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Abstract: Over the past few decades, China’s rapid economic, energy, and industrial developments
have caused serious environmental damage. However, as there are large resource, energy use,
economic, and environmental damage differences across Chinese regions, the Chinese government
is seeking to reduce city pollution across the country. Most previous analyses have only looked at
these issues on a single level; for example, the impact of environmental pollution on health, or energy
and environmental efficiency analyses, but there have been few studies that have conducted overall
analyses. Further, many of the methods that have been used in previous research have employed
one-stage radial or non-radial analyses without considering regional differences. Therefore, this
paper developed a meta undesirable two-stage EBM DEA model to analyze the energy, environment,
health, and media communication efficiencies in 31 Chinese cities, from which it was found that
the productivity efficiency in most cities was better than the health treatment efficiencies, the GDP
and fixed asset efficiency improvements were small, the air quality index (AQI) and CO2 efficiencies
varied widely between the cities, media report and governance inputs were generally inefficient,
the birth rate efficiencies were better than the respiratory disease efficiencies, and the technical gap
was best in Guangzhou, Shanghai, and Lhasa. Also, it found that high-income cities have a higher
technology gap than upper middle–income cities, and media reports efficiency have a high correlation
with respiratory diseases and CO2.

Keywords: EBM two stage model; energy efficiency; environmental efficiency; media coverage;
public health

1. Introduction

The World Health Organization [1] claims that air pollution affects 93% of the world’s children’s
health and that it is a primary cause of respiratory diseases, especially in low- and middle-income
countries. Although heavy industrial development has contributed significantly to Chinese rapid
economic growth, it has also resulted in China becoming the world’s largest emitter of greenhouse
gases in less than two decades. The American Cancer Society [2] reported that China ranked first in
the world in terms of morbidity and mortality from lung, breast, and stomach cancers. As a result of
the Chinese government’s “Decision on Strengthening the Cultivation and Development of Strategic
Emerging Industries,” the “Air Pollution Prevention and Control Action Plan,” the “Water Pollution
Prevention and Control Action Plan,” and the “13th Five-Year Plan Outline” in 2014, environmental
pollution control investment reached 975.55 billion CNY. However, in 2015, investment declined and
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had risen to only 935.39 billion CNY by 2017. From 2006 to 2017, the compound annual growth in China
was 12.68% [3]. Generally, national, provincial, and local governments have been using the media
to promote environmental pollution reductions and regional health, and therefore, environmental
pollution, government governance, health and media communications have become a key focus
of discussion.

Past studies have focused on the relationship between economic growth and air pollution [4,5], the
childhood and elderly diseases caused by excessive air pollution [6–10], the effects of exposure to air
pollutants on human health [11–24], and protection measures against the effects of air pollution [25–31].
Other studies have examined the effectiveness of media campaigns in raising societal awareness of
environmental issues [32–39].

However, in general, few studies have linked these energy, air pollution, health discussions and
media discourse. This article will therefore discuss economics, environmental pollution, health, and
media together. The relationship is shown in Figure 1. In the production stage, labor, energy, and
fixed assets create desirable output GDP, but also produce undesirable output CO2 and air quality
index (AQI) to the environment. The undesirable output CO2 and AQI—intermediate output from the
production stage (first stage)—can be seen in second stage—input resources—to the production of new
values in the health treatment stage (second stage). The government provides health expenditures to
reduce diseases caused by environmental pollution. Media reports can objectively present air pollution
information, identify the causes of pollution in a timely manner, and identify protective measures so as
to prevent or control the risk of physical injury and reduce the incidence of diseases. Media reports can
reduce the incidence of public diseases, improve the public’s physical and mental health, and improve
the health and ethics of the entire population. So, government health expenditures and media reports
can reduce disease. Therefore, energy, environmental pollution, health, and media can be constructed
by the two-stage model.

Figure 1. Inputs and outputs in the production and health treatment stage.

While several past studies have employed network data envelopment analysis (DEA) to examine
production and pollution controls [40–44], there has been less research focused on the associations
between energy, environmental pollution, health, and the media using a two-stage DEA model. In the
past, environmental pollution and energy efficiency analyses have mainly employed radial (such as
CCR(named after Charnes, Cooper and Rhodes) or BCC(named after Banker, Charnes, and Cooper)),
non-radial (such as SBM (slack-based measures)), or directional distance function (DDFC) DEA models.
However, the radial DEA models ignore non-radial slacks, and the non-radial DEA models ignore the
same proportion of radial characteristics and do not account for regional differences. Therefore, to fully
analyze the effectiveness of government health expenditure inputs and media coverage in combatting
the energy and environmental effects of the production/labor first stage inputs, an applied meta
two-stage Epsilon-based measure (EBM) DEA model that includes undesirable outputs is developed in
this paper to analyze the energy, health, and media reporting efficiencies in 31 mainland Chinese cities.
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As this model not only includes existing production efficiencies but also considers the sustainability
of human health, it has two main contributions. First, to avoid under- or over-estimation, the economic,
environmental, media communication, and health efficiencies are jointly analyzed. Second, a meta
undesirable two stage EBM DEA model is used to avoid the radial and non-radial biases. Sometimes,
decision making units (DMUs) are not homogeneous and have different resource endowments, such as
income and location, which affects the inputs and outputs of DMUs, so the concept of meta should
therefore be adopted to avoid large regional difference by grouping DMUs. Data from 2013–2016 for 31
Chinese cities were extracted and analyzed, with production taken as the first stage based on labor,
fixed assets, and energy consumption inputs and GDP output, with the link between the production
stage and the health treatment stage variables being CO2 emissions and AQI. Health treatment was
taken as the second stage based on health expenditure and media report inputs and birth rate and
respiratory disease prevalence outputs.

2. Literature Review and Research Hypotheses

Past research can be divided into discussions on the relationships between economic growth and
air pollution and between air pollution and human health, examinations of preventative measures to
reduce the effects of air pollution on societal health, and the effect of public awareness raising by the
media on air pollution and environmental issues.

With a focus on economic growth and air pollution, Georgiev and Mihaylo [4] found that the
inverse U-shaped relationship between economic growth and pollution did not apply to all gases, that
most countries were still on growth curve path, and that SO( sulfur dioxide) emissions followed a
U-shaped curve. Wang et al. [5] also found that there was a nonlinear relationship between economic
growth and carbon emissions. Analyses of the relationships between human health and air pollution
have involved an examination of the rise in the prevalence of air pollution diseases in children and
the elderly; for example, Ye et al. [6] used generalized linear models (GLMs) to examine the effects of
exposure to higher daily maximum temperatures and air pollutant concentrations in Tokyo. Lee et
al. [7] uses a generalized additive model (GAM) to explore the effects of multiple air pollutants on
the health of the children under 15 years old in Seoul, finding that nitrogen dioxide and ozone were
main contributors to childhood asthma. Pino et al. [8] studied 504 four-month-old infants in southeast
Santiago, Chile, in 1996 and found that an increase in 10 µg/m3 over a 24-h average particulate matter
PM2.5 increased the risk for wheezing bronchitis by 5%. In related studies, Chen et al. [9] used GLMs
to explore particulate matter and hospitalization for chronic obstructive pulmonary disease (COPD),
finding that PM2.5 had significant effects on COPD, and Penard-Morand et al. [10] examined the impact
of air pollution on asthma and allergies on 6672 children aged 9–11 years old in 108 randomly schools
in France and found that lifetime allergic rhinitis was positively related to an increase in an exposure
to SO2, PM10, and O3. In examinations on the effects of long-term exposure to air pollutants on human
health, Loomis et al. [11] found a positive correlation between lung cancer and PM exposure and other
air pollution indicators, Oakes et al. [12] reviewed exposure indicators for multiple pollutants, and
Fischer et al. [13] studied the relationship between long-term exposure to air pollution and mortality,
finding that every 10 µg/m3 increase in PM10 and NO2 was significantly associated with non-accidental
mortality. In other studies, Kelly and Fussel [14] analyzed the health effects of PM and concluded
that effective policies had the potential to reduce air pollution, and Pope et al. [15] found that air
pollution increased the risk of disease and death, and that estimates of the diseases caused by PM2.5
contamination and pollution reductions depended on concentration–response functions.

Khafaie et al. [16] used research planning, critical assessment methods, and decentralized models
to estimate the relationship between air pollution and health and explain the types and sources of air
pollution and the common terminologies used in air pollution epidemiological studies. Khafaie et
al. [17] conducted a literature review analysis to determine the adverse health effects of short-term
and long-term exposure to outdoor air pollution. In the same area, Pannullo et al. [18] proposed a
model averaging method to determine the relationships between carbon dioxide concentrations and
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cardiopulmonary respiratory mortality in Scotland. Xie et al. [19] assessed the impact of PM2.5 on the
Chinese economy and found that China’s GDP loss would be approximately 2.00% by 2030 and the
PM2.5 pollution medical expenses would be around $25.2 billion, and Yang et al. [20] examined the
nonlinear relationships between environmental air pollution exposure and health effects to inform the
development of focused epidemiological and national environmental protection policies. Rich [21]
reviewed new research in Beijing, Atlanta, London, and Ireland, demonstrating that population health
records could improve epidemiological assessments. Newell et al. [22] studied the effects of particulate
matter on cardiopulmonary health in low- and middle-income countries, finding that when the PM2.5
increased by 10 µg/m3, the cardiovascular mortality increased by 0.47% and the respiratory mortality
increased by 0.57%, when PM10 increased by 10µg/m3, cardiovascular mortality increases by 0.27% and
respiratory mortality increased by 0.56%, and that short-term exposure to a particulate environment
was associated with an increased incidence of cardiopulmonary disease and an increased mortality in
low- and middle-income countries. Zigler et al. [23] explored the impact of air quality and human
health in the United States and concluded that PM2.5 had a significant impact on health and that
increased air quality would lead to a significant drop in associated chronic obstructive pulmonary
disease, heart failure, ischemic heart disease, and respiratory infection mortalities. Kinney [24] found
that climate and weather had a significant impact on air pollution distribution; at higher ambient
temperatures, ozone and PM2.5 emissions increased; and that the PM caused by wildfires was a
serious problem.

