et al. [9], Xue [10],
Rajak [11], Gu [12], and Chen [13] studied the relationship between various air pollutants and human
health. Due to increasingly prominent haze problems, some scholars have focused on the relationship
between PM and human health, such as Cohen [14], Brook [15], Chen [16], and Guan [17].

However, on the one hand, it is known from past research that the evaluation methods of energy
efficiency mainly include regression and data envelopment analyses. Among these, efficiency analysis
of data envelopment analyses (DEA) is widely used, but most methodologies are mainly static and
only discuss the production stage, failing to understand the sustainable development of energy and
environment. On the other hand, in recent years, scholars have shifted their attention to health
efficiency, but most scholars have not discussed energy consumption, environmental pollution, and
human health in connection to health. In order to improve the shortcomings of static analysis in
previous studies and further discuss the relationship between environmental pollution and human
health, this study is based on the two-stage meta-frontier dynamic DEA model to study the energy,
environment, and human health efficiency of 30 provinces in China, and to evaluate the relationship
between inter-provincial pollutant emissions and human health efficiency. This study takes into
account the impact of environmental pollution caused by energy consumption on human health,
and SO2, NOX, and PM2.5 are considered in environmental pollution. Previous studies have mostly
considered the impact of CO2 emissions but, although the CO2 concentration has increased, it is not
sufficiently high to harm human health. Therefore, this paper did not consider the impact of CO2

emissions on health efficiency. Due to the lack of relevant statistical data in Tibet, this research excludes
Tibet. In addition, this paper makes three contributions. One is to compare the energy, environment,
and health efficiency of different provinces spatially, so as to provide more appropriate suggestions for
the implementation of policies in each province. Second, this study not only discusses the efficiency of
energy and environmental pollution, but also discusses the impact of health expenditure on human
health efficiency. Third, the two-stage meta-frontier dynamic DEA model is adopted, which avoids the
shortcomings and problems of static analysis. In addition, it improves upon previous defects, namely,
that scholars have only considered the evaluation of energy efficiency or the impact of pollution on
health and explores the impact of industrial pollution on health efficiency. The study was conducted
from 2013 to 2016, with the production stage as the first stage and the health stage as the second stage.
Energy, environmental pollution, and health efficiency were evaluated dynamically using a two-stage
model. The results showed that the provinces and cities with a total efficiency score of 1 in the four
years from 2013 to 2016 include nine provinces and cities, such as Beijing, Guangdong, and Qinghai,
mainly developed regions, coastal regions, and northwest China. The efficiency of the second stage
is lower than that of the first stage, therefore, low environmental efficiency and health efficiency are
the common difficulties faced by most provinces in China. In this regard, it is suggested that low
efficiency provinces should optimize and adjust the industrial structure and energy consumption
structure, regulate the development of the heavy chemical industry with serious pollution, and further
increase the input of total health expenditure, and develop and improve the big health industry.

2. Literature Review

According to the past literature, early studies focused on the causal relationship between economic
growth, energy consumption, and environmental pollution. For example, Ang [2] studied the dynamic
causal relationship between pollutant emissions, energy consumption, and production in France.
Chang [3] studied the correlation between China’s carbon dioxide emissions, energy consumption,
and economic growth. Usman et al. [4] calculated the correlation degree between energy consumption,
environmental pollution, and economic growth through grey correlation analysis. The evaluation
of energy efficiency has also gradually emerged. Scholars’ research focuses on the measurement or
analysis of influencing factors of energy efficiency in various cities. Among these, Jebali et al. [5] studied
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the determinants of energy efficiency in Mediterranean countries from 2009 to 2012. Yang [6] applied
game crossover efficiency DEA to analyze the total factor energy efficiency of 26 prefecture-level cities
in China from 2005 to 2015 under environmental constraints. Armeanu et al. [7] investigated the effects
of energy consumption and environmental pollution on economic growth in a sample of 11 states
in Central and Eastern Europe from 2000 to 2016, and discussed causality. Haseeb et al. [8] examine
the determinants of Research and Development (R and D) expenditure and health expenditure of
Association of Southeast Asian Nations (ASEAN) countries.

In recent years, scholars have begun to pay attention to the impact of air pollution on human
health from a number of different perspectives. The first assesses the impact of air pollution on human
health, such as in Lou et al. [9], who summarize studies on the health effects of temperature and air
quality changes directly or indirectly affected by climate change and summarize the limitations of
these studies. Xue [10] estimated the relationship between various environmental factors (including
air quality) and self-rated mental health scores of more than 20,000 Chinese residents. The second
perspective examines the effects of air pollution on mortality or morbidity of various diseases, such
as respiratory and cardiopulmonary diseases. Neidell [11] estimated the impact of air pollution on
hospitalizations for childhood asthma. Cao [12] examined the relationship between air pollution and
mortality, and found a significant correlation between the level of air pollution and mortality from
cardiopulmonary diseases and lung cancer. Rajak [13] assessed the impact of short- and long-term
exposure to American Associated Press (AAP) on respiratory morbidity, mortality, and premature
mortality in exposed populations in India. A third perspective explores the effects of air pollution
on the human health of different genders or ages. Gu [14] found that an increase in air pollution
concentration significantly reduced the health level of residents. Chen [15] studied the relationship
between high environmental air pollution exposure and respiratory health of children with 2532
primary school students, from grades three to five of two schools, with different air pollution levels in
Jinan, China, from 2014 to 2016. With the harm of PM2.5 becoming an increasing concern of society,
many scholars have also explored the influence of PM on human health. Cohen [16] analyzed fine
particle air pollution (PM2.5) and estimated that ambient air pollution caused about 3% of deaths from
heart and lung diseases, about 5% of deaths from trachea, bronchus, and lung cancer, and about 1%
of deaths from acute tuberculosis. Brook [17] found that decreased PM levels were associated with
reduced cardiovascular mortality. Chen [18] found that an increase of the total amount of suspended
particles in the air reduced the life expectancy of Chinese residents. Guan [19] assessed the annual
health loss and economic impact caused by PM2.5 exposure in Chinese cities from 2015 to 2017. Yang
et al. [20] found that the number of cases for PM2.5-related mortality and morbidity during the winter
season was about three times as much as that in the summer season in 28 cities.

According to the above research, the relationship between energy consumption and air pollution, and
the impact of air pollution on human health, have been widely discussed by scholars. Regarding research
methods, since Charnes et al. [21] published the data envelopment analysis (DEA) model, many scholars
have proposed improved models. Banker et al. [22] expanded its hypothesis using scale compensation
and proposed a Banker, Charnes and Cooper (BCC) model that could measure technical efficiency (TE)
and scale efficiency (SE). Network data envelopment analysis (network DEA) was proposed by Färe
et al. [23], which remedies the defect that traditional DEA fails to analyze the performance of various
departments, but fails to analyze multiple periods. Then, in 2009, Tone and Tsutsui [24] devised the
weighted slacks-based measure network data envelopment analysis model. In 2010, Tone and Tsutsui [25]
expanded this model into slacks-based dynamic analysis. In 2013, Tone and Tsutsui [26] combined
network DEA and dynamic DEA and proposed a weighted slacks-based measure dynamic network
DEA data envelopment analysis model. Many applications of the DEA model in energy and health
efficiency studies exist, including Zhang [27], who used a dynamic network slacks-based measure (SBM)
model to evaluate production and health efficiencies in Chinese cities. Zhou et al. [28] conducted an
empirical study on the energy performance of China’s industrial sector from 2010 to 2014 using the index
DEA model proposed to convert non-desirable output into desirable output. Djordjevic and Krmac [29]
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used the non-radial data envelopment analysis (DEA) model to evaluate EEE (i.e., European road, rail,
and aviation sectors) at the macro level. Wang et al. [30] measured the static overall efficiency of local
government health expenditure (GHE) in each region of China from 2007 to 2016 using data envelopment
analysis (DEA). The spatial spillover effect (SSE) of local GHE static total efficiency in each region was
measured by building a spatial Dubin model (SDM). Guo et al. [31] used a slacks-based measure (SBM)
with undesirable outputs to assess the industrial environmental efficiency of western China during the
period 2001–2015. Liu et al. [32] used the combination of a super-slacks-based measure (SBM) model
with the Malmquist productivity index (MPI) to evaluate the static health expenditure efficiency (HEE)
and dynamic health expenditure efficiency (DHEE) in rural China from 2007 to 2016. Shao et al. [33]
evaluated the eco-efficiency of China’s industrial sectors between 2007 and 2015 using the directional
distance function (DDF) of network data envelopment analysis (DEA) and a two-stage structure. In
addition, Zhang et al. [34], Bigerna et al. [35], and Li et al. also adopted the two-stage DEA model for
research. Scholars who have adopted the meta-frontier dynamic DEA model for efficiency studies include
Li et al. [36], Zhang et al. [37], Li et al. [38], and Ren et al. [39].

