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Abstract: Three-dimensional (3D) printing has great potential for establishing a ubiquitous service 
in the medical industry. However, the planning, optimization, and control of a ubiquitous 3D 
printing network have not been sufficiently discussed. Therefore, this study established a 
collaborative and ubiquitous system for making dental parts using 3D printing. The collaborative 
and ubiquitous system split an order for the 3D printing facilities to fulfill the order collaboratively 
and forms a delivery plan to pick up the 3D objects. To optimize the performance of the two tasks, 
a mixed-integer linear programming (MILP) model and a mixed-integer quadratic programming 
(MIQP) model are proposed, respectively. In addition, slack information is derived and provided to 
each 3D printing facility so that it can determine the feasibility of resuming the same 3D printing 
process locally from the beginning without violating the optimality of the original printing and 
delivery plan. Further, more slack is gained by considering the chain effect between two successive 
3D printing facilities. The effectiveness of the collaborative and ubiquitous system was validated 
using a regional experiment in Taichung City, Taiwan. Compared with two existing methods, the 
collaborative and ubiquitous 3D printing network reduced the manufacturing lead time by 45% on 
average. Furthermore, with the slack information, a 3D printing facility could make an independent 
decision about the feasibility of resuming the same 3D printing process locally from the beginning. 

Keywords: 3D printing; ubiquitous service; manufacturing lead time; early termination; dental 
 

1. Introduction 

3D printing is an advanced computer and information technology that can be used to build a 
biological object layer-by-layer using a bioprinter controlled by a personal computer [1]. 3D printing 
has been extensively applied in the medical field, including surgical planning, prosthetics, and other 
purposes [2,3]. A medical image can easily serve as an input to a 3D printing system [4,5]. The low 
cost and ease of use of bioprinters have resulted in their widespread use [6], even in undeveloped 
countries and regions [7,8]. In addition, the model files that define bioprintable objects follow 
common standards (STL or OBJ) and are easy to distribute and access [9]. Both these factors will help 
to develop a ubiquitous service [7]. However, there are some limitations of 3D printing applications 
to this industry [2]: 

(1) A bioprinter is required and may be expensive: Some bioprinters can be bought for 1000 USD, 
while others may cost more than 200,000 USD. The price range is wide [10]. 
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(2) It is not easy to operate a bioprinter: Although a bioprinter is basically highly automatic, it still 
needs a great deal of human intervention, like setting up, updating, periodical maintenance and 
calibration, cleaning, leveling, adjusting, and early termination [11]. 

(3) Some raw materials may be expensive: Consumables for 3D printing include photoresist resins, 
polymeric substances, hydrogels, metals, and others. To meet the high standards for medical 
applications, the qualified consumables may be expensive. 

According to Chen and Tsai [7] a ubiquitous service is an application of ubiquitous computing 
in the service sector that has a “design anywhere, serve anywhere, and at any time” paradigm. From 
this definition, the multidisciplinary nature of a ubiquitous service is clear. In particular, to 
successfully provide a ubiquitous service, various functionalities such as research and development 
(R and D), production/service, sales, information technology, and logistics must collaborate. Some 
related literature on this is summarized in Table 1. Clearly, most of the past efforts were focused on 
the production functionality. 

Table 1. Studies on the various functionalities that assist ubiquitous services. 

Ubiquitous Manufacturing 
Functionality Related Literature 

R and D Zheng et al. [12] 

Production/Service 
Lin and Chen [13], Luo et al. [14], Wang, Xie, Zhao, Zhang, and 
Duan [15], Wang, Wang, Mohammed, and Givehchi [16], Chen 
and Wang [17] 

Sales Tseng and Hu [18] 
IT Chen and Chiu [19], Cheng et al. [20], Stergiou and Psannis [21] 

Logistics Chen and Lin [22], Luo et al. [14], Nielsen et al. [23], Chen and 
Wang [17] 

In the traditional service environment, most capacity is used to prepare for the peak periods that 
are expected to occur in the future, and this anticipation trades the current budget for future capacity. 
By contrast, in a ubiquitous service environment, additional, short-term capacity is acquired at the 
expense of logistics and usage costs, which trades the current budget for the current capacity. Clearly, 
a ubiquitous service eliminates the time gap. However, a ubiquitous service relies on an efficient and 
ramified logistics network, which implies that a ubiquitous service is feasible only in a limited 
number of countries and regions. Nevertheless, this problem can be addressed if the required 
capacity can be easily built up in any place when required, which is exactly the case with 3D printing 
[24]. 