To reduce the effects of air pollution on societal health, Torretta et al. [25] proposed a modified
strategy for the application and reduction of PM air pollution, Schiavon et al. [26] simulated city road
traffic NOx (Nitrogen oxide) emissions using a COPERT(EU standard vehicle emissions calculator )
algorithm model, and Schiavon et al. [27] used a standard search from technical literature and then
the Atmospheric dispersion modeling 2000 to calculate the annual average concentration of NOx and
benzene. Li et al. [28] used advanced production processes to control urban population growth and
proposed an emissions trading system to reduce the economic losses caused by the public health effects
of air pollution. He and Ou [29] claimed that it was necessary to determine the marginal pollution
emissions abatement costs by first quantifying the sulfur dioxide emissions and then estimate the sulfur
dioxide emissions using shadow price theory. They found that China’s pollution emissions trading
system needed to cover six sectors, including coal mining and coal washing, at the national level. Jose
et al. [30] explored the impact of global climate on citizen health, Lua et al. [31] estimated the adverse
health effects of air pollution in China from 2001 to 2017, concluding that people with respiratory
diseases needed to live in rural areas, where the pollutant concentrations were relatively low.

In a study on the relationship between media promotion and air pollution, Dworkin and
Pijwaka [32] explored air quality changes from 1968 to 1978 in Toronto, Canada, and found that mass
media had affected public attitudes and public behavior on environmental topics. It found that, with
the public’s attention, air pollution is reduced. Mass media has influence on public awareness of
environmental issue. Mayer [33] analyzed newspaper article content from the New York Times, the
Los Angeles Times, and the Washington Post over 20 years and found that air pollution was generally
explained as being related to asthma. However, the newspapers avoid connecting respiratory disease
with environmental problems that reduced the government’s control on air pollution due to low public
concern. Elliot et al. [34] studied a national real-time syndrome monitoring surveillance system and
demonstrated the impact of short-term air pollution on the public and the potential for mass media
coverage to increase the volume of healthcare requests. The research investigated healthcare-seeking
behavior during two air pollution episodes in England in March and April 2014. The data from national
real-time syndromic surveillance systems, which includes general practitioner (GP) consultations,
emergency department attendances, telehealth calls, and ambulance dispatch calls, were used, and the
patients were divided by four age groups (0–4, 5–14, 15–64, and 65–70 years of age). The age group
15–64, who are the main user of traditional media and social media, had more healthcare-seeking
behavior than other groups during air pollution episodes. Therefore, the positive effect of media
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reporting on healthcare-seeking behavior is shown in this research. Wang [35] investigated the Chinese
social media monitoring of air quality and the public responses. The research collected 63 million
messages from one of the largest social media server (Sina Weibo) in China. By Pearson’s correlation
coefficient tests, the messages related to air pollution had correlation to air pollution level. About
67% of messages in 170 samples were about air pollution. Media has contribution to air pollution
insight. Jiang et al. [36] studied the message of air pollution in social media surveys. According to
the message data collected from Sina Weibo, the study found that filtered social media information
was strongly correlated with the air quality index in Beijing in 2012. Social media message reflects
the public awareness of air pollution. Costa and Kahn [37] studied the relation of typhoid death rate
and newspaper media reports from 1890 to 1930 in major cities in the US (New York City, Chicago,
Baltimore, Boston, Philadelphia, and Washington DC). By negative binomial regression, it was found
that news reports tended to be positively correlated with typhoid mortality. The other finding is that
bad news draws more public attention. The public reacted more to the increase in death rate than the
decrease in death rate. Murukutla [38] examined the online media information about air pollution
from 1 January 2014 to 31 October 2015. When 500 media articles were randomly selected from 6435
articles, the research found that a lot of important information was not mention, such as illness, health
risk, and the specific institutions that are responsible stakeholders. The research suggested that true
sources of and solutions to air pollution reported by the media can trigger government to take policy
action. Schwabe [39] studied the most serious fine particulate air pollution in Beijing. It found that
intense media report kept public interest and sustain public discussion on this incident, potentially
triggered government policy action and policy adjustment.

The theoretical framework for this study is based on previous study results and the following
assumptions: public media reports positively impact public awareness of air pollution and its impact
on the environment and human health.

Based on the above literature analysis, this paper makes the following research hypotheses:
H1: Public media reports have a correlation with CO2 and AQI.
H2: Public media reports have a correlation with respiratory diseases.
As can be seen from this brief literature review, much of the previous research has only been on

a single level using radial and non-radial methods with little consideration for regional differences.
Therefore, to overcome these issues, this paper used a meta undesirable two-stage EBM DEA model
to explore the energy, environment, health, and media communication efficiencies in 31 mainland
Chinese cities. Due to the difference in income between regions, this paper compares the 31 Chinese
cities divided into high- and upper middle–income cities. The hypotheses are as follows:

H3: In the efficiencies, high-income cities are higher than upper middle–income cities.
H4: In the Technology gap, high-income cities are higher than upper middle–income cities.

3. Research Method

After Farrell [45] proposed the production frontier, on the assumption of a fixed-scale remuneration,
Charnes et al. [46] proposed a CCR (named after Charnes, Cooper and Rhodes) data envelopment
analysis model, which was then extended by Banker et al. [47] to a BCC (named after Banker, Charnes,
and Cooper), model that could measure technical efficiency (TE) and scale efficiency (SE). However, as
the CCR and BCC were radial DEA models that ignored non-radial slacks when evaluating the efficiency
value, Tone [48] proposed a slacks-based measure (SBM), which involved non-radial estimation with a
single scalar value with the efficiency value being between 0 and 1, that considered both input and
output slacks. However, as the SBM DEA ignored the same proportion of radial characteristics when
evaluating the efficiency values, Tone and Tsutsui [49] proposed the Epsilon-based measure (EBM)
DEA model that included input, output, and non-oriented modes and that overcame the shortcomings
of the radial and non-radial DEA models.

In 2007, Färe et al [50] proposed the Network DEA (NDEA) model, which considered
sub-production technologies to be sub-decision units (Sub-DMU), with the optimal solution being
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determined using traditional CCR or BCC models. While the traditional DEA model saw secondary
production technology as a “black box,” the NDEA included these secondary production techniques to
explore the impact of the input allocations and intermediates on the production process. To analyze
the efficiency of each subprocess, Chen and Zhu [51], Hwang and Kao [52], Kao and Hwang [53].
and Kao [54] divided the entire business process into sub-processes and linked the stages with an
intermediate output, which allowed for the efficiency of each stage to be calculated separately to
determine which sub-process was responsible for the efficiency losses in the system. Tone and
Tsutsui [55] then proposed a weighted slacks-based NDEA model in 2009, in which the links between
the various DMU departments were used as the basis for the NDEA model analysis, and in which
each department was regarded as a sub-DMU, with the optimal solution being determined using the
SBM model.

While the EBM DEA resolved the radial and non-radial issues, it failed to deal with the two-stage
problem, and while the NDEA model solved the multi-stage problems, it failed to deal with the
radial and non-radial problems. As different countries have different social and cultural backgrounds,
economic environments, management models, and production efficiencies, and as manufacturers from
different countries have different production technologies, if a traditional DEA assumes that all DMUs
have the same technical level in the efficiency evaluation, it may be inappropriate to analyze efficiencies
using traditional efficiency evaluation models. This paper, therefore, proposes a model based on Tone
and Tsutsui [55], O’Donnell et al. [56] and the two stage modified EBM DEA model [49]—a meta
undesirable two-stage EBM DEA model.

3.1. The Meta Undesirable Two-Stage EBM DEA Model

This study collected data from 31 Chinese cities. In the first stage, labor, fixed assets, and energy
consumption were the inputs, and GDP was the output, with the one-stage and two-stage links being
CO2 emissions and AQI. In the second stage, health expenditure and media reports were the input, with
the output being birth rate and respiratory diseases. As respiratory diseases were seen as undesirable
output, Tone and Tsutsui’s [49] EBM model was modified to a meta undesirable two-stage EBM DEA
model, the description for which is given below.