The two-stage meta-frontier dynamic DEA model is adopted in the present study. This model
retains the advantages of dynamic continuous analysis, while two-stage analysis will also more
comprehensively evaluate the efficiency of energy, the environment, and health.

3. Research Methods

3.1. Data and Variables

Regarding existing national or regional energy efficiency assessment research, Hu and Kao [40]
selected labor force, energy consumption, capital, and Gross Domestic Product (GDP) in the first stage,
Wang et al. [41] selected labor force, energy consumption, capital, and GDP in the first stage, and Chen
and Liu [42] selected energy consumption, labor force, and fixed assets as inputs, and GDP as output. In
this paper, industrial labor, energy consumption, industrial fixed assets, and industrial GDP are selected
as the inputs and output in the first stage, respectively. Ambient air pollution in urban, suburban, and
rural areas is estimated to have caused 4.2 million premature deaths globally in 2016 due to exposure
to particulate matter of 2.5 microns or smaller (PM2.5), which increases the incidence and mortality of
cardiovascular and respiratory diseases and cancers, according to the WHO. Therefore, SO2, NOX, and
PM2.5 were selected as the undesirable outputs in the first stage. In the second stage, the input and
output variables were improved on the basis of Zhang and Chiu [27] for health expenditure, medical staff,
mortality rate, and life expectancy. The dynamic relationship of each index is shown in Figure 1.Healthcare 2020, 8, x FOR PEER REVIEW 5 of 26 
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The construction of the indicator system is shown in Table 1.

Table 1. Input and output variables.

Input Variables Output Variables Link Carry Over

Stage 1 Industrial Labor Industrial GDP NOX, SO2 Industrial
Fixed
Asset

Energy Consumption PM2.5

Stage 2 Health Expenditure Mortality Rate

Medical Staff Life Expectancy

Details of the input and output variables are as follows.
The input index of the production stage includes industrial labor, industrial fixed assets, and

energy consumption. Industrial labor is the total industrial employment in each province and city, in
units of ten thousand. Industrial fixed assets are the stock of industrial fixed assets in each province
and city, in units of 100 million yuan. Energy consumption is the amount of standard coal consumed by
provinces and cities per year, in units of tons. The output indicator in the production stage is industrial
GDP (industrial Gross Domestic Product). Industrial GDP refers to the final result of production
activities of all industrial units in a certain period calculated by each province and city according to
the market price, in units of 100 million yuan. The undesirable output contains NOX emission, SO2

emission, and PM2.5 (Particulate Matter) concentration. The unit of NOX emissions is tons, the unit of
SO2 emissions is tons, and the unit of PM2.5 concentration is micrograms/cubic meters.

Input indicators in the health stage include health expenditure and medical personnel. Health
expenditure is the total social and individual medical expenditure of each province and city per year, in
units of 100 million yuan. Medical personnel is the total number of medical personnel in each province
and city, in units of ten thousand. The output indicators in the health stage are death rate and life
expectancy. The unit of death rate is %� and the unit of life expectancy is years.

From 2013 to 2016, industrial labor indicators were drawn from annual city statistical yearbooks,
the energy index was derived from the China energy statistical yearbook, nitrogen oxide and sulfur
dioxide emissions data were taken from the China statistical yearbook, the average concentrations of
PM2.5 data were taken from the provincial ecological environment bulletin, and life expectancy data
were taken from the provincial statistical yearbook and the province entries in the Thirteenth Five-Year
Plan for health family planning career development special planning.

3.2. Modified Undesirable Meta Dynamic Network Model

The production stage is the first stage and the health stage is the second stage. In the first
stage, industrial labor, investment in industrial fixed assets, and energy consumption are input
items, industrial GDP is the output, and the variables of the link production stage and health stage
are SO2 emission, NOX emission, and PM2.5 annual average concentration. In the second stage,
health expenditure and medical staff are the input items, and mortality and life expectancy are the
output items.

This study considered both undesirable outputs and regional differences. Based on Tone and
Tsutsui’s [26] dynamic SBM, the meta-frontier model of O’Donnell et al. [43], and the undesirable
dynamic network model of Chen et al. [42], we established the modified undesirable meta dynamic
network model. The modified undesirable meta dynamic network model is detailed as follows:

Suppose there are n number of DMUs (j = 1, . . . , n), with each having k divisions (k = 1, . . . , K)
and T time periods (t = 1, . . . , T). Each of the DMUs has an input and output at time period t and a
carryover (link) to the next t + 1 time period.

Set mk and rk to represent the input and output in each division K, with (k, h) representing divisions
k to h and Lhk being the k and h division set. The inputs and outputs, links, and carryover definitions
are given in the following.
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Inputs and outputs:
Xt

i jk ∈ R+ (i = 1, ..., mk; j = 1, ..., n; K = 1..., K; t = 1, ..., T) refers to input i at time period t for
DMUj division k

yt
r jk ∈ R+ (r = 1, ..., rk; j = 1, ..., n; K = 1..., K; t = 1, ..., T) refers to output r in time period t for

DMUj division k. If part of the output is not ideal, it is considered an input for the division.
Links:
Zt

j(kh)t ∈ R+ ( j = 1; ...; n; l = 1; ..; Lhk; t = 1; ...; T) refers to the period t links from DMUj division k
to division h, with Lhk being the number of k to h links.

Carryovers:
Z(t,t+1)

jkl ∈ R+ ( j = 1, ..., n; l = 1, .., Lk; k = 1, ...k, t = 1, ..., T − 1) refers to the carryover of t to the t +

1 period from DMUj division k to division h, with Lk being the number of carryover items in division k.
Linkink is the number of input links for each division k, Linkoutk is the number of output links for

each division k, ngoodk indicates the number of desirable carryovers for each division k, and nbadk
indicates the number of undesirable carryovers for each division k.