Advanced computer and network technologies have been extensively applied to ubiquitous 
health care [25]. In this study, a collaborative and ubiquitous additive manufacturing network was 
designed for fabricating dental parts. The collaborative and ubiquitous additive manufacturing 
network comprises an Internet of Things [26] and provides a location-based dental-part fabrication 
service [27]. The collaborative and ubiquitous additive manufacturing network receives a customer’s 
order online via smart phone or other networking devices [28]. Then, the collaborative and 
ubiquitous additive manufacturing network searches for 3D printing facilities that are available and 
located near the customer and distributes the ordered quantity for the 3D printing facilities to fulfill 
the order collaboratively to minimize the manufacturing lead time. After printing, a transportation 
service visits the 3D printing facilities one-by-one to pick up the printed dental parts and deliver them 
to the customer. Fabricating a denture in the traditional way takes about two to three weeks, mostly 
owing to the shortage of available denturists. The proposed methodology gathers the nearby 
available capacity for fabricating dentures and is suitable for solving this problem. In addition, the 
existing 3D printing applications are usually based on a single 3D printing facility. When a 3D 
printing facility is busy, all unprocessed jobs have to wait, which results in delays in delivering the 
orders to customers. The proposed methodology is also able to solve this problem. Compared with 
existing ubiquitous services, such as that proposed by Chen and Wang [17], the collaborative and 
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ubiquitous additive manufacturing network is novel because of the consideration of early 
termination, which is explained as follows: During a 3D printing process, if the first few layers are 
not satisfactory, a common practice is to terminate the process early [29]. However, this has rarely 
been considered by the existing ubiquitous services. The collaborative and ubiquitous additive 
manufacturing network addresses this concern by designing an efficient resuming mechanism that 
enables a 3D printing process that has been stopped the early stage to be resumed from the beginning 
in the same facility only if the optimality of the original printing and delivery plan will not be 
violated. As a result, the time required for re-negotiation and re-planning can be saved, which is an 
advantage of the proposed methodology over the existing ubiquitous services. The differences 
between the established system and some similar systems in the recent literature are summarized in 
Table 2. 

Table 2. The differences between the established system and some similar systems in the recent 
literature. 

Method 
Production 
Planning 

Transportation 
Planning 

Simultaneous 
Planning 

Optimization 
Method 

Slack 
Consideration 

Allowing 
Early 

Termination 
Chen and 
Lin [30] 

Yes Yes No Heuristic No No 

Chen and 
Wang [17] 

Yes Yes Yes 
Branch-and-

bound 
algorithm 

No No 

The 
established 

system 
Yes Yes No 

Branch-and-
bound 

algorithm 
Yes Yes 

The differences between this study and Chen [31] include: 

(1) Fuzzy logic was applied in Chen [31] to consider uncertainty, but was not applied in this study. 
The uncertainty issue was not taken into account in this study. 

(2) 3D printing was applied to different fields in the two studies. It was applied to the toy industry 
in Chen [31], but to the dental industry in this study. 

(3) The applications in the two studies are of different natures. In this study, products made by 3D 
printing are fully customized. By contrast, in Chen [31], 3D printing was applied to duplicate 
old toys that are no longer made in the factory. 

(4) In addition, the chain effect between two successive 3D printing facilities is considered in this 
study to gain more slack, which was not considered by Chen [31] and is the novelty of this study. 

The remainder of this paper is organized as follows. First, Section 2 is dedicated to the review of 
past work. The operational procedure of the collaborative and ubiquitous additive manufacturing 
network is described in Section 3. Then, the mixed-integer linear programming (MILP) and mixed-
integer quadratic programming (MIQP) models are proposed to distribute the required pieces and 
plan the delivery route to minimize the manufacturing lead time, respectively. Subsequently, the 
slack information is derived and provided to each 3D printing facility so that it can determine the 
feasibility of resuming the same 3D printing process locally from the beginning. A numerical example 
is provided to illustrate these steps. Furthermore, to assess the effectiveness of the collaborative and 
ubiquitous additive manufacturing network, a regional experiment was conducted, which is detailed 
in Section 4. The performance of the collaborative and ubiquitous additive manufacturing network 
is also compared with those of several existing methods. Finally, the conclusions and some instructive 
remarks for guiding future investigations are presented in Section 5. 