In a traditional DEA efficiency evaluation, it is usually assumed that all producers have the
same level of production technology; however, in reality, most decision-making units have different
production technologies because of different geographical locations, national policies, or social and
economic conditions. Battese and Rao [57] and Battese et al. [58] proposed a meta-frontier model that
compared the technical efficiency of different groups. The meta frontier model proposed by O’Donnell
et al. (2008) [56] was found to be able to accurately calculate group and meta technical efficiency values
and the MTR.

n DMU and K division, DMUj = (DMU1,DMU2, . . . . . . ..,DMUk, . . . . . . . . . .,DMUn), m input Xj =

(X1j, X2j, . . . . . . ..,Xmj), s output, Yj = (Y1j, Y2j, . . . . . . . . . . . . ..Ysj), DMU efficiency: Due to management,
resource, regulatory, and environmental differences, all firms (N) are made up of DMU groups (N = N1
+ N2 + . . . + NG), with Xij and Yrj denoting the input (i = 1, 2, . . . , m) and with the final output being r
(r = 1, 2, . . . , S) for unit j (j = 1, 2, . . . , N). Under the meta-frontier, DMU k then chooses an optimal
final output weight ug

r (r = 1, 2, . . . , S) to attain the highest efficiency; therefore, under a non-oriented
EBM, the efficiency of DMU k using the meta undesirable two stage EBM DEA can be determined
using the following linear programming.

θ∗∗ = min
0η,λ,s−,s+g,s−b

∑K
k=1 Wk

[
θk − εxk

∑G
g=1

∑mk
i=1

w−k
i s−k

i
xi0

]
∑K

k=1 Wk

{
ηk + εyk

∑G
g=1

∑S1k
i=1

[
w
+S1k
i s+gk

i
yi0

+
∑S2k

i=1
w
−S2k
i s−bk

i
yi0

]} (1)

Subject to
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Xi0 =
G∑

g=1

n∑
j=1

Xi jgθ jg − S−i (i = 1 . . .m, j = 1 . . . n; g = 1 . . .G) (2)

Yi0 =
G∑

g=1

n∑
j=1

Yi jgη jg + S+good
i (i = 1 . . . s1, j = 1 . . . n; g = 1 . . .G) (3)

Yi0 =
G∑

g=1

n∑
j=1

Yi jgη jg − S−bad
i (i = 1 . . . s2, j = 1 . . . n; g = 1 . . .G) (4)

G∑
g=1

n∑
j=1

λ jg = 1 (5)

λ ≥ 0, S− ≥ 0, S+good
≥ 0, S−bad

≥ 0, θ ≤ 1, η ≥ 1
Y: DMU output,
X: DMU input,
S−: Slack variable,
S+good: Surplus variable,
S−bad: Surplus variable,
W−: Weight of input i,

∑
W−i = 1

(
∀i W−i ≥ 0

)
W+: Weight of output S,

∑
W+S1

i +
∑

W−S2
i = 1

(
∀i W+

i ≥ 0
)

Ex: Set of radial θ and non-radial slacks,
Ey: Set of radial η and non-radial slacks.
From the above equations, the overall technological efficiency of the cities can be determined under

the meta-frontier, and using Equation (1)–(5), the overall technological efficiency of all high-income
and upper middle–income cities can be determined under the meta-frontier undesirable two-stage
EBM group frontier model

The high- and upper middle–income cities were divided into g decision-making units, each of
which was assigned an optimal output weight; therefore, the DMU efficiency under the group frontier
was solved using the following equations.

θg∗ = min
0η,λ,s−,s+g,s−b

∑K
k=1 Wk

[
θk − εxk

∑mk
i=1

w−k
i s−k

i
xi0

]
∑K

k=1 Wk

{
ηk + εyk

∑S1k
i=1

[
w
+S1k
i s+gk

i
yi0

+
∑S2k

i=1
w
−S2k
i s−bk

i
yi0

]} (6)

Subject to

Xi0 =
n∑

j=1

Xi jθ j − S−i (i = 1 . . .m; j− 1 . . . n) (7)

Yi0 =
n∑

j=1

Yi jη j + S+goood
i (i = 1 . . . s1; j = 1 . . . n) (8)

Yi0 =
n∑

j=1

Yi jη j − S−bad
i (i = 1 . . . s2; j = 1 . . . n) (9)

n∑
j=1

λ j = 1 (10)
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λ ≥ 0, S− ≥ 0, S+good
≥ 0, S−bad

≥ 0, θ ≤ 1, η ≥ 1

As the production frontier for the g groups were included in the meta-frontier, the technical
efficiency under the meta-frontier needed to be less than the technical efficiency under the group
frontier. The ratio of the two frontiers is called the technology gap ratio (TGR):

TGR =
θ∗∗

θ∗g
(11)

3.2. Fixed Assets, Labor, Energy Consumption, GDP, Health Expenditure, Media, Birth Rate, and Respiratory
Diseases Efficiencies

The Hu and Wang [59] total-factor energy efficiency index was used to overcome any possible
bias in the traditional energy efficiency indicators. There were eight key features in this efficiency
study—fixed assets, labor, energy consumption, GDP, health expenditure, media reports, birth rate,
and respiratory diseases. In this study, “I” represented area and “t” represented time. The 10 efficiency
models are defined in the following expressions:

Fixed Assets Efficiency =
Target Fixed Assets input (i, t)
Actual Fixed Assets input (i, t)

(12)

Labor Efficiency =
Target Labor input (i, t)
Actual Labor input (i, t)

(13)

Energy Consumption Efficiency =
Target Energy input (i, t)
Actual energy input (i, t)

(14)

GDP Efficiency =
Actual GDP desirable output (i, t)
Target GDP desirable output (i, t)

(15)

Health Expenditure Efficiency =
Target Health Expenditure input (i, t)
Actual Health Expenditure input (i, t)

(16)

Media Efficiency =
target media input (i, t)
actual media input (i, t)Birth Rate Efficiency =

Actual Birth Rate desirable output (i, t)
Target Birth Rate desirable output (i, t) (17)

Respiratory Diseases Efficiency =
Target Respiratory Diseases Undesirable output (i, t)
Actual Respiratory Diseases Undesirable output (i, t)

(18)

CO2 Efficiency =
Target CO2 Undesirable output (i, t)
Actual CO2 Undesirable output (i, t)

(19)

AQI Efficiency =
Target AQI Undesirable output (i, t)
Actual AQI Undesirable output (i, t)

(20)

If the target fixed assets, labor, energy consumption, and health expenditure inputs equaled
the actual inputs, then the fixed assets, labor, energy consumption, health expenditure, and media
efficiencies equaled 1, indicating overall efficiency. If the target fixed assets, labor, energy consumption,
health expenditure, and media inputs were less than the actual inputs, then the fixed assets, labor, energy
consumption, health expenditure, and media efficiencies were less than 1, indicating overall inefficiency.

If the target GDP and birth rate desirable outputs were equal to the actual GDP and birth rate
desirable outputs, then the GDP and birth rate efficiencies equaled 1, indicating overall efficiency. If
the actual GDP and birth rate desirable outputs were less than the target GDP and birth rate desirable
outputs, then the GDP and birth rate efficiencies were less than 1, indicating overall inefficiency.

If the target respiratory diseases, CO2, and AQI undesirable outputs were equal to the actual
respiratory disease, CO2, and AQI undesirable outputs, then the respiratory diseases, CO2 and
AQI efficiencies equaled 1, indicating efficiency. If the target respiratory disease, CO2, and AQI
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undesirable outputs were less than the actual respiratory disease, CO2, and AQI undesirable outputs,
then respiratory diseases, CO2, and AQI efficiencies were less than 1, indicating inefficiency.

4. Empirical Study

4.1. Data Sources and Description

Data and Variables

Based on the World Bank’s classification for rich and poor countries, the 31 Chinese cities were
divided into high- and upper middle–income cities, with the upper middle–income economies having
a GNI (Gross National Income) per capita between $3896 and $12,055, and the high-income economies
having a GNI per capita of $12,056 or more [60].

Therefore, the 31 sample cities were divided into 14 high-income cities (Beijing, Changsha, Fuzhou,
Guangzhou, Hangzhou, Huhehot, Jinan, Nanchang, Nanjing, Shanghai, Shenyang, Tianjin, Wuhan,
and Zhengzhou) and 17 upper middle–income cities (Chengdu, Changchun, Chongqing, Guiyang,
Harbin, Haikou, Hefei, Kunming, Lanzhou, Lhasa, Nanning, Shijiazhuang, Taiyuan, Urumqi, Xian,
Xining, and Yinchuan).

Data from 2013 to 2016 were extracted from the Statistical Yearbooks of China [61], the
Demographics and Employment Statistical Yearbooks of China [62], and the Statistical yearbooks from
each city. Air pollutant data were collected from China Environmental Protection Bureau reports [3].
The research follows past research on energy and environment, the inputs are labor, fixed assets, and
energy consumption (Hu and Wang [59], Wang and Wei [63], Du et al. [64], Li et al. [65]). GDP is
desirable output, and CO2 and AQI are undesirable outputs (Yeh et al. [66], Choi et al. [67], Wang et
al. [68], Wang and Wei [63]). In the second stage, following Zhang et al. [69], input is health expenditure
and output is birth rate. The link variables of two stages are CO2 and AQI, which also followed Zhang
et al. [69]. The two-stage model is shown in Figure 2

Figure 2. Network data envelopment analysis (DEA) index.

The variables used in the study are explained in the following:
First stage: production stage
Input variables:

• Labor input: Employees; this study used the number of employed people in each city at the end
of each year; unit: person.

• Energy consumption was calculated from the total energy consumption in each city; unit: 100
million Tonnes.