Meta-frontier (MF):
It is assumed that all units (N) are composed of DMUs in g groups (N = N1 + N2 + . . . .+ NG),

where yrj and xij indicate the output item r (r = 1, 2, . . . , s) for item j (j = 1, 2, . . . , N) and input item i (i
= 1, 2, . . . , m) for item j (j = 1, 2, . . . , N) under the meta-frontier. The meta-frontier k of DMU efficiency
is solved using the following linear program (LP):

Objective function:
Overall efficiency:

θ∗0 = min

T∑
t=1

Wt

∑K
k=1 Wk

1− 1
mk+linkink+ninputk

(
G∑

g=1

mk∑
i=1

St−
iok

xt
iokg

+
G∑

g=1

linkinl∑
(kl)l=1

st
o(kh)lin

zt
o(kh)ling

+
G∑

g=1

ngoodk∑
kl

s(t,t+1)
oklinput

z(t,t+1)
oklinput

)




T∑
t=1

Wt

∑K
k=1 Wk

 1+ 1
r1k+r2k

(
G∑

g=1

r1k∑
r=1

st+
rokgood

yt
rokggood

+
G∑

g=1

r2k∑
r=1

st−
rokbad

yt
rokgbad





(1)

Subject to:

xt
ok = Xt

kgλ
t
kg + st−

ko (∀k,∀t,∀g)

yt
okgood = Yt

kggoodλ
t
kg − st+

kogood(∀k,∀t,∀g)

yt
okbad = Yt

kgbadλ
t
kg + st−

kobad(∀k,∀t,∀g)

eλt
kg = 1(∀k,∀t,∀g)

λt
kg ≥ 0, st−

ko ≥ 0, st+
kogood ≥ 0, st−

kobad ≥ 0, (∀k,∀t,∀g)

Zt
o(kh)in = Zt

(kh)ingλ
t
kg + St

o(kh)in ((kh)in = 1, ..., linkink)

Z(t,(t+1))
okl good =

∑n
j=1 z(t,(t+1))

jkl ginput
λt

jkg − s(t,(t+1))
oklinput (kl = 1, ..., ngoodk;∀k;∀t;∀g)

s(t,(t+1))
okl good ≥ 0, (∀k,∀t,∀g)

(a) Period and division efficiencies.
The period and division efficiencies are as follows:
(a1) Period efficiency:

∂∗0 = min

∑K
k=1 Wk

1− 1
mk+linkink+ninputk

(
G∑

g=1

mk∑
i=1

St−
iok

xt
iokg

+
G∑

g=1

linkinl∑
(kl)l=1

st
o(kh)lin

zt
o(kh)ling

+
G∑

g=1

ninputk∑
kl

s(t,t+1)
oklinput

z(t,t+1)
okl ginput

)


∑K

k=1 Wk

1 + 1
r1k+r2k

(
G∑

g=1

r1k∑
r=1

st+
rokgood

yt
rokggood

+
G∑

g=1

r2k∑
r=1

st−
rokbad

yt
rokgbad

 (2)
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(a2) Division efficiency:

ϕ∗0 = min

T∑
t=1

Wt

1− 1
mk+linkink+ninputk

(
G∑

g=1

mk∑
i=1

St−
iok

xt
iokg

+
G∑

g=1

linkinl∑
(kl)l=1

st
o(kh)lin

zt
o(kh)ling

+
G∑

g=1

ninputk∑
kl

s(t,t+1)
oklinput

z(t,t+1)
okl ginput

)


T∑

t=1
Wt

1 + 1
r1k+r2k

(
G∑

g=1

r1k∑
r=1

st+
rokgood

yt
rokggood

+
G∑

g=1

r2k∑
r=1

st−
rokbad

yt
rokgbad

 (3)

(a3) Division period efficiency:

ρ∗0 = min

1− 1
mk+linkink+ninputk

(
G∑

g=1

mk∑
i=1

St−
iok

xt
iokg

+
G∑

g=1

linkinl∑
(kl)l=1

st
o(kh)lin

zt
o(kh)ling

+
G∑

g=1

ninputk∑
kl

s(t,t+1)
oklinput

z(t,t+1)
okl ginput

)

1 + 1
r1k+r2k

(
G∑

g=1

r1k∑
r=1

st+
rokgood

yt
rokggood

+
G∑

g=1

r2k∑
r=1

st−
rokbad

yt
rokgbad

 (4)

From the above, the overall efficiency, period efficiency, division efficiency, and division period
efficiency can be obtained using the meta-frontier model.

Group-frontier (GF):
As each DMU under the group frontier chooses the most favorable final weighted output, the

DMU efficiencies under the group frontier are solved using the following equations:
(a) The objective function.
Overall efficiency:

θ∗0 = min

∑T
t=1 Wt

∑K
k=1 Wk

1− 1
mk+linkink+ninputk

(
∑mk

i=1
St−

iok
xt

iok
+
∑linkink

(kh)l=1

st
o(kh)lin

zt
o(kh)lin

+
ninputk∑

kl

s(t,t+1)
oklinput

z(t,t+1)
oklinput





∑T
t=1 Wt

[∑K
k=1 Wk

[
1 + 1

r1k+r2k
(
∑r1k

r=1

st+
rokgood

yt
rokgood

+
∑r2k

r=1
st−
rokbad

yt
rokbad

)]] (5)

xt
ok = Xt

kλ
t
k + st−

ko (∀k,∀t)

yt
okgood = Yt

kgoodλ
t
k − st+

kogood(∀k,∀t)

yt
okbad = Yt

kbadλ
t
k + st−

kobad(∀k,∀t)

eλt
k = 1(∀k,∀t)

λt
k ≥ 0, st−

ko ≥ 0, st+
kogood ≥ 0, st−

kobad ≥ 0, (∀k,∀t)

Zt
o(kh)in = Zt

(kh)inλ
t
k + St

o(kh)in((kh)in = 1, ..., linkink)∑n
j=1 z(t,(t+1))

jk1α
λt

jk =
∑n

j=1 z(t,(t+1))
jk1α

λt+1
jk (∀k;∀kl; t = 1, ..., T − 1)

Z(t,(t+1))
okl good =

∑n
j=1 z(t,(t+1))

jkl good
λt

jk − s(t,(t+1))
okl good kl = 1, ..., ngoodk;∀k;∀t)

s(t,(t+1))
okl good ≥ 0, (∀kl;∀t)

(b) Period and division efficiencies.
The period and division efficiencies are as follows:
(b1) Period efficiency:

∂∗0 = min

∑K
k=1 Wk

1− 1
mk+linkink+ninput (

∑mk
i=1

St−
iok

xt
iok

+
∑linkink

(kh)l=1

st
o(kh)lin

zt
o(kh)lin

+
ninputk∑

kl

s(t,t+1)
oklinput

z(t,t+1)
oklinput




∑K
k=1 Wk

[
1 + 1

r1k+r2kk
(
∑r1k

r=1

st+
rokgood

yt
rokgood
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(b2) Division efficiency:
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(b3) Division period efficiency:
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From the above results, the overall efficiency, the period efficiency, the division efficiency, and the
division period efficiency are obtained.

3.3. Industrial Labor, Industrial Fixed Assets, Energy Consumption, Industrial GDP, SO2, NOx, PM2.5,
Health Expenditure, Medical Staff, Mortality, and Life Expectancy Efficiency

3.3.1. The Input Efficiency of the First Stage

Industrial labor efficiency =
Target industrial labor input(i, t)
Actual industrial labor input(i, t)

Industrial asset efficiency =
Target industrial asset input(i, t)
Actual industrial asset input(i, t)

energy efficiency =
Target energy input(i, t)
Actual energy input(i, t)

3.3.2. The Output Efficiency of the First Stage

Industrial GDP efficiency =
Actual industrial GDP output(i, t)
Target industrial DP output(i, t)

SO2 efficiency =
Target SO2 undesirable output(i, t)

Actual SO2 undesirable output(i, t)

NOX efficiency =
Target NOX undesirable output(i, t)

Actual NOX undesirable output(i, t)

3.3.3. The Input Efficiency of the Second Stage

Health expenditure efficiency =
Target Health expenditure input(i, t)
Actual Health expenditure input(i, t)

Medical staff efficiency =
Target Medical staff input(i, t)
Actual Medical staff input(i, t)
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3.3.4. The Output Efficiency of the Second Stage

Mortality rate efficiency =
Actual Mortality rate output(i, t)
Target Mortality rate output(i, t)

Life expectancy efficiency =
Target Life expectancy output(i, t)
Actual Life expectancy output(i, t)

If the target index is equal to the actual index value, the index efficiency is equal to 1. In the
positive index, if the target index value is less than the actual index value, the index efficiency is less
than 1, that is, the index efficiency is low. In the inverse index, if the target value is less than the actual
index value, the index efficiency is less than 1, that is, the index efficiency is low.