2. Review of Past Work 

According to Tuomi et al. [32], biomanufacturing (or tissue engineering), preoperative planning, 
inert implants, orthodontic treatment, postoperative support structures and surgical special 
instruments were the main medical applications of 3D printing, showing the importance of 3D 
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printing applications to dental operations. Subsequently, Mäkitie et al. [33] classified the medical 
applications of 3D printing into five categories: preoperative planning, surgical training and teaching; 
inert implants; surgical instruments and special equipment associated with the operations; 
postoperative guides, long-term supports and aids; and artificial tissue. The application of 3D 
printing to fabricating dental parts emerged in the early 2000s [34]. In the beginning, 3D printing was 
applied to the single-unit low-volume production of dental implants [35], which could be done at a 
single 3D printing facility and did not need the cooperation of multiple 3D printing facilities. With 
the increase in the number of materials (including polymers, metals, and ceramics) and scanning 
technologies (such as intra-oral scanners) supporting the 3D printing of dental parts, the types of 
applications become diversified. Thus far, the mainstream applications of 3D printing in this field 
have included the fabrication of drill guides for dental implants, the preparation of physical models 
for prosthodontics, orthodontics, and surgery, the manufacturing of dental, craniomaxillofacial and 
orthopedic implants, and the fabrication of copings and frameworks for implant and dental 
restorations [36]. Yang et al. [37] applied laser beam melting (LBM) to fabricate porous dental implant 
prototypes with Ti6Al4V alloy. Cresswell-Boyes et al. [38] printed an artificial tooth from X-ray 
microtomography (XMT) scans. In this way, the accuracy of the artificial tooth was considerably 
enhanced. In addition, the application to the dental field can be combined with those to other fields 
to achieve synergy. For example, Nickels [39] applied selective laser melting (SLM) to design a 
patient-specific, ready-for-implantation titanium mandible that was combined with dental implants 
to support a mandibular denture. 

In addition, there will be an explosive growth in the dental market for 3D printing applications 
[40]. In order to meet urgent and large-scale needs, it is more effective to establish a collaborative 
capacity network. Meanwhile, the CAD/CAM technologies used in dentistry are transiting from 
closed to open access systems, which provides another motive for establishing a collaborative 
capacity network, or a ubiquitous manufacturing (UM) network, in the dental market. However, 
although UM has been receiving much attention in the recent years [13,16], UM networks have not 
been established in the dental field. These motives drive us to establish a collaborative and ubiquitous 
additive manufacturing network for the collaborative fabrication of dental parts. The collaborative 
and ubiquitous additive manufacturing network established in this study is obviously a cloud-based 
cyber-physical system [41] that can be applied to support the implementation of Industry 4.0 [7,42]. 

It is often questioned whether the quality of a 3D-printed dental part is comparable to its 
counterpart made in the traditional way [10,42]. To investigate this issue, Tunchel et al. [43] 
conducted a three-year follow-up clinical study to evaluate the survival (or success) rates of 3D-
printed titanium dental implants. After three years of loading, the survival rate was up to 94.5%, 
which supported the effectiveness of fabricating titanium dental implants using 3D printing for the 
rehabilitation of single-tooth gaps in both jaws, at least for a period of three years. Akmal et al. [44] 
embedded a radio frequency identification (RFID) sensor into a dental implant, so that the dental 
implant could be easily traced and identified. According to the ISO/ASTM 529000:2015(en) standard, 
four additive manufacturing technologies, material extrusion, binder jetting, vat 
photopolymerization, and powder bed fusion, were applied in their study to make a dental implant. 
The biomaterial for making a dental implant depended on the additive manufacturing technology. 
Quality control is another issue hampering the establishment of a collaborative and ubiquitous 
additive manufacturing network. All participants of a collaborative and ubiquitous additive 
manufacturing network should follow the same quality control procedure to ensure that the dental 
parts made by them meet the same quality standards. The quality of a 3D-printed dental parts can be 
assessed in terms of accuracy, biocompatibility, and osteogenic capability [37,38]. 