• Fixed assets: the capital stock in each city was calculated using the fixed assets investment in each
city; unit: 100 million CNY.
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Output variables:
Desirable output (GDP): the GDP in each city was used as each city’s output; unit: 100 million CNY;
Link Production Stage and health stage variables:

• Carbon dioxide: CO2, a common greenhouse gas;
• AQI: the air quality index, which is a measured concentration of the pollutants such as PM2.5,

PM10, sulfur dioxide (SO2), and nitrogen.

Second stage: health treatment stage
Input variables:

• Health expenditure: the total amount of health care invested in each place. Since this study is
unable to obtain medical input for different diseases, the study can only use the total amount of
medical input and conduct research based on the efficiency changes in each region;

• Media reports: media reports can reduce the incidence of public diseases and improve the public’s
physical and mental health. The media reports collected in this study are from the People’s
Daily Online, Xinhuanet, and Sina Weibo of the People’s Daily, Beijing News, Caixin.com, China
Youth Daily, and China News Weekly. These media are official Chinese state-owned media, and
the reliability of the report is strong. Related air pollution news data were collected from the
Xinhuanet media official website using the search string “province + air pollution.” Statistics
were calculated in units of (years), with the number of statistics being the total amount in the
year. The official news websites were selected because of the amount of news published and their
wide influence.

Output variables:

• Respiratory Diseases: referring to the prevalence of respiratory diseases. In order to examine
the effects of medical health inputs on diseases in various regions, only respiratory disease data
can be collected, and data on specific respiratory diseases cannot be obtained. Therefore, in
this study, the respiratory disease rate was used to measure the adverse effects of air pollutants
and the effects of health management, mainly because a large amount of literature research has
been proved. Some researchers had found that respiratory disease is significantly affected by air
pollutants as PM10 (small dust particles). In some model specifications, ozone, another measure
of pollution, is also found to affect respiratory illness. Furong et al. [70] studied data from 2009
to 2015 in Hefei, China, and showed that air pollution can significantly increase the mortality of
respiratory diseases and lung cancer. Among them, the mortality rate of lung cancer is significantly
correlated with SO2. Karimi et al. [71] collected the data of mortality and hospitalization rates for
cardiovascular and respiratory diseases associated with air pollution from January 1980 to January
2018 in the PubMed, EMBASE, and Web of Science databases. The research used systematic review
and meta-analysis to explore the relationship between air pollution, cardiovascular, respiratory
mortality, and hospitalization rates. The results showed that air pollutants (O3, PM2.5, PM10,
NO2, NOx, SO2, and CO) were associated with increased mortality and hospitalization rates, but
PM2.5 and PM10 were more strongly affected.

• Birth rate: this study used the infant birth rate as the second output indicator for medical input.
Carré [72] explored that air pollution, especially PM2.5, PM10, and NO2, had significant effects on
female fertility and infant birth rate.

4.2. Basic Statistical Analysis

Figure 3 shows the input and output statistics in the first production stage. The most significant
increases were in GDP and fixed assets, with the increase in the maximum fixed assets value being
particularly significant, reflecting the fact that economic growth has relied mainly on sustained fixed
assets investment in the past few years. The difference between the maximum and minimum values
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was increasing. Labor grew slowly, with the difference between the maximum and minimum increasing.
Energy consumption fluctuated and declined in 2014, but the maximum rose to new heights from 2015
to 2016, with the average energy consumption declining from 2015 to 2016.

Figure 3. Statistical analysis of labor, fixed assets, energy consumption, AQI, CO2, and GDP.

The average value of the undesirable carbon dioxide emissions fell in 2016, the maximum dropped
in 2015, and then rose again in 2016. The maximum and average AQI reached its highest point in
2013 and then continuously declined. The minimum value decreased in 2016 but was slightly smaller
compared with the maximum.

Figure 4 shows the second stage health expenditure, media report, respiratory disease, and birth
rate efficiencies. Health expenditure had a significant increase after 2014, and although the average
remained stable from 2015 to 2016, the maximum and standard deviations increased significantly.

The maximum respiratory disease efficiency continued to rise, and the average value decreased in
2015 and increased slightly in 2016. The birth rate efficiency was the highest, with both the minimum
and average showing a continuous slow rise. The standard deviation reached a high in 2015 and
declined slightly in 2016.

After reaching a peak in 2013, the maximum, minimum, and average news report efficiencies
continued to decline and dropped significantly to the lowest point in 2014. From 2013, when mainland
China began to disclose the annual AQI data in each region, the media attention on air pollution began
to decline, and the reports decreased.

4.3. Overall Efficiency Analysis

In Table 1 and Figure 5, as can be seen, there were significant efficiency differences across the
cities. The best overall efficiencies over the four years were Guangzhou, Lhasa, and Shanghai. Beijing’s
overall efficiency only attained 1 in 2013, and there were significant improvements needed in the
other cities.
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Figure 4. Health expenditure, media reports, respiratory diseases, and birth rate statistics.

Table 1. Overall efficiencies in the 31 Chinese capital cities from 2013 to 2016.

NO DMU 2013 2014 2015 2016

1 Beijing 1 0.920417 0.733929 0.781173
2 Changchun 0.780636 0.744334 0.626083 0.693914
3 Changsha 0.613127 0.83919 0.813482 0.888706
4 Chengdu 0.495873 0.569804 0.518157 0.491098
5 Chongqing 0.692683 0.700274 0.67162 0.709513
6 Fuzhou 0.976286 0.786121 0.945944 0.93785
7 Guangzhou 1 1 1 1
8 Guiyang 0.625708 0.615078 0.556014 0.619227
9 Harbin 0.667707 0.625093 0.548797 0.612453

10 Haikou 0.965631 0.816178 0.944715 0.912714
11 Hangzhou 0.599453 0.680341 0.589847 0.711524
12 Hefei 0.603771 0.578212 0.718987 0.948708
13 Huhehot 0.771201 0.783619 0.675695 0.761003
14 Jinan 0.576035 0.578343 0.582106 1
15 Kunming 0.651187 0.616113 0.667184 0.652977
16 Lanzhou 0.691725 0.647571 0.520495 0.657953
17 Lhasa 1 1 1 1
18 Nanchang 0.747725 0.751731 0.684811 0.678634
19 Nanjing 0.626384 0.771059 0.660945 0.752753
20 Nanning 1 1 1 0.963501
21 Shanghai 1 1 1 1
22 Shenyang 0.57641 0.653371 0.471707 0.872131
23 Shijiazhuang 0.481009 0.478092 0.462524 0.439574
24 Taiyuan 0.61132 0.568609 0.558776 0.617309
25 Tianjin 0.63171 0.624746 0.580419 0.618667
26 Wuhan 0.969384 0.743701 0.737345 0.701077
27 Urumqi 0.957401 0.944612 0.680446 0.97296
28 Xian 0.675965 0.826735 0.598937 0.652698
29 Xining 0.606469 0.610215 0.544589 0.570594
30 Yinchuan 0.768444 0.738936 0.658954 0.732169
31 Zhengzhou 0.755548 0.76361 0.791239 0.605025

Chengdu and Shijiazhuang had efficiency fluctuations, with Chengdu’s fluctuating below 0.6 for
all four years, and with Shijiazhuang’s being below 0.5 and having a downward trend.

Five cities had efficiencies above 0.8 for three years, and four cities had efficiencies between 0.5
and 0.8 for four years. Nanning’s efficiency was 1 in three years, which fell slightly in 2016 to around
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0.9. Beijing achieved an efficiency of 1 in 2013, after which it began to decline, reaching its lowest value
in 2015 at 0.8.

Figure 5. Overall efficiencies in the 31 Chinese cities from 2013 to 2016.

4.4. Efficiency Analysis of the Production and Health Treatment Stages

Table 2 shows the efficiencies for the cities in the production and health treatment/media impact
stages from 2013 to 2016.

Table 2. Thirty-one city two-stage efficiencies from 2013 to 2016.