4. Empirical Study

4.1. Statistical Analysis of Input-Output Indicators

Figure 2 shows statistics on industrial labor, industrial fixed assets, energy consumption, industrial
GDP, health expenditure, health care workers, mortality, and life expectancy. According to the statistical
analysis results of all indicators, from 2013 to 2016, health expenditure increased the most significantly,
and the average and maximum values both significantly increased annually. The maximum value of
the stock of industrial fixed assets increased by a large margin, and the annual average also gradually
increased. The increase of the stock of industrial fixed assets can promote the long-term growth of
productivity to some extent, thus promoting economic growth. However, with the development of
the industrial industry, the investment stock of fixed assets also reached a high level. For some areas,
whether the increasing stock of fixed assets will bring about a decline in marginal utility remains to
be measured.

The maximum annual growth rate of industrial GDP is inferior to the stock of industrial fixed
assets, and the maximum growth rate is the most significant, while the average value does not change
much, and the gap between the maximum value and the minimum value also increases annually. It can
be seen that the economic development speed of different provinces and cities is different, and the
growth rate of some provinces and cities is higher than the average level, which leads to the widening
of the economic gap.

The average, maximum, and deviation of energy consumption and medical staff from 2013 to
2016 showed a trend of increasing annually, but the increase was not significant. The average death
rate fluctuates, with the maximum value increasing annually, but the minimum value decreased,
indicating that the development of the economy and medical treatment contributed to the reduction of
the death rate. The average, maximum, and minimum of life expectancy increased slightly, and the
difference between the maximum and minimum was not obvious. This reflects that the quality of life
of the people improved, and the degree of safety also increased, thus improving the life expectancy
of the people. However, the resulting aging problem has also received extensive attention from the
government and society in recent years.
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Figure 2. Input-output statistics from 2013 to 2016.

4.2. Total Efficiency Score and Ranking of Cities from 2013 to 2016

Table 2 shows the total efficiency score and ranking of 30 Chinese provinces from 2013 to 2016.
The four-year total efficiency score was obtained by geometric weighting, including stage weighting
and time weighting. According to the data in the table, Beijing, Guangdong, Hainan, Inner Mongolia,
Ningxia, Qinghai, Shanghai, Xinjiang, and Tianjin scored a total efficiency of 1 in the past four years.
In addition, the total efficiency of these nine provinces was 1 every year, from 2013 to 2016.

Shaanxi, Gansu, Qinghai, Ningxia, and Xinjiang are in the northwest of China and have the highest
reserves of various energy resources in China. To some extent, the utilization efficiency of energy and
resources in northwest China affects the local economic development and ecological environment. The
total efficiency score of Qinghai, Ningxia, and Xinjiang has reached 1. In 2013–2016, the efficiency score of
Shaanxi fluctuated between 0.85–0.94 each year, while the total efficiency score of the four years was only
0.78, which indicates that there was still a large gap in the stage of Shaanxi and there was still a lot of
room for improvement. The annual total efficiency score of Gansu was much lower than that of other
provinces, and showed a trend of fluctuation and decline, which should be paid attention to. Except for
northwest China, the total efficiency scores of Fujian, Jilin, and Jiangsu were better, all above 0.7. Among
these, the total efficiency score of Jiangsu province was 0.86, and the total efficiency score of each year was
greater than 0.9. The lower ranking provinces were Anhui, Gansu, Guizhou, Hebei, Henan, Heilongjiang,
Shanxi, Sichuan, Yunnan, and Chongqing. The total efficiency score of these 10 provinces was less than
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0.5 in four years, but the total efficiency of Anhui and Chongqing was more than 0.5 in each year. The
large gap between stages led to the low total efficiency score in four years, while the annual efficiency in
Gansu, Heilongjiang, and Shanxi was low and showed a downward trend.

From the trend of time series scores, only Guangxi, Guizhou, and Hubei showed a continuous increase
in the total efficiency scores, while Anhui, Hebei, Henan, Zhejiang, and Chongqing showed a fluctuating
increase. Jilin had a large fluctuation range. Its total efficiency score reached 1 in 2013, but plummeted to
0.78 in 2014, bounced back to 0.96 in 2015, and dropped to 0.8 in 2016, with a fluctuation range of about 0.2.

In general, except for the 13 provinces with high scores, the remaining provinces with scores below
0.7 showed great room for improvement. Among them, the efficiency in Gansu was on a downward
trend, falling to 0.37 in 2016, far behind the national average score.

Table 2. Efficiency by city from 2013 to 2016.

DMU Total Rank 2013 2014 2015 2016

Anhui 1 1 1 1 1 1
Beijing 0.6063 16 0.6014 0.7243 0.8394 0.8906
Fujian 0.3579 28 0.4095 0.4605 0.4756 0.4925
Gansu 1 1 1 1 1 1

Guangdong 0.3619 25 0.4783 0.5068 0.4787 0.5329
Guangxi 0.4046 23 0.5572 0.5827 0.5469 0.6194
Guizhou 0.3597 26 0.5616 0.5454 0.5028 0.4999
Hainan 0.5328 19 0.7039 0.7248 0.7499 0.8288
Hebei 0.5409 18 0.7036 0.8025 0.7504 0.6771
Henan 0.8178 11 1 0.7795 0.9630 0.7988

Heilongjiang 0.8594 10 0.9309 0.9200 0.9043 0.9299
Hubei 0.5060 20 0.6384 0.6498 0.6259 0.6513
Hunan 0.6645 15 0.8926 0.8889 0.8735 0.5685

Jilin 1 1 1 1 1 1
Jiangsu 1 1 1 1 1 1
Jiangxi 1 1 1 1 1 1

Liaoning 0.5535 17 0.7587 0.6685 0.6486 0.6223
Inner Mongolia 0.3114 30 0.4336 0.4342 0.3731 0.3948

Ningxia 0.7836 12 0.8722 0.9364 0.9155 0.8518
Qinghai 1 1 1 1 1 1

Shandong 0.3725 24 0.6051 0.6006 0.5913 0.5996
Shanxi 1 1 1 1 1 1

Shaanxi 1 1 1 1 1 1
Shanghai 0.3529 29 0.4635 0.4624 0.4459 0.4428
Sichuan 0.6885 14 0.8404 0.8661 0.8516 0.8737
Tianjin 0.4930 21 0.5856 0.6375 0.6290 0.6842

Xinjiang 1 1 1 1 1 1
Yunnan 0.6063 16 0.6014 0.7243 0.8394 0.8906
Zhejiang 0.3579 28 0.4095 0.4605 0.4756 0.4925

Chongqing 1 1 1 1 1 1

4.3. Group Total Efficiency Score from 2013 to 1016

In this paper, 30 provinces are divided into two categories according to the size of industrial
output. Among them, the first category comprised provinces with a high industrial output value
(group 1): Beijing, Shanxi, Inner Mongolia, Jilin, Heilongjiang, Guangxi, Hainan, Chongqing, Guizhou,
Yunnan, Shaanxi, Gansu, Qinghai, Ningxia, and Xinjiang. The other category comprised provinces
with a lower industrial output (group 2): Tianjin, Hebei, Liaoning, Shanghai, Jiangsu, Zhejiang, Anhui,
Fujian, Jiangxi, Shandong, Henan, Hubei, Hunan, Guangdong, and Sichuan.

Table 3 lists the total efficiency of groups from 2013 to 2016. According to the table, the total
efficiency score of group 1 is slightly higher than that of group 2, and the average score of both groups
is greater than 0.8. However, the overall efficiency scores of the provinces in group 1 rose slightly
between 2013 and 2015, but declined in 2016. The total efficiency score of group 2 was not significantly
different from that of group 1 over the past four years. Although the difference between the total
efficiency scores of group 1 and group 2 decreased, the total efficiency score of 2016 barely improved
compared with that of 2013.
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Table 3. 2013–2016 group efficiency.