3. The Collaborative and Ubiquitous Additive Manufacturing Network for Fabricating Dental 
Parts 

The operational procedure of the collaborative and ubiquitous additive manufacturing network 
for fabricating dental parts is illustrated in Figure 1 and comprises the following steps: 

(1) A customer places an order of dental parts online. 
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(2) The system then searches for 3D printing facilities that are available and near the customer. 
(3) The system distributes the ordered quantity for the 3D-printing facilities to fulfill the order 

collaboratively. 
(4) The system determines the slack for early termination and resuming in each 3D printing facility. 
(5) Each 3D printing facility prints the assigned pieces. 
(6) If any 3D printing process is terminated early, the system progresses to Step 8; otherwise, it 

progresses to Step 9. 
(7) If the slack is exceeded, the system returns to Step 4 to reoptimize; otherwise, it returns to Step 

6 to reprint. 
(8) A transportation service visits the 3D printing facilities one-by-one to pick up the 3D objects. 
(9) The transportation service delivers the order to the customer. 

Antunes et al. [45] established a two-tier management platform for Internet of Things 
applications. The collaborative and ubiquitous additive manufacturing network has a three-tier 
architecture: mobile user, system (i.e., internet service provider), and 3D-printing facilities. 

 

Figure 1. The operational procedure of the collaborative and ubiquitous additive manufacturing 
network. 
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available 3D printing 

facilities

Receive the order and 
the customer’s location

Each 3D printing 
facility prints the 
assigned pieces

Pick up the pieces 
printed by all 3D 
printing facilities

Distribute the required 
pieces to the 3D printing 

facilities

The 
system 

database

Deliver the order to the 
customer

Sense the availability 
of each 3D printing 

facility

Is any 
printing 

process early 
terminated?

Determining the slack 
for early termination 

and re-starting

Is the slack 
exceeded?

Yes

No

No

Yes



Healthcare 2019, 7, 103 6 of 19 

 

The variables and parameters used in the proposed methodology are defined as follows: 

(1) ia : the available time of the i-th 3D printing facility; i = 1, …, m. 
(2) Oid : the shortest path length between O and 3D printing facility i; Oi iOd d= . 
(3) ijd : the shortest path length between 3D printing facilities i and j; j = 1, …, m; j ≠ i. Clearly, 

ij jid d= . 

(4) in : the number of pieces to be printed in the i-th 3D printing facility. 
(5) il : the time that the transportation service leaves the i-th 3D printing facility. 
(6) O: the start location as well as the destination of the transportation service. 
(7) ip : the time required to print a piece in the i-th 3D printing facility. 
(8) ir : the arrival time at the i-th 3D printing facility. 
(9) t: the current time. 
(10) ijX : a state variable. If the transportation service travels from 3D printing facility i to 3D printing 

facility j, 1ijX =  ; otherwise, 0ijX = . j = 1, …, m; j ≠ i. 

(11) :iOX   a state variable. If the transportation service returns to O from 3D printing facility i, 
1iOX = ; otherwise, 0iOX = . 

(12) :OiX  a state variable. If the transportation service originates from O before travelling to 3D 
printing facility i, 1OiX = ; otherwise, 0OiX = . 

3.1. Split an Order Multiple 3D printing Facilities 

The decision-making function in the collaborative and ubiquitous additive manufacturing 
network works by solving mathematical programming problems. Such a treatment has been 
extensively adopted in the past studies [46]. 

Only the 3D printing facilities in the proximity of a customer are considered. Balancing the 
workloads of the 3D printing facilities helps avoid the starvation or congestion of any one 3D printing 
facility. Therefore, the number of pieces to be printed in each 3D printing facility is determined using 
the following model: 

(Model I) 

Min 1 max( )i i ii
Z a n p= +   (1) 

Subject to: 

1

m

i
i

n N
=

=  (2) 

 {0}in Z +∈ ∪ ; i = 1, …, m (3) 

The objective function minimizes the maximal completion time, that is, the makespan. Equation 
(2) requests that the numbers of pieces printed at all 3D printing facilities add up to N. The model is 
an MILP problem. 