NO. DMU 2013 S-1 2013 S-2 2014 S-1 2014 S-2 2015 S-1 2015 S-2 2016 S-1 2016 S-2

1 Beijing 1 1 0.9841 0.859717 1 0.523655 0.967305 0.620516
2 Changchun 0.784014 0.777225 0.810363 0.683197 0.867712 0.440007 0.666735 0.722244
3 Changsha 0.867294 0.422157 0.854909 0.823818 0.847923 0.780553 0.862052 0.915606
4 Chengdu 0.631859 0.381234 0.599879 0.540916 0.666245 0.393688 0.588109 0.404624
5 Chongqing 0.57216 0.833457 0.577451 0.842549 0.577227 0.778049 0.58374 0.854677
6 Fuzhou 0.953513 1 0.612554 1 0.896525 1 0.882006 1
7 Guangzhou 1 1 1 1 1 1 1 1
8 Guiyang 0.430391 0.881465 0.464297 0.800737 0.48783 0.631223 0.496444 0.762751
9 Harbin 0.843138 0.523092 0.820257 0.468745 0.911042 0.304295 0.60593 0.619029
10 Haikou 0.932073 1 0.662616 1 0.894992 1 0.839084 1
11 Hangzhou 0.828935 0.421705 0.819238 0.561614 0.830777 0.405179 0.857406 0.588141
12 Hefei 0.750495 0.479733 0.748732 0.439018 0.734275 0.703888 0.901489 1
13 Huhehot 0.794014 0.749271 0.79885 0.768767 0.784616 0.579296 0.767966 0.754124
14 Jinan 0.69103 0.474712 0.681966 0.48622 0.648869 0.520022 1 1
15 Kunming 0.447209 0.924271 0.450665 0.824437 0.506021 0.870361 0.495605 0.849659
16 Lanzhou 0.512725 0.92661 0.437378 0.935135 0.448104 0.600829 0.457415 0.93038
17 Lhasa 1 1 1 1 1 1 1 1
18 Nanchang 0.849399 0.655427 0.83084 0.678777 0.794252 0.5873 0.662679 0.695209
19 Nanjing 0.865647 0.443562 0.822589 0.72271 0.880772 0.487604 0.918836 0.614334
20 Nanning 1 1 1 1 1 1 0.928314 1
21 Shanghai 1 1 1 1 1 1 1 1
22 Shenyang 0.677385 0.487561 0.668757 0.638463 0.651262 0.328558 1 0.761222
23 Shijiazhuang 0.420644 0.546837 0.420201 0.541625 0.381233 0.554448 0.388758 0.494223
24 Taiyuan 0.497082 0.745665 0.485602 0.6623 0.48296 0.64264 0.496031 0.76024
25 Tianjin 0.79577 0.49495 0.788973 0.489891 0.777944 0.420716 0.830746 0.451418
26 Wuhan 0.939486 1 0.759276 0.728561 0.760506 0.714807 0.806428 0.608009
27 Urumqi 0.91658 1 0.892165 1 0.594624 0.778365 0.947314 1
28 Xian 0.625065 0.730118 0.680201 1 0.615122 0.582851 0.559771 0.758082
29 Xining 0.497994 0.733845 0.4237 0.855227 0.420998 0.69296 0.443779 0.726317
30 Yinchuan 0.610989 0.961078 0.566618 0.954052 0.557347 0.775328 0.570696 0.932932
31 Zhengzhou 0.878029 0.645468 0.905744 0.638679 0.973174 0.63835 0.726674 0.497766

Note: S1 refers to Stage 1 in the DEA analysis; S2 refers to Stage 2 in the DEA analysis.

In the production stage, there were annual efficiencies of 1 only in Guangzhou, Lhasa, and
Shanghai in all four years, and in the treatment stage, there were annual efficiencies of 1 in Fuzhou,
Guangzhou, Haikou, Lhasa, Nanning, and Shanghai.
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Beijing, Changchun, Changsha, Chengdu, Harbin, Hangzhou, Hefei, Hohhot, Jinan, Nanchang,
Nanjing, Shenyang, Tianjin, Wuhan, and Zhengzhou had higher efficiency scores in the production
stage than the treatment stage, and Chongqing, Guiyang, Haikou, Kunming, Lanzhou, Nanning,
Shijiazhuang, Taiyuan, Urumqi, Xi’an, Xining, and Yinchuan had higher efficiency scores in the
treatment stage than the production stage.

Chongqing, Guiyang, Kunming, Lanzhou, Shijiazhuang, Taiyuan, Xining, and Yinchuan had
four-year production stage efficiencies below 0.6, with the poorest being in Shijiazhuang, with four-year
efficiencies of around 0.4. All other cities had efficiencies between 0.4 and 0.6.

The worst performing cities in the treatment stage were Chengdu and Tianjin, with Chengdu having
an efficiency of less than 0.4 in three years; therefore, there was a significant need for improvement.

The declines in the production stage were much smaller than in the treatment stage, with the
largest being in Nanchang, which fell from 0.85 in 2013 to 0.66 in 2016. Efficiency changes in the
treatment stage were more volatile, with Beijing and Wuhan having the largest declines, from 1 in 2013
to 0.6 in 2016.

The efficiency increases in both the production and treatment stages were much the same.
Changsha, Hefei, Jinan had the largest increases, with Jinan rising from 0.47 in 2013 to 1 in 2016 and
Hefei rising from 0.48 in 2013 to 1 in 2016.

In Table 3, the Wilcoxon Test shows that the total efficiency of high-income and upper middle–income
countries from 2013 to 2016 is weak significant. The total efficiency of 2014 is not significant, but the total
efficiency of 2014 to 2016 is weakly significant, which is consistent with the H3 hypothesis.

Table 3. Wilcoxon Test of efficiency for the high-income and upper middle–income countries.

Total Production Stage Treatment Stage

2013 0.0590* 0.0064** 0.0094**

2014 0.2711 0.2083 0.2275

2015 0.0590* 0.0086** 0.0030**

2016 0.0569* 0.2264 0.1763

* less than 10% significant; ** less than 5% significant.

In production stage, according to the Wilcoxon Test, the efficiency of the high-income and upper
middle–income countries from 2013 and 2015 is strong significant. The efficiency of the 2014 and
2016 production stages is not significant, but the efficiency of the 2013 and 2015 production stages is
strongly significant. The efficiency values of high-income countries are higher than those of upper
middle–income countries, consistent with the H3 hypothesis in 2013 and 2015.

In treatment stage, Wilcoxon Test shows that the efficiency of high-income and upper
middle–income countries from 2013 and 2015 is strongly significant. The efficiency of the treatment
stage in 2014 and 2016 is not significant, but the efficiency of the treatment stage in 2013 and 2015 is
strongly significant. The efficiency values of high-income countries are higher than those of upper
middle–income countries, consistant with the H3 hypothesis in 2013 and 2015.

4.5. Efficiency Analysis of the Indicators in the 31 Cities from 2013 to 2016

Table 4 shows the labor, fixed assets, and energy consumption efficiencies, from which it can be
seen that the worst performances were in fixed assets, followed by energy consumption, and labor
efficiency, which was relatively good.

Only Guangzhou, Lhasa, and Shanghai had fixed assets efficiencies of 1 in all four years; however,
Beijing, Haikou, Nanning, and Urumqi all had annual efficiencies higher than 0.8. The other 24
cities had a significant need for improvement. For example, Changsha, Chongqing, Guiyang, Hefei,
Kunming, Nanchang, Nanning, Shijiazhuang, Tianjin, Xi’an, and Yinchuan all had efficiencies under or
around 0.6, with Tianjin requiring the most improvements at only 0.45 in 2013.
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Table 4. First-stage input efficiencies.

No. DMU 2013–2016 Average
Labor

2013–2016 Average
Asset

2013–2016 Average
Energy Consumption

1 Beijing 0.9383 0.9780 0.9956
2 Changchun 0.8428 0.6555 0.8828
3 Changsha 0.9419 0.5077 0.6611
4 Chengdu 0.7700 0.6418 0.7700
5 Chongqing 0.5457 0.4480 0.7471
6 Fuzhou 0.9217 0.6527 0.9419
7 Guangzhou 1.0000 1.0000 1.0000
8 Guiyang 0.6463 0.5036 0.5556
9 Harbin 0.7143 0.6105 0.8928

10 Haikou 0.7574 0.9182 0.9447
11 Hangzhou 0.9201 0.6535 0.7757
12 Hefei 0.8974 0.5208 0.8974
13 Huhehot 0.8923 0.7088 0.6350
14 Jinan 0.8601 0.8368 0.6553
15 Kunming 0.6486 0.5393 0.6027
16 Lanzhou 0.6441 0.6225 0.3322
17 Lhasa 1.0000 1.0000 1.0000
18 Nanchang 0.8860 0.5537 0.8860
19 Nanjing 0.9455 0.5825 0.7513
20 Nanning 0.9069 0.8994 1.0000
21 Shanghai 1.0000 1.0000 1.0000
22 Shenyang 0.8612 0.5788 0.7322
23 Shijiazhuang 0.5828 0.5092 0.3962
24 Taiyuan 0.6742 0.6651 0.1782
25 Tianjin 0.9061 0.4395 0.6792
26 Wuhan 0.9094 0.5740 0.7818
27 Urumqi 0.8964 0.9026 0.8934
28 Xian 0.7718 0.5276 0.7718
29 Xining 0.6272 0.6054 0.3283
30 Yinchuan 0.7506 0.5442 0.3119
31 Zhengzhou 0.8945 0.6344 0.9369

Guangzhou, Lhasa, Nanning, and Shanghai had energy consumption efficiencies of 1 in all four
years, and Beijing, Changchun, Fuzhou, Harbin, Haikou, Hefei, Nanchang, Urumqi, and Zhengzhou
all had efficiencies higher than 0.8. However, Guiyang, Lanzhou, Shijiazhuang, Taiyuan, Xining, and
Yinchuan had efficiencies lower that 0.6, with the worst performance being in Taiyuan, at below 0.2,
followed by Shijiazhuang, Lanzhou, and Yinchuan at around 0.4.

Only Guangzhou, Lhasa, and Shanghai had labor efficiencies of 1 for all four years, and the worst
performing cities were Chongqing, Guiyang, Kunming, Lanzhou, Shijiazhuang, Taiyuan, and Xining
at below 0.7 in most years. All other cities had labor efficiencies between 0.8 and 0.9.

Table 5 shows the GDP, carbon dioxide emissions, and AOI efficiencies in each city, from which it
can be seen that there were large differences.