Total 2013 2014 2015 2016

Group 1 0.846786 0.849984 0.852496 0.855553 0.829112
Group 2 0.815461 0.808727 0.826673 0.818157 0.808287

4.4. Annual Efficiency Analysis of Each Stage

Table A1 lists the total efficiency score and ranking of each province in the four years, as well as
the efficiency score, average efficiency score, and ranking of each province in the first stage and the
second stage from 2013 to 2016.

Provinces with an efficiency of 1 in the first stage include Beijing, Fujian, Guangdong, Hainan,
Jiangsu, Inner Mongolia, Ningxia, Qinghai, Shaanxi, Shanghai, Tianjin, and Xinjiang. The reason is
that Beijing, Tianjin, Shanghai, Guangdong, and other provinces with a good economic foundation
have abundant capital and technology accumulation, and the main industries are technology- and
capital-intensive, so the industrial energy utilization efficiency is high. Influenced by policies of
western development, the industrial upgrade of Shaanxi, Qinghai, and others has relied on resources.
The low-level industrial structure has been gradually transformed into a higher-level industrial
structure with high industrial energy efficiency.

In the first stage, the four provinces with the lowest efficiency were Gansu, Shanxi, Yunnan, and
Guizhou, all of which were below 0.6, far lower than other provinces. Therefore, these four provinces
should further carry out industrial transformation, optimize the energy consumption structure, improve
labor productivity, adopt energy-saving technology to improve the coal utilization efficiency, and
realize the transformation from extensive economic growth mode to intensive economic growth mode,
so as to enhance industrial energy efficiency.

In the second stage, the nine provinces with efficiency scores of 1 were Beijing, Guangdong,
Hainan, Inner Mongolia, Ningxia, Qinghai, Shanghai, Tianjin, and Xinjiang. Compared with the first
stage, three provinces had an efficiency score of less than 1 in the second stage: Fujian, Jiangsu, and
Shaanxi. Among these, the efficiency score of Fujian and Shaanxi in the second stage was below 0.8.
This is because the industrial structure of these two provinces is still dominated by secondary industry,
most of their economic growth comes from secondary industry, and there is a large bottleneck in
industrial transformation. At the same time, PM2.5 concentration and industrial emissions, such as
sulfur dioxide, continue to rise, resulting in the efficiency of the second stage being much lower than
the first stage. The technology base of the emerging industry is weaker than in the Yangtze River and
Pearl River delta provinces and cities.

There was a significant difference in the efficiency of the second stage among all provinces. There
were only 15 provinces whose environmental efficiency score was higher than 0.7, and five provinces
whose environmental efficiency score was lower than 0.4, which was significantly lower than the
efficiency of the first stage. It can be seen that low environmental efficiency is a common difficulty faced
by most provinces in China. This is because China’s health expenditure on environmental governance,
though increasing, has been lower than that of developed countries as a proportion of GDP. Secondly,
local governments do not have strong supervision on the emission of pollutants from industrial
sectors and fail to resist environmental pollution from the source. Therefore, various supervision
mechanisms and legal systems still need to be built and improved. Finally, local governments should
also strengthen environmental protection publicity for enterprises and enhance people’s awareness of
environmental protection.

4.5. Group Annual Efficiency Analysis of Each Stage

Table 4 shows the efficiency of the first stage and the second stage in the provinces with a high
industrial output value (group 1) and the provinces with a low industrial output value (group 2) during
2013–2016. From the perspective of the groups, the efficiency score of group 1 in the first stage was not
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significantly different from that in the second stage, while the efficiency score of group 2 in the second
stage was significantly lower than that in the first stage, indicating that there was a lot of room for
improvement in the efficiency of group 2 in the second stage. The efficiency score of group 1 in the first
and second stages was relatively stable during the four years, with only a small fluctuation. Moreover, the
efficiency score in the second stage showed the same trend as that in the first stage, both of which rose
slightly in 2014 and then declined. The group 2 efficiency score of the first and second stages showed a
general trend of decline. In 2016, the efficiency score of the first and second stages both dropped to the
lowest level in four years, and the efficiency score of the first stage dropped to less than 0.8.

Table 4. Group efficiency in 2013–2016.

Stage 1 Stage 2

2013 2014 2015 2016 2013 2014 2015 2016

Group 1 0.8762 0.8970 0.8899 0.8878 0.8237 0.8080 0.8212 0.7704
Group 2 0.8366 0.8629 0.8500 0.8488 0.7808 0.7904 0.7864 0.7678

In general, the efficiency scores of the two groups in the second stage were lower than the efficiency
scores of the first stage, while the gap between the two efficiency scores of group 2 was relatively large.
Although the gap narrowed in 2016, it was not caused by the improvement of the efficiency of the second
stage, but the decline of the efficiency of the first stage. Therefore, the provinces in group 2 should focus
on improving the efficiency score of the second stage while maintaining the efficiency of the first stage.
Group 1: although the efficiency of the two stages is better, there is still room for improvement. In recent
years, the efficiency has only been maintained, but no improvement has been achieved.

4.6. Efficiency Analysis of Input and Output Indicators in the First and Second Stages from 2013 to 2016

4.6.1. Efficiency Score of Input-Output Index in the First Stage

Figure A1 shows the efficiency score and trend change of industrial labor, energy consumption,
and industrial GDP from 2013 to 2016, as well as the efficiency score and trend change of industrial
fixed asset input from 2013 to 2015. Among the four indicators, the efficiency score of industrial GDP
is the best. The efficiency score of most provinces reached 1 in four years, while the efficiency score of
Gansu, Guizhou, Heilongjiang, Liaoning, and Shanxi did not reach 1. Among these, the efficiency score
of industrial GDP in Gansu is far lower than that of other provinces. On the one hand, this is due to the
fact that the regions with relatively backward economic development in Gansu, such as Longnan and
Dingxi, are located in remote areas and have long been dominated by small-scale peasant or natural
economies, with a relatively weak economic foundation and a low industrialization level. On the other
hand, the resource allocation efficiency of Gansu is low and the industrial structure transformation is
sluggish, which results in industrial GDP having far lower efficiency than the average level. This shows
that the development of Gansu’s secondary industry is not mature, but also reflects the unreasonable
industrial structure. In contrast, Heilongjiang, Liaoning, and Shanxi saw their industrial GDP efficiency
reach 1 in four years, but decline in 2016.

From 2013 to 2015, the efficiency of industrial fixed assets was relatively good, and the annual
efficiency score of most provinces reached 1. Only Gansu, Hebei, Shandong, Shanxi, and Yunnan
scored under 0.8 in efficiency of industrial fixed assets.

Twelve provinces scored 1 in energy efficiency over a four-year period. The six provinces with the
lowest energy efficiency scores were Gansu, Guizhou, Hebei, Heilongjiang, Shanxi, and Yunnan. As a
major coal producing province, Shanxi has the worst energy utilization efficiency. Due to its abundant
coal resources, its energy utilization is extensive, which leads to energy waste and environmental
pollution. Shanxi should focus on strengthening environmental governance, reducing the emission
of pollutants in the process of energy consumption, and strengthening the supervision of pollutant
treatment to improve energy and environmental efficiency.
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The efficiency score of the industrial labor force varies from province to province, and the difference
between different provinces is larger than the other three first-stage indicators. The efficiency of the
industrial labor force in most provinces with an efficiency of less than 1 is around 0.7. Therefore,
compared with the efficiency of industrial fixed asset investment and industrial GDP, the efficiency of
the industrial labor force has a lot of room for improvement.

4.6.2. Efficiency Score of Input-Output Index in the Second Stage

Figure A2 shows the health expenditure efficiency, medical staff efficiency, mortality efficiency,
and life expectancy efficiency scores from 2013 to 2016. From the chart, it can be seen intuitively that
the average efficiency level of the input index in the second stage is relatively low. The input efficiency
of most provinces in the second stage is less than 0.4, while the output efficiency score is good, both of
which reach 0.6 to 1, indicating a huge imbalance.