1Z  is the maximum of i i ia n p+ . Therefore: 

1 i i iZ a n p≥ + ; i = 1, …, m (4) 

The MILP problem becomes: 

(Model Ia) 
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Min 1Z   (5) 

Subject to: 

1 i i iZ a n p≥ + ; i = 1, …, m (6) 

 
1

m

i
i

n N
=

=   (7) 

 {0}in Z +∈ ∪ ; i = 1, …, m (8) 

Example 1. An illustrative example is presented in Table 3. Five pieces of a dental part must be printed by 
three 3D printing facilities collaboratively. The required MILP model, coded using Lingo, is shown in Figure 
2. The optimization result is *

1 123Z =  when ( *
1n , *

2n , *
3n ) = (2, 2, 1). 

Table 3. Illustrative example. 

i ia  ip  
1 3 60 
2 4 49 
3 2 75 

 
Min = Z1; 
Z1 ≥ 3 + 60 × n1; 
Z1 ≥ 4 + 49 × n2; 
Z1 ≥ 2 + 75 × n3; 
n1 + n2 + n3 = 5; 
@gin(n1); @gin(n2); @gin(n3); 

Figure 2. MILP model. 

3.2. Making the Delivery Plan 

Subsequently, the pieces printed in different 3D printing facilities must be picked up and then 
delivered to the customer, which relies on a delivery plan that minimizes the transportation time: 

Min 2Z   (9) 

Subject to: 

( )i Oi Oir X t d≥ + ; i = 1, …, m (10) 

( )i ji j jir X l d≥ + ; i, j = 1, …, m; j ≠ i (11) 

*
i i i il a n p≥ + ; i = 1, …, m (12) 

i il r≥ ; i = 1, …, m (13) 

1ij jiX X+ ≤ ; i, j = 1, …, m; j ≠ i (14) 

1Oi ji
j i

X X
≠

+ = ; i = 1, …, m (15) 
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1iO ij
j i

X X
≠

+ = ; i = 1, …, m (16) 

1
1

m

Oi
i
X

=
=   (17) 

1
1

m

iO
i
X

=
=   (18) 

2
1

( )
m

iO i iO
i

Z X l d
=

= + ; i = 1, …, m (19) 

, , {0, 1}Oi iO ijX X X ∈ ; i, j = 1, …, m; j ≠ i (20) 

The arrival time at a 3D printing facility is determined by the time at which the transportation 
service leaves the antecedent facility, which can be O or another 3D printing facility, as shown in 
Equations (10) and (11). The leaving time must be greater than the arrival time and completion time, 
as required by Equations (12) and (13). Equation (14) ensures the unit-directional property of the 
transportation plan. Each 3D printing facility can be connected from only a single node, as required 
by Equation (15), and can be connected to only a single node, as required by Equation (16). Equation 
(17) ensures that only a single 3D printing facility is visited first, whereas Equation (18) ensures that 
only a single 3D printing facility is visited last. The manufacturing lead time is determined by the 
leaving time from the final 3D printing facility visited, as indicated in (19). If the transportation 
service leaves from 3D printing facility i and returns to O, then 1iOX =  and 2 i iOZ l d= + . This 
model is an MIQP problem. The algorithm proposed in Chen and Wang [17] can be applied to help 
solve the MIQP problem. 

Example 2. In the previous example, the distance between every pair of nodes is estimated using Google Maps, 
and the results are summarized in Table 4, which is called the distance matrix. t = 0. The MIQP model for this 
example is presented in Figure 3. The optimal objective function value is *

2 129Z =  when the transportation 
plan is 2 3 1O O→ → → → . 

Table 4. Distance matrix. 

j 
i 

O 1 2 3 

O 0 6 5 8 
1 6 0 3 2 
2 5 3 0 7 
3 8 2 7 0 
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Min = Z2; 

r1 ≥ 6 × XO1; 

r2 ≥ 5 × XO2; 

r3 ≥ 8 × XO3; 

r1 ≥ X21 × l2 + 3 × X21; 

r1 ≥ X31 × l3 + 2 × X31; 

r2 ≥ X12 × l1 + 3 × X12; 

r2 ≥ X32 × l3 + 7 × X32; 

r3 ≥ X13 × l1 + 2 × X13; 

r3 ≥ X23 × l2 + 7 × X23; 

l1 ≥ 3 + 2 × 60; 

l2 ≥ 4 + 2 × 49; 

l3 ≥ 2 + 1 × 72; 

l1 ≥ r1; 

l2 ≥ r2; 

l3 ≥ r3; 