Fuzhou, Guangzhou, Haikou, Lhasa, Nanning, and Shanghai had carbon dioxide emissions
efficiencies of 1 in all four years. However, Lanzhou, Taiyuan, and Yinchuan all scored less than 0.4,
with all of Taiyuan’s results below 0.2. Changchun, Harbin, Hefei, Nanchang, Urumqi, and Zhengzhou
had carbon dioxide emissions efficiencies higher than 0.8, and the other cities had carbon dioxide
emissions efficiencies between 0.6 and 0.8.

There were also large differences in the AQI efficiencies. Beijing. Chongqing, Fuzhou, Guangzhou,
Haikou, Kunming, Lhasa, Nanjing, Nanning, Shanghai, and Urumqi had AQI efficiencies of 1 in all
four years, and many cities had two- or three-year efficiencies of 1, with the other years being above 0.9.
However, the AQI efficiencies in Lanzhou, Taiyuan, Xining, and Yinchuan began to decline from 2013
and, by 2016, had fallen to around 0.4. The largest declines were in Lanzhou, Nanchang, Shijiazhuang,
Taiyuan, Wuhan, Xi’an, Xining, Yinchuan, and Zhengzhou, but there were AQI efficiency increases in
Changchun, Chengdu, Harbin, Hefei, Jinan, Urumqi, and Shenyang.
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Table 5. First-stage input efficiencies.

No. DMU 2013–2016 Average GDP 2013–2016 Average CO2
2013–2016 Average AQI

(Air Quality Index)

1 Beijing 0.9957 0.9935 0.9978
2 Changchun 0.9075 0.8822 0.6527
3 Changsha 0.9480 0.6615 0.8828
4 Chengdu 0.8428 0.7701 0.8041
5 Chongqing 0.8321 0.7445 0.9934
6 Fuzhou 0.7726 1.0000 0.9952
7 Guangzhou 1.0000 1.0000 0.9958
8 Guiyang 0.7931 0.5915 0.7348
9 Harbin 0.9182 0.8930 0.5992

10 Haikou 0.7959 0.9998 0.9938
11 Hangzhou 0.9312 0.7762 0.8889
12 Hefei 0.8563 0.8985 0.7460
13 Huhehot 0.9115 0.6353 0.5633
14 Jinan 0.8982 0.6545 0.7602
15 Kunming 0.7939 0.6027 0.9736
16 Lanzhou 0.7924 0.3301 0.5271
17 Lhasa 1.0000 0.9994 0.9957
18 Nanchang 0.9094 0.8865 0.8332
19 Nanjing 0.9513 0.7524 0.9186
20 Nanning 0.9617 0.9998 0.9961
21 Shanghai 1.0000 1.0000 0.9968
22 Shenyang 0.8988 0.7322 0.7841
23 Shijiazhuang 0.7727 0.4518 0.6126
24 Taiyuan 0.8028 0.1786 0.4634
25 Tianjin 0.9212 0.6792 0.7933
26 Wuhan 0.9254 0.7935 0.7364
27 Urumqi 0.8867 0.9183 0.8364
28 Xian 0.8440 0.8120 0.6197
29 Xining 0.7868 0.3272 0.5541
30 Yinchuan 0.8338 0.3122 0.5175
31 Zhengzhou 0.9481 0.9358 0.7081

The GDP efficiencies were better than the CO2 emissions and AQI efficiencies in most cities.
Guangzhou, Lhasa, and Shanghai had GDP efficiencies of 1, and the GDP efficiencies in Beijing and
Nanning in the first three years were all 1, but both declined slightly in 2016. Guiyang, Kunming,
Lanzhou, Shijiazhuang, Taiyuan, and Xining had comparatively poor efficiencies at lower than 0.8, and
all other cities had GDP efficiencies between 0.8 and 1.

Table 6 shows the health expenditure, media report, respiratory diseases, and birth rate efficiencies
in the treatment stage. Fuzhou, Guangzhou, Haikou, Lhasa, Nanning, and Shanghai had media report
efficiencies of 1 in all four years. Changchun, Guiyang, Hohhot, Kunming, Wuhan, Urumqi, and Xi’an
had media report efficiencies higher than 0.8 in three years. Changsha, Chengdu, Harbin, Hangzhou,
Hefei, Nanchang, Nanjing, Shenyang, and Tianjin had media report efficiencies between 0.5 and 0.7.
The worst performances were in Lanzhou and Xining, with media report efficiencies of only 0.4 per
year, and Shijiazhuang, Yinchuan, and Zhengzhou had media report efficiencies only slightly higher
than 0.4 in one or two years. The efficiencies in 10 cities had volatile declines, and the media report
efficiencies in the other 13 cities fluctuated up.

Fuzhou, Guangzhou, Haikou, Lhasa, Nanning, Shanghai. Beijing, Changsha, Urumqi, Xining,
and Yinchuan had health expenditure efficiencies of 1 or at least two years above 0.9. However,
Zhengzhou’s health expenditure efficiency in all four years was below 0.5, and Tianjin had a health
expenditure efficiency less than 0.2 for three years. There were noticeable health expenditure efficiency
volatilities. However, 13 cities had reduced efficiencies and needed improvements.

Fuzhou, Guangzhou, Haikou, Lhasa, Nanjing, and Shanghai had birth rate and respiratory
diseases efficiencies of 1, but Chengdu, Harbin, Shijiazhuang, and Tianjin had four-year efficiencies
just above 0.7.
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Table 6. First-stage input efficiencies.

No. DMU 2013–2016 Average
Media

2013–2016 Average
Health Expenditure

2013–2016 Average
Birth Rate

2013–2016 Average
Respiratory Diseases

1 Beijing 0.3643 0.551 0.90675 0.87775
2 Changchun 0.7965 0.4625 0.86225 0.7965
3 Changsha 0.6610 0.839 0.89275 0.839
4 Chengdu 0.6050 0.46 0.7805 0.605
5 Chongqing 0.9125 0.69775 0.9255 0.9125
6 Fuzhou 1.0000 1 1 1
7 Guangzhou 1.0000 1 1 1
8 Guiyang 0.8618 0.73475 0.90075 0.8715
9 Harbin 0.6468 0.46575 0.7975 0.64675
10 Haikou 1.0000 1 1 1
11 Hangzhou 0.5170 0.66425 0.801 0.66425
12 Hefei 0.6230 0.76225 0.86475 0.77825
13 Huhehot 0.8313 0.706 0.878 0.83475
14 Jinan 0.4268 0.74375 0.85425 0.761
15 Kunming 0.9415 0.551 0.948 0.9415
16 Lanzhou 0.3515 0.73225 0.9575 0.9385
17 Lhasa 1.0000 1 1 1
18 Nanchang 0.5108 0.53225 0.865 0.81325
19 Nanjing 0.5690 0.71575 0.82675 0.72425
20 Nanning 1.0000 1 1 1
21 Shanghai 1.0000 1 1 1
22 Shenyang 0.7003 0.63925 0.80625 0.64475
23 Shijiazhuang 0.4755 0.624 0.81675 0.7095
24 Taiyuan 0.5468 0.64575 0.882 0.84375
25 Tianjin 0.5703 0.2585 0.79575 0.65425
26 Wuhan 0.8633 0.71775 0.90075 0.86325
27 Urumqi 0.7778 0.97575 0.97975 0.97575
28 Xian 0.8383 0.613 0.90575 0.87175
29 Xining 0.3163 0.8015 0.90575 0.88175
30 Yinchuan 0.3618 0.9675 0.975 0.97025
31 Zhengzhou 0.3415 0.404 0.8515 0.785

Compared with the birth rate efficiency, the respiratory diseases efficiencies required significant
improvements. Fuzhou, Guangzhou, Haikou, Lhasa, Nanning, and Shanghai had respiratory disease
efficiencies of 1, Chengdu and Tianjin had respiratory disease efficiencies of around 0.6, and Harbin
and Shenyang had three-year efficiencies between 0.7 and 0.8. Nine cities had reduced efficiencies, and
17 cities had rising efficiencies.

According to Table 7, in 2013, the correlation coefficient between media efficiency and CO2 and
AQI efficiency exceeded 0.4 (at significant level p-value less than 0.05), and there is a high correlation,
which is consistent with the H1 hypothesis. The correlation coefficient between Media efficiency and
Respiratory Diseases efficiency is 0.5932 (at significant level p-value less than 0.05), which is correlated
and conforms to the H2 hypothesis.

In 2014, the correlation coefficient between media efficiency and CO2 and AQI efficiency are 0.4275
and 0.3387 (at significant level p-value less than 0.1), and there is a high correlation, which is consistent
with the H1 hypothesis. The correlation coefficient between Media efficiency and respiratory diseases
efficiency is 0.4252 (at significant level p-value of less than 0.05), which is correlated to and conforms to
the H2 hypothesis.

In 2015, the correlation coefficient between media efficiency and CO2 and AQI efficiency exceeded
0.4 (at significant level p-value of less than 0.05), and there is a high correlation, which is consistent
with the H1 hypothesis. The correlation coefficient between media efficiency and respiratory diseases
efficiency is 0.5751 (at significant level p-value less than 0.05), which is correlated to and conforms to
the H2 hypothesis.