In most provinces, health expenditure and medical staff input increased, but their efficiency scores
were not effectively improved. Excluding Beijing, Guangdong, Hainan, and other provinces where the
efficiency is 1, the second-stage investment efficiency of other provinces is far lower than the first-stage
investment efficiency. Among them, 12 provinces, including Anhui, Gansu, Guizhou, and Hebei, had a
health expenditure efficiency of less than 0.4 from 2013 to 2016, while 14 provinces had a medical staff

input efficiency of less than 0.4 in the four-year period. This is because China’s share of GDP spent on
health is much lower than the global average. Compared with developed countries, China’s big health
industry is still in the stage of development, and the overall scale is small. According to the data of the
World Bank, in 2016, the proportion of health expenditure to GDP of the United States was 17.07%,
ranking first in the world. However, the proportion of health expenditure to GDP of China in 2016 was
only 4.98%. Therefore, China has huge room for future growth and development, and optimization
of the structure of the medical service market. However, it will be difficult to increase subsidies to
effectively reduce the burden of personal hygiene and only the market main body can utilize limited
medical resources to provide high-quality medical services with high efficiency, thus improving the
efficiency of health expenditure and medical staff efficiency.

4.6.3. Undesirable Output Indicator Efficiency Score

Table A2 shows the efficiency scores of SO2 emission, NOX emission, and PM2.5 concentration of
each province from 2013 to 2016. Among the three, the PM2.5 concentration efficiency score was better,
and the efficiency score was stable in the four-year period, with a PM2.5 efficiency score above 0.9 in
each year. From 2013 to 2016, the overall efficiency of NOX emission was inferior to the annual PM2.5
efficiency, but the efficiency score steadily decreased.

From 2013 to 2016, the provinces where SO2 had an emission efficiency score of 1 are Beijing,
Fujian, Guangdong, Hainan, Jiangsu, Inner Mongolia, Ningxia, Qinghai, Shaanxi, Shanghai, Tianjin,
and Xinjiang. In addition to the 12 provinces with a NOX efficiency score of 1 for the four years, there
was also Zhejiang. In addition to the 12 provinces with a PM2.5 efficiency score of 1, there were also
Liaoning and Zhejiang. In Yunnan, Guizhou, Hebei, Shanxi, and Gansu, SO2 emissions, NOx emissions,
and efficiency score were far below the average PM2.5 concentration. These provinces should pay
attention to the control of industrial emissions of pollutants, while further adjusting the industrial
structure, using cleaner energy, and optimizing SO2 and NOx emissions and the concentration of the
PM2.5 efficiency score.

Table A3 shows the average industrial GDP, average SO2 emissions, average NOx emissions,
and average PM2.5 concentration during the four years from 2013 to 2016. Figure A3 shows the
relationship between average industrial GDP, average SO2 emissions, and average NOx emissions in
the past four years. Due to the good results achieved in PM2.5 pollution prevention and control, the
efficiency of PM2.5 concentration in most provinces reached 1, so PM2.5 concentration was not taken
into consideration. Data and charts show that there is a certain correlation between industrial GDP and
pollutant emissions. Higher industrial GDP is usually accompanied by higher pollutant emissions. For
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example, Fujian, Guangdong, Guangxi, Henan, Jiangsu, and other provinces have higher industrial
GDP and correspondingly higher pollutant emissions.

4.6.4. Change Rate of Index Efficiency Ranking after Grouping

Table 5 shows the difference between the four-year average efficiency scores of industrial energy,
SO2, NOX, PM2.5, health expenditure, and medical staff in the provinces with a high industrial output
value (group 1) and those with a low industrial output value (group 2) from 2013 to 2016. The positive
difference means that the efficiency ranking of the provinces in the group is lower than that outside the
group. The selection of these six indicators is due to the high importance of industrial energy efficiency.
The efficiency of SO2, NOX, and PM2.5 represents the environmental pollution treatment efficiency
caused by industrial pollution emissions in various provinces, while the score of health expenditure and
the efficiency of medical personnel in all efficiency indicators is far lower than that of other indicators.
In this calculation, the provinces with an annual index efficiency of 1 were excluded, namely, Beijing,
Guangdong, Hainan, Inner Mongolia, Ningxia, Qinghai, Shanghai, Tianjin, and Xinjiang.

Table 5. Rate of change in index efficiency after grouping.

DMU Cluster Energy SO2 NOX PM2.5 Health Expenditure Medical Staff

Anhui 1 13% 40% 13% −60% −27% −13%
Fujian 1 3% 43% 3% 3% −13% −43%
Hebei 1 17% −7% 10% 7% 43% −7%
Henan 1 10% 33% 17% 10% −3% 3%
Hubei 1 10% 40% 13% −53% −23% −10%
Hunan 1 −7% −23% −3% 7% −27% −23%
Jiangsu 1 3% 10% 3% 3% 30% 7%
Jiangxi 1 −40% −57% −13% −77% −17% −23%

Liaoning 1 −50% −23% −47% 3% −63% −37%
Shandong 1 13% −20% 10% 10% 47% 20%
Sichuan 1 13% −3% 23% −57% 50% −7%
Zhejiang 1 10% −23% 43% 3% −33% 7%

Gansu 2 −17% −27% −13% 3% 20% 20%
Guangxi 2 −53% 7% −57% −83% 40% 17%
Guizhou 2 0% −7% 13% 13% 17% 33%

Heilongjiang 2 0% −37% 3% −50% 7% 20%
Jilin 2 −43% −17% −60% −47% −57% −30%

Shanxi 2 0% −10% −3% 13% −10% −3%
Shaanxi 2 3% 77% 3% 3% −7% 20%
Anhui 2 −17% −43% −27% 3% 40% −13%
Fujian 2 −70% −27% −53% −93% −13% −3%

From the calculation results, the industrial energy efficiency scores ranked in the group before
and after the grouping change were the big provinces: Jiangxi, Jilin, Liaoning, Guangxi, and Fujian.
These five provinces improved considerably. Notable is the great progress of the Jiangxi provincial
energy efficiency score within the group.

The provinces where SO2 efficiency dropped significantly after grouping included Anhui, Fujian,
Henan, Hubei, and Shaanxi. Among the provinces with lower industrial output value, Shaanxi
dropped 77% compared to prior to grouping, while the provinces with a higher industrial output value
after grouping included Jiangxi, Heilongjiang, and Anhui.

The province with a big drop in NOx efficiency after grouping was Zhejiang, while the provinces
with a big rise in NOx efficiency after grouping were Liaoning, Guangxi, Jilin, and Fujian.

After grouping, the PM2.5 efficiency scores of all the provinces decreased by less than 15%, while the
rank of Anhui, Hubei, Jiangxi, Sichuan, Guangxi, Heilongjiang, Jilin, and Fujian significantly increased.

The provinces that saw a big drop in health expenditure efficiency were Hebei, Shandong, Sichuan,
Guangxi, and Anhui, while the provinces that saw a big rise in health expenditure efficiency were
Liaoning, Zhejiang, and Jilin. The province with a big drop in efficiency of medical staff after grouping
was Guizhou, while the provinces with a big rise in efficiency after grouping were Fujian, Liaoning,
and Jilin.
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5. Conclusions

In this paper, the two-stage meta-frontier dynamic DEA model was adopted to discuss the
efficiency of economic, energy, and environmental efficiency and human health in 30 provinces in
China and to evaluate the relationship between provincial pollutant emissions and human health
efficiency. The following conclusions can be drawn from the analysis:

(1) The provinces with a total efficiency score of 1 in the four years from 2013 to 2016 include nine
provinces, such as Beijing, Guangdong, Hainan, Inner Mongolia, Ningxia, Qinghai, Shanghai, Tianjin,
and Xinjiang, mainly developed regions, coastal regions, and northwest China. Only Jiangsu and Jilin
scored higher than 0.8, and 10 provinces scored lower than 0.5, including Anhui, Gansu, Guizhou,
Hebei, Henan, Heilongjiang, Shanxi, Sichuan, Yunnan, and Chongqing. It can be seen that there was
still a lot of room for improvement in the total efficiency scores over the four years, among which,
Gansu, Heilongjiang, Hunan, Liaoning, and Shandong showed a fluctuating and decreasing trend in
the total efficiency scores, which should be paid attention to. It has indicated that the total efficiency
scores were not optimistic.

(2) The group’s total efficiency score from 2013 to 2016 was relatively stable during this period,
with ups and downs and small fluctuations in both groups. In general, the group with a high industrial
output value had higher efficiency score than the group with a low industrial output value, but the
efficiency score of the two groups did not make continuous progress in four years.

(3) A total of 12 provinces, including Beijing, Guangdong, and Qinghai, scored 1 in the first stage
of efficiency. Each of these provinces has a good economic foundation and relies on resources to realize
industrial upgrading. Only nine provinces, including Beijing, Guangdong, and Hainan, scored 1
in the second stage. Due to the continuous rise of industrial exhaust emissions and the continuous
increase of PM2.5 concentration, resulting in the efficiency score of the second stage in other provinces
being significantly different, and the efficiency of the second stage is lower than that of the first stage.
Therefore, low environmental efficiency and health efficiency are the common difficulties faced by
most provinces in China.

(4) The efficiency of the second stage is lower than that of the first stage in both groups, and the
efficiency of the first stage is not different from that of the second stage in the provinces with a higher
industrial output. The efficiency of the second stage in the provinces with a lower industrial output
was significantly lower than that in the first stage, so there is a large space for improvement in the
efficiency of the second stage in the provinces with a lower industrial output. Although two-stage
efficiency was better in provinces with a higher industrial output, there is still room for improvement.

(5) In terms of efficiency of all indicators, the efficiency scores of industrial GDP and industrial fixed
assets are relatively good, while the efficiency scores of industrial labor, industrial energy consumption,
SO2 emission, NOX emission, health expenditure, and medical staff input are relatively low and vary
from province to province. Among these, the efficiency of industrial GDP in most provinces reached 1
in the four-year period, and only Gansu, Guizhou, Heilongjiang, Liaoning, and Shanxi failed to reach 1.
The health expenditure efficiency score and medical staff input efficiency score were far lower than the
other indicators, with the exception of Beijing, Guangdong, Hainan, and other provinces with a health
efficiency score of 1, the health expenditure and medical personnel input of other provinces increased
year by year, but the efficiency score was not effectively improved. For example, 12 provinces, such as
Anhui, Gansu, Guizhou, and Hebei, had a health expenditure efficiency score of less than 0.4 from
2013 to 2016, while 14 provinces had a medical staff efficiency score of less than 0.4 during the four
years. From the perspective of two-stage efficiency, the average efficiency level of the input index in
the second stage was relatively low. In most provinces, the input efficiency in the second stage was
less than 0.4, while the output efficiency score was good, both of which reached 0.6 to 1, which shows
the huge imbalance between the two stages.

(6) In Gansu, Guizhou, Yunnan, Shanxi, and Shandong, SO2 emissions and NOX emissions efficiency
scores were lower than 0.5. In addition to the efficiency score of 1, provinces such as Beijing, Fujian, and
the rest of the provinces of SO2 emissions, the NOX emissions efficiency score was generally less than 0.8,
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and for concentrations of PM2.5 efficiency, with the exception of nine provinces, such as Anhui and Gansu,
which were below 1, the rest of the provinces scored 1, which showed that China was effective on PM2.5
concentration control. In 2017, China proposed three tough battles. One of the key points of pollution
prevention and control is to reduce the concentration of PM2.5 and PM10. According to the research
results, the efficiency score of PM2.5 concentration in Hebei, Shandong, Sichuan, and other provinces
increased to 1 year by year, which proves that pollution prevention and control is effective.

(7) Although the two-stage meta-frontier dynamic DEA model overcame the shortcomings of static
analysis, took into account the influence of energy utilizations, environmental pollution, and human
health, and measured the efficiency of the two groups, it also had certain limitations. First, the study
only measured the relative efficiency and could not put forward optimization countermeasures for the
provinces with an efficiency score of 1. Second, the process was only decomposed in two stages, and
the detailed influencing mechanism or path of energy utilization and human health was not involved.
Third, since the impact of CO2 emissions on human health was indirect, this paper did not consider the
impact of CO2 emissions on health efficiency, which occupied a major position in environmental pollution.
Therefore, it was of certain significance to study the impact of CO2 emissions on health efficiency.

Recommendations

Firstly, Environmental pollution caused by energy consumption will eventually affect human
health. Gansu, Shanxi, Yunnan, Guizhou, and Hebei, which scored much lower than other provinces
in the first stage, should be further improved by optimizing and adjusting the industrial structure and
energy consumption structure of each province. Gansu, Guizhou, Shandong, Shanxi, and Yunnan
should regulate the development of the heavy chemical industry with serious pollution, formulate strict
industrial access thresholds for areas with sub-standard environmental air quality, strongly support
the development of the tertiary industry dominated by the service industry, and gradually develop
the low-carbon economy. In addition, local governments should set up corresponding environmental
performance evaluation systems, conduct supervision and assessment, and control the emission of
pollutants from the source.

Secondly, with the exception of Beijing and Guangdong, which have a total efficiency score
of 1, other provinces have to control the total amount and intensity of energy consumption, while
accelerating the development of new energy and building a clean, low-carbon, safe, and efficient energy
system. In addition, a complete talent training system should be established step-by-step to enhance
the accumulation of human capital, so as to accelerate technological innovation and the research and
development of clean energy, and reduce the emission of pollutants from energy utilization.

Thirdly, Anhui, Fujian, Gansu, Guangxi, Guizhou, Hebei, Henan, Heilongjiang, Hubei, Hunan,
Jiangxi, Liaoning, Shandong, Shanxi, Sichuan, Yunnan, Zhejiang, and Chongqing scored low in the
efficiency of health expenditure and input of medical staff. In order to meet the increasing health needs
of residents, the input of total health expenses of these provinces should be further increased, and
the health industry should be developed and improved. A medical community should be formed
through the combination of hospitals with different levels and characteristics to optimize the allocation
of medical resources and promote the sharing of resources among different medical institutions. A
final goal should be to further balance the layout of medical institutions and narrow the gap between
the capabilities of medical institutions at all levels.
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Appendix A

Table A1. Two stage efficiencies by provinces from 2013 to 2016.

DMU Total Rank
Stage 1 Stage 2

2013 2014 2015 2016 Average Rank 2013 2014 2015 2016 Average Rank

Anhui 0.4325 22 0.7263 0.8102 0.7851 0.800 0.7804 22 0.5017 0.4882 0.4523 0.5770 0.5048 20
Beijing 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Fujian 0.7182 13 1 1 1 1 1 1 0.7603 0.7591 0.7666 0.7768 0.7657 13
Gansu 0.3585 27 0.4484 0.4621 0.3491 0.3700 0.4074 30 0.4028 0.3580 0.3533 0.3611 0.3688 27

Guangdong 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Guangxi 0.6063 16 0.8375 0.9479 1 1 0.9464 16 0.3652 0.5007 0.6788 0.7813 0.5815 16
Guizhou 0.3579 28 0.4549 0.5743 0.5940 0.6550 0.5696 27 0.3641 0.3467 0.3572 0.3301 0.3495 30
Hainan 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Hebei 0.3619 25 0.6458 0.6721 0.6061 0.6408 0.6412 25 0.3109 0.3415 0.3513 0.4251 0.3572 29
Henan 0.4046 23 0.7274 0.7714 0.7189 0.7220 0.7349 23 0.3871 0.3941 0.3748 0.5167 0.4182 25