In 2016, the correlation coefficient between media efficiency and CO2 and AQI efficiency exceeded
0.4 (at significant level p-value of less than 0.05), and there is a high correlation, which is consistent
with the H1 hypothesis. The correlation coefficient between media efficiency and respiratory diseases
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efficiency is 0.3697 (at significant level p-value of less than 0.05), which is correlated and conforms to
the H2 hypothesis.

Table 7. Media, CO2, AQI, and respiratory diseases efficiency correlation test.

CO2 AQI Respiratory Diseases

2013Media 0.5861 0.4072 0.5932

2014Media 0.4275 0.3387 0.4252

2015Media 0.4384 0.6535 0.5751

2016Media 0.5631 0.5619 0.3697

4.6. Technology Gap Ratio and the Two-Stage Technology Gap Ratio in Each City

Table 8 and Figure 6 show the technological frontier in the production and treatment stages from
2013 to 2016. The technology frontier was 1 in Guangzhou, Lhasa, and Shanghai, and there were large
differences in the other cities.

Table 8. Technology gap ratio analysis.

NO DMU 2013 2014 2015 2016

1 Beijing 1 0.920417 0.951156 0.905517

2 Changchun 0.799766 0.865208 0.626083 0.765738

3 Changsha 0.688145 0.876117 0.813482 0.888706

4 Chengdu 0.649096 0.66255 0.777481 0.7262

5 Chongqing 0.692683 0.700274 0.67162 0.709513

6 Fuzhou 0.976286 0.998914 1.001418 0.986605

7 Guangzhou 1 1 1 1

8 Guiyang 0.804812 0.789525 0.765699 0.783652

9 Harbin 0.78929 0.742931 0.661526 0.771179

10 Haikou 0.965631 0.891907 0.9715 0.934996

11 Hangzhou 0.892932 0.894409 0.914981 0.9587

12 Hefei 0.895494 0.881029 0.776732 0.948708

13 Huhehot 0.771201 0.783619 0.675695 0.761003

14 Jinan 0.845658 0.839612 0.801471 1

15 Kunming 0.742354 0.754756 0.790251 0.779946

16 Lanzhou 0.846304 0.818117 0.772737 0.777249

17 Lhasa 1 1 1 1

18 Nanchang 0.747725 0.751731 0.697362 0.703055

19 Nanjing 0.843292 0.887507 0.926665 0.952523

20 Nanning 1 1 1 0.963501

21 Shanghai 1 1 1 1

22 Shenyang 0.77126 0.724574 0.755926 0.872131

23 Shijiazhuang 0.76481 0.769609 0.718522 0.731075

24 Taiyuan 0.766194 0.758631 0.75676 0.718906

25 Tianjin 0.866574 0.975213 0.943439 0.952695

26 Wuhan 0.980431 0.955047 0.970918 0.997056

27 Urumqi 0.957401 0.944612 0.680446 0.97296

28 Xian 0.821765 0.875207 0.809363 0.767682

29 Xining 0.890846 0.81891 0.821108 0.801893

30 Yinchuan 0.831326 0.817149 0.794892 0.789536

31 Zhengzhou 0.755548 0.76361 0.791239 0.901562
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Figure 6. Technology gap ratio in cities from 2013 to 2016.

Chengdu, Chongqing, Nanchang, Shijiazhuang, and Taiyuan had technology frontiers of 0.7,
which fell in Nanchang, Shijiazhuang, and Taiyuan. However, the technology frontier in the other
cities was mostly between 0.8 and 0.9.

Changsha, Chengdu, Chongqing, Fuzhou, Hangzhou, Hefei, Jinan, Kunming, Nanjing, Shenyang,
Wuhan, Urumqi, and Zhengzhou had rising technology frontiers, but they fell in the other 15 cities,
indicating that the technology gap between the cities was expanding, which is in line with the economic
development and technical level characteristics in mainland China.

Technology Gap between the Production Stage and the Health Management Stage in Each City

Table 9 shows the production and treatment stage technology gaps in each city from 2013 to 2016,
from which it can be seen that Guangzhou, Lhasa, and Shanghai had technology frontiers of 1 in the
production stage, and Beijing, Fuzhou, Hangzhou, Nanjing, Nanning, Tianjin, Wuhan, and Zhengzhou
were close to 1. However, there were large technology gap differences in Chengdu, Chongqing,
Guiyang, Kunming, Lanzhou, Shijiazhuang, Taiyuan, and Yinchuan. While these cities were leading
in their own regions, their technology frontier required significant improvements to catch up with
other cities.

Fuzhou, Hefei, Jinan, Kunming, Shenyang, Wuhan, Urumqi, and Zhengzhou had rising technology
frontiers during the production stage, but those of the other cities fell, further indicating that the
technology gap between the regions was expanding. For example, while Harbin, Hohhot, Jinan,
Nanchang, Shenyang, and Zhengzhou had higher technology gaps compared to cities in their regions,
there was still a large gap compared with other cities in the country. Only Beijing and Shijiazhuang
had declining technology gaps; however, the scores in the other 23 cities all rose, indicating that the
technology gap between the regional cities in the treatment stage in most cities shrank.

According to the Wilcoxon Test in Table 10, high-income and upper middle–income countries
Total technology gap is strong significant from 2013 to 2016. In 2014 Total technology gap is week
significant. The technology gap of high-income countries is higher than that of upper middle–income
countries, consistent with the H4 hypothesis.

In production stage, Wilcoxon Test shows that the technology gap of strong-income and upper
middle–income countries from 2013 to 2016 is strongly significant. In other word, the technology gap
of high-income countries is higher than that of upper middle–income countries, consists with the
H4 hypothesis.

In the treatment stage, the Wilcoxon Test shows that the technology gap of high-income and upper
middle–income countries is strongly significant from 2013 to 2016, where the technology gap of the
2014 treatment stage is weakly significant. The treatment stages in 2013, 2015, and 2016, technology
gap is strongly significant. The technology gap of high-income countries is higher than that of upper
middle–income countries, consistent with the H4 hypothesis.
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Table 9. Technology gap between the production stage and the health management stage in each city.

NO DMU 2013 S1 2013 S2 2014 S1 2014 S2 2015 S1 2015 S2 2016 S1 2016 S2

1 Beijing 1 1 0.9841 0.859717 1 0.894374 0.977258 0.829966

2 Changchun 0.784014 0.816048 0.810363 0.924697 0.867712 0.440007 0.666735 0.880661

3 Changsha 0.879721 0.524584 0.932426 0.823818 0.847923 0.780553 0.862052 0.915606

4 Chengdu 0.631859 0.655117 0.599879 0.730815 0.666245 0.924537 0.588109 0.917548

5 Chongqing 0.57216 0.833457 0.577451 0.842549 0.577227 0.778049 0.58374 0.854677

6 Fuzhou 0.953513 1 0.997512 1 1.002561 1 0.974467 1

7 Guangzhou 1 1 1 1 1 1 1 1

8 Guiyang 0.633033 0.994539 0.596955 1.026177 0.579653 1.010953 0.597173 1.01622

9 Harbin 0.853814 0.722546 0.820257 0.661141 0.915633 0.440075 0.608234 0.98388

10 Haikou 0.932073 1 0.791953 1 0.945958 1 0.880062 1

11 Hangzhou 1.007733 0.777175 0.970302 0.819937 0.970346 0.849596 0.961007 0.956052

12 Hefei 0.805091 1.00597 0.79557 0.985432 0.734275 0.823614 0.901489 1

13 Huhehot 0.794014 0.749271 0.79885 0.768767 0.784616 0.579296 0.767966 0.754124

14 Jinan 0.980467 0.721654 0.910867 0.768498 0.91115 0.701844 1 1

15 Kunming 0.548987 0.978743 0.570825 0.977019 0.626686 0.985638 0.608274 0.987527

16 Lanzhou 0.703492 1.011085 0.605101 1.079956 0.604982 0.983986 0.568089 1.046075

17 Lhasa 1 1 1 1 1 1 1 1

18 Nanchang 0.849399 0.655427 0.83084 0.678777 0.823516 0.5873 0.710809 0.695209

19 Nanjing 0.999461 0.698904 0.987955 0.797774 0.972082 0.876073 0.970163 0.935064

20 Nanning 1 1 1 1 1 1 0.928314 1

21 Shanghai 1 1 1 1 1 1 1 1

22 Shenyang 0.835419 0.70751 0.823663 0.638463 0.796233 0.70001 1 0.761222

23 Shijiazhuang 0.605896 0.962323 0.620055 0.953419 0.566882 0.901437 0.560729 0.952653

24 Taiyuan 0.58826 0.989451 0.556767 1.031572 0.576715 0.988437 0.518786 0.985778

25 Tianjin 0.986385 0.752208 1.000127 0.948332 1.013662 0.860202 1.045958 0.854936

26 Wuhan 0.961032 1 0.929586 0.981111 1.00099 0.941638 0.99833 0.995729

27 Urumqi 0.91658 1 0.892165 1 0.594624 0.778365 0.947314 1

28 Xian 0.72997 0.924013 0.762626 1 0.681047 0.97043 0.614017 0.957543

29 Xining 0.805349 0.979803 0.650721 1.007062 0.668876 0.991888 0.627061 1.015135

30 Yinchuan 0.697177 0.985967 0.635244 1.040927 0.633286 0.993166 0.621991 0.995286

31 Zhengzhou 0.878029 0.645468 0.905744 0.638679 0.973174 0.63835 0.990239 0.811945

Table 10. Wilcoxon Test of technology gap for the high-income and upper middle–income countries.

Total Production Stage Treatment Stage

2013 0.0238** 0.0016** 0.0010**

2014 0.0787* 0.0453** 0.0929*

2015 0.0344** 0.0006** 0.0003**

2016 0.0169** 0.0065** 0.0199**

* less than 10% significant; ** less than 5% significant.

5. Conclusions and Policy Recommendations

This study used panel data and a meta undesirable two-stage EBM DEA to examine the production
and health governance efficiencies in 31 Chinese provincial capital cities from 2013 to 2016 under the
influence of media reports and the technology gap between high-income and middle-income cities.

The main conclusions from this study were as follows:

1. Guangzhou, Lhasa, and Shanghai had overall efficiencies of 1. Beijing’s overall efficiency score
was only 1 in 2013 but was lower in other years, and the other 20 cities had four-year efficiency
scores between 0.5 and 0.8; therefore, most cities needed efficiency improvements.

2. Guangzhou, Lhasa, and Shanghai had annual efficiencies of 1 in the production stage, and Fuzhou,
Guangzhou, Haikou, Lhasa Nanning, and Shanghai had annual efficiencies of 1 in the treatment
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stage. Overall, 15 cities had higher efficiencies in the production stage than in the treatment
stage, and 12 cities had higher efficiencies in the treatment stage than in the production stage.
Chongqing, Guiyang, Kunming, Lanzhou, Shijiazhuang, Taiyuan, Xining, and Yinchuan had
four-year production stage efficiencies below 0.6, with the poorest being Shijiazhuang, with a
four-year efficiency of around 0.4. Chengdu and Tianjin had the poorest treatment efficiencies;
however, in general, the treatment stage and production stage efficiencies were similar.

3. Guangzhou, Lhasa and Shanghai had fixed assets efficiencies of 1 in all four years, but 11 cities
had four-year fixed assets efficiencies of only about 0.6, with Tianjin, which had a four-year
efficiency of below 0.45, requiring the most improvement. Guangzhou, Lhasa, Nanning, and
Shanghai had energy consumption efficiencies of 1 in all four years, nine cities had efficiencies
higher than 0.8, and the lowest efficiency was in Taiyuan, at below 0.2. Guangzhou, Lhasa, and
Shanghai had labor efficiencies of 1, and only seven other cities had labor efficiencies below 0.7 in
most years.

4. Fuzhou, Guangzhou, Haikou, Lhasa, Nanning, and Shanghai had carbon dioxide emissions
efficiencies of 1 in all four production stage years, but the other 25 cities had carbon dioxide
emissions efficiencies of less than 0.4 in all four years, of which Taiyuan had the lowest, at less
than 0.2. Only Beijing had an AQI efficiency of 1 in all four years, and Chongqing, Fuzhou,
Guangzhou, Haikou, Kunming, Lhasa, Nanjing, Nanning, Shanghai, and Urumqi had two- or
three-year efficiencies of 1, with the other years being higher than 0.9. However, in most cities,
the AQI efficiencies had large fluctuations, with eight cities fluctuating upward. Even though
only three cities achieved GDP efficiencies, the efficiencies were relatively good in most cities, at
close to 0.8.

5. Fuzhou, Guangzhou, Haikou, Lhasa, Nanning, and Shanghai had media report efficiencies
of 1 in all four years, and the efficiencies in 17 cities ranged from 0.5 to 0.9 in most years.
However, Lanzhou and Xining’s highest annual efficiencies were only about 0.4. The media
report efficiencies fluctuated significantly, and many cities experienced large declines, with the
largest being in Beijing.

6. Fuzhou, Guangzhou, Haikou, Lhasa, Nanning, and Shanghai had four-year health expenditure
efficiencies of 1. However, Tianjin had the worst performance, with its health expenditure
efficiency in three-years being below 0.2. The health expenditure efficiencies in the other cities
fluctuated significantly, and many cities experienced large declines, with the largest being in
Beijing. The urban birth rate efficiency improvements were small; however, Chengdu, Harbin,
Shijiazhuang, and Tianjin had the lowest four-year efficiencies at above 0.7.

7. The respiratory disease efficiencies required in most cities needed significant improvements,
and the efficiency differences between the cities was wide. Fuzhou, Guangzhou, Haikou, Lhasa,
Nanning, and Shanghai had four-year respiratory disease efficiencies of 1. Chengdu and Tianjin
had low efficiencies of around 0.6 in most years. Nine cities had four-year efficiency fluctuations
or declines, and the other 17 cities had upward fluctuations or continuous upward trends. Overall,
the respiratory disease efficiencies improved.

8. The media reports efficiency has a high correlation with respiratory diseases, AQI, and
CO2 efficiency.

9. Guangzhou, Lhasa, and Shanghai had technology frontiers of 1, but Chengdu, Chongqing,
Nanchang, Shijiazhuang, and Taiyuan had large technology gaps. Changsha, Chengdu,
Chongqing, Fuzhou, Hangzhou, Hefei, Jinan, Kunming, Nanjing, Shenyang, Wuhan, Urumqi,
and Zhengzhou had rising technology frontiers, but the technology frontiers in the other 15
cities fell.

10. Fuzhou, Guangzhou, Guiyang, Haikou, Lhasa, Nanjing, and Shanghai had treatment stage
technology frontiers of 1. However, Harbin, Hohhot, Jinan, Nanchang, Shenyang, and Zhengzhou
had backward technology frontiers. Beijing and Shijiazhuang had sustained fluctuating technology
frontiers, and the technology frontiers in the other 23 cities all rose, indicating that the technological
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differences in the treatment stage shrank. Also, we found that high-income cities are higher
technology gap than upper middle–income cities.

From these results, the following policy recommendations are given.

1. As there were obvious differences between the cities, cooperation between regions should
be actively promoted. The technology gap of high-income countries is higher than that of
upper middle–income countries. So, high-income cities have technological advantages and
rich experience in air pollution and health management. High-income cities can use advanced
technologies for air pollution treatment by combining regional characteristics, economic and
social development levels, geographical characteristics of cities, and meteorological conditions.

2. Industrial structure and energy structure adjustments need to be more rapidly implemented
to improve the production and environmental efficiencies in the Beijing-Tianjin region. The
Beijing-centered Beijing-Tianjin region had lower production and treatment stage efficiencies
than the Pearl River Delta area with Guangzhou at the center and the Yangtze River Delta area
with Shanghai at the center. Therefore, the energy consumption, fixed assets investment, human
resource input, and environmental efficiencies need to be improved in Beijing. The economic and
energy structures in the Beijing-Tianjin region are closely related, and the economic growth in
the region has relied heavily on coal for its energy production. Therefore, there needs to be a
greater focus on energy structure adjustments and clean energy and clean coal–use technological
developments to replace coal and maintain production. Developing and maintaining normal
economic and social development is also an important treatment measure.

3. The media is an important “link” and “bridge” for the dissemination of health information.
It plays an irreplaceable role in reporting health knowledge, changing health concepts, and
promoting healthy behavior. The media has strengthened coverage of air pollution, energy
conservation and emission reduction, green development, and environmental protection in terms
of content and channels. By continuously improving the scientific and professional reporting
of the media, this can guide the public to rationally think about and interpret information and
improve the accumulation of public health knowledge. On the other hand, it eliminates public
fears and threats of air pollution and promotes public health awareness. Therefore, it is important
to enhance the strategy of media coverage. In order to increase the effect of media reporting on
public health, media organizations need to constantly improve and strengthen reporting strategies.
The media needs to strengthen reports on air pollution, energy conservation, green development,
and environmental protection in terms of content, channels, and forms of communication and
needs to improve the science and professionalism of the reporting that guides the public to think
about and interpret information rationally.

4. Drawing on the advanced health management efficiency in the Pearl River Delta and the Yangtze
River Delta, the government can enhance the health management efficiency in the Beijing-Tianjin
region. Health management investment in the Beijing-Tianjin region needs to continue to increase
in line with economic growth and social development. The Beijing-Tianjin region still needs to
strengthen its overall management, improve governance, and design more effective systems to
improve health management efficiency.

5. The governance in the middle-income cities needs to adopt strategies and measures appropriate
to the regional characteristics. Middle-income cities in the west, such as Lanzhou, Xining, and
Yinchuan, need to strengthen their industrial and energy structure adjustments. The news
reporting efficiencies in these cities also need significant improvement. Therefore, systems need
to be developed that are more suitable to the energy, economic, social, environmental and news
reporting characteristics in these cities.

6. To improve their production efficiency and environmental efficiencies, middle-income cities
in the midwest and some individual middle-income cities in the East (Changsha, Chengdu,
Chongqing, Fuzhou, Hangzhou, Hefei, Jinan, Kunming, Nanjing, Shenyang, Wuhan, Urumqi,
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and Zhengzhou) need to learn from the advanced technologies in cities such as Guangzhou
and Shanghai.

7. Middle-income cities in the northeast and some central cities (Harbin, Hohhot, Jinan, Nanchang,
Shenyang, and Zhengzhou) need to improve their news report and health governance efficiencies.
Therefore, these cities could learn from the governance measures adopted in other cities to
improve the effectiveness of their news reports to increase the environmental awareness of
their residents.
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