Heilongjiang 0.3597 26 0.6278 0.6563 0.5636 0.5670 0.6037 26 0.4954 0.4345 0.4419 0.4328 0.4512 22
Hubei 0.5328 19 0.8607 0.9184 0.9629 1 0.9355 17 0.5471 0.5312 0.5369 0.6576 0.5682 17
Huna 0.5409 18 0.9327 1 0.9663 0.9177 0.9542 14 0.4744 0.6050 0.5345 0.4366 0.5126 18
Jilin 0.8178 11 1 0.9797 0.9919 0.9710 0.9857 13 1 0.5793 0.9341 0.6265 0.7850 12

Jiangsu 0.8594 10 1 1 1 1 1 1 0.8618 0.8401 0.8086 0.8598 0.8426 10
Jiangxi 0.5060 20 0.8498 0.8746 0.8431 0.8257 0.8483 19 0.4271 0.4250 0.4087 0.4769 0.4344 24

Liaoning 0.6645 15 1 1 1 0.5693 0.8923 18 0.7851 0.7778 0.7470 0.5677 0.7194 15
Inner Mongolia 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Ningxia 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Qinghai 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Shandong 0.5535 17 0.9347 0.8242 0.8009 0.8132 0.8433 20 0.5827 0.5129 0.4963 0.4315 0.5059 19
Shanxi 0.3114 30 0.4832 0.4972 0.3874 0.4131 0.4453 29 0.3839 0.3711 0.3588 0.3764 0.3726 26

Shaanxi 0.7836 12 1 1 1 1 1 1 0.7443 0.8727 0.8311 0.7035 0.7879 11
Shanghai 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Sichuan 0.3725 24 0.7438 0.7493 0.6914 0.6702 0.7137 24 0.4664 0.4518 0.4912 0.5289 0.4846 21
Tianjin 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Xinjiang 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Yunnan 0.3529 29 0.5566 0.5638 0.5317 0.5363 0.5471 28 0.3704 0.3610 0.3601 0.3493 0.3602 28
Zhejiang 0.6885 14 0.9178 0.9721 0.9122 1 0.9505 15 0.7631 0.7602 0.7910 0.7474 0.7654 14

Chongqing 0.4930 21 0.6799 0.8230 0.8572 0.9092 0.8174 21 0.4913 0.4520 0.4008 0.4591 0.4508 23
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Table A2. Undesirable output efficiency in 2013–2016.

DMU
S02 NOX PM2.5

2013 2014 2015 2016 2013 2014 2015 2016 2013 2014 2015 2016

Anhui 0.9297 0.8740 0.7760 1 0.6058 0.5719 0.5312 0.6265 1 0.9490 0.8902 0.8773
Beijing 1 1 1 1 1 1 1 1 1 1 1 1
Fujian 1 1 1 1 1 1 1 1 1 1 1 1
Gansu 0.3382 0.1591 0.1532 0.2386 0.5566 0.2954 0.2883 0.3461 0.6201 0.7126 0.6721 0.5998

Guangdong 1 1 1 1 1 1 1 1 1 1 1 1
Guangxi 0.4523 0.7510 1 1 0.5405 0.8242 1 1 0.5177 0.7460 1 1
Guizhou 0.2590 0.1664 0.1690 0.1838 0.5531 0.3646 0.3810 0.3254 0.7726 0.8665 0.9025 0.8204
Hainan 1 1 1 1 1 1 1 1 1 1 1 1
Hebei 0.4742 0.5080 0.4733 0.5393 0.4123 0.4182 0.3909 0.3868 0.7183 0.6896 0.7571 1
Henan 0.5997 0.6273 0.5711 1 0.5212 0.5455 0.5195 0.6470 0.8931 0.9035 0.9310 0.7780

Heilongjiang 0.8025 0.5546 0.5544 0.4472 0.5892 0.3952 0.4230 0.3176 1 0.9886 1 1
Hubei 0.9141 0.9276 0.8321 1 1 1 0.9191 1 0.9130 0.9639 0.9219 1
Huna 0.7580 1 0.8439 0.5692 0.9066 1 1 0.6199 0.6841 1 0.8401 0.7459
Jilin 1 0.8602 0.9496 0.6616 1 0.6288 0.9302 0.5493 1 1 0.9931 1

Jiangsu 1 1 1 1 1 1 1 1 1 1 1 1
Jiangxi 0.4667 0.4741 0.4322 0.6675 0.5543 0.5433 0.5223 0.4672 0.8123 0.8567 0.8078 0.8376

Liaoning 1 1 1 0.5952 1 1 1 0.6376 1 1 1 1
Inner Mongolia 1 1 1 1 1 1 1 1 1 1 1 1

Ningxia 1 1 1 1 1 1 1 1 1 1 1 1
Qinghai 1 1 1 1 1 1 1 1 1 1 1 1

Shandong 0.7511 0.6456 0.7577 0.4510 0.7884 0.7030 0.7710 0.5193 0.9484 0.9269 0.7808 1
Shanxi 0.3145 0.2968 0.3043 0.3705 0.3828 0.3561 0.3801 0.3348 0.9938 0.9488 0.8165 0.7895

Shaanxi 1 1 1 1 1 1 1 1 1 1 1 1
Shanghai 1 1 1 1 1 1 1 1 1 1 1 1
Sichuan 0.6810 0.6860 0.6658 0.6410 1 1 0.9037 0.8798 0.9332 0.8353 1 1
Tianjin 1 1 1 1 1 1 1 1 1 1 1 1

Xinjiang 1 1 1 1 1 1 1 1 1 1 1 1
Yunnan 0.2366 0.1978 0.1925 0.1722 0.4082 0.3443 0.3280 0.2645 1 1 1 1
Zhejiang 0.9751 0.9814 0.8673 1 1 1 1 1 1 1 1 1

Chongqing 0.5752 0.5235 0.4053 0.5404 1 0.8859 0.7284 0.7729 0.7001 0.6376 0.6044 0.6429
Average 0.7843 0.7745 0.7649 0.7693 0.8273 0.7959 0.8006 0.7565 0.9169 0.9342 0.9306 0.9364
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Figure A1. Efficiency of the second stage input-output indicator in 2013–2016.
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Figure A2. Efficiency of the second stage input-output indicator in 2013–2016.
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Appendix C

Table A3. The four-year average output value of the output indicator.

DMU GDP SO2 NOX PM2.5

Anhui 3763 67,582 137,758 82
Beijing 6888 170,637 246,392 78
Fujian 13,135 1,093,104 1,410,596 88
Gansu 4955 1,067,685 957,801 56

Guangdong 7705 1,131,954 1,105,052 42
Guangxi 10,762 874,526 825,183 55
Guizhou 6167 326,176 478,037 54
Hainan 4394 438,974 666,666 44
Hebei 7305 162,272 295,020 53
Henan 27,730 812,899 1,142,140 62

Heilongjiang 17,120 493,397 607,231 48
Hubei 9419 438,989 724,899 57
Huna 10,600 311,025 372,716 28
Jilin 6860 474,268 505,621 46

Jiangsu 25,776 1,473,850 1,474,476 81
Jiangxi 15,903 1,002,510 1,264,578 78

Liaoning 11,300 505,018 524,611 67
Inner Mongolia 10,758 551,812 514,625 58

Ningxia 29,737 631,019 1,041,478 38
Qinghai 6211 390,209 405,760 50

Shandong 489 28,559 86,693 21
Shanxi 5387 464,693 313,875 62
Shaanxi 11,373 704,740 546,652 64

Shanghai 3215 853,060 461,348 44
Sichuan 3851 602,431 479,713 29
Tianjin 7611 660,034 618,080 70

Xinjiang 1989 495,057 376,648 48
Yunnan 916 143,857 119,698 56
Zhejiang 985 340,306 351,737 48

Chongqing 2881 735,357 771,496 66
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