X12 + X21 ≤ 1; 

X13 + X31 ≤ 1; 

X23 + X32 ≤ 1; 

XO1 + X21 + X31 = 1; 

XO2 + X12 + X32 = 1; 

XO3 + X13 + X23 = 1; 

X1O + X12 + X13 = 1; 

X2O + X21 + X23 = 1; 

X3O + X31 + X32 = 1; 

XO1 + XO2 + XO3 = 1; 

X1O + X2O + X3O = 1; 

Z2 = X1O × l1 + 6 × X1O + X2O × l2 + 5 × X2O + X3O × l3 + 8 × X3O; 

@bin(XO1); @bin(XO2); @bin(XO3); @bin(X1O); @bin(X2O); @bin(X3O); 

@bin(X12); @bin(X13); @bin(X21); @bin(X23); @bin(X31); @bin(X32); 

Figure 3. MIQP model. 

3.3. Determining the Slack for Early Termination and Ressuming by Considering an Individual 3D printing 
Facility 

It is common for a 3D printing facility to terminate a 3D printing process early if the result is not 
satisfactory. Early termination should be performed as soon as possible so that the 3D printing 
process can be resumed from the beginning immediately. However, in a collaborative service setting, 
after terminating a 3D printing process early, the optimal printing plan may change, which requires 
a new round of optimization. However, at that time, the conditions of the 3D printing facilities may 
be completely different. Consequently, a 3D printing process that has been stopped the early stage 
may have to be resumed from the beginning elsewhere. 

To solve this problem, a simple yet effective treatment is to instruct each 3D printing facility the 
feasibility of resuming the same 3D printing process locally from the beginning. Therefore, a 
parametric analysis is performed as follows. 
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When a greater-than or equal constraint is not binding, the surplus is the extra amount over the 
constraint that is being used. Indicating the surplus of Equation (12) with iS  for the i-th 3D printing 
facility: 

* *
i i i i il S a n p− = + ; i = 1, …, m (21) 

Then, the value of *
in  in Equation (21) remains unchanged when *

i in p  increases by iS . 
Therefore, if the 3D printing process is terminated early after iξ  min of printing, it can be resumed 
from the beginning in the same 3D printing facility if: 

i iSξ ≤  (22) 

without changing the optimality of the solution. iS  is called the slack for early termination and 
resuming from the beginning in the same 3D printing facility. 

Example 3. The values of the surpluses obtained in the previous example are summarized in Table 5. The 
results show that in 3D printing facility 3, if the printing process of the dental part is stopped 32 min or earlier 
after printing begins, it can be resumed from the beginning in the same 3D printing facility. The original 
solution is still optimal. However, if the printing process fails, for example 33 min after printing began, then it 
may not be resumed from the beginning in the same 3D printing facility because the original solution may no 
longer be optimal. 

Table 5. Surplus values. 

i iS  
1 0 
2 0 
3 32 

In project management, float or slack (i.e., the latest start (or finish) time minus the earliest start 
(or finish) time) is the amount of time that a task can be delayed without delaying the subsequent 
task or postponing the project completion time [47]. Determining the slack for the early termination 
and resuming of a 3D printing process is similar to determining the slack of a task in project 
management. However, there are some differences between them, as summarized in Table 6. 

If the entire collaborative and ubiquitous additive manufacturing network is considered, more 
slack can be gained from the chain effect between two successive 3D printing facilities. 

Table 6. Differences between the proposed methodology and project management. 

 Function of Slack Sequence of Executing Tasks 
The Proposed 
Methodology 

For planning the start time According to the sequence of visiting them 

Project Management For planning the re-start time No restriction 

3.4. Determining the Slack for Early Termination and Resuming by Considering the Chain Effect 

More slack can be gained by considering the chain effect between two successive 3D printing 
facilities. The rationale is that the delivery plan remains optimal if the extended time does not exceed 
the slack, as illustrated in Figure 4, in which the slack for early termination and resuming from the 
beginning in the i-th 3D printing facility is derived as: 

* * * *
( ) ( ) ( ) ( 1) ( 1)max( , 0) max( , 0)i i i i iS r c c r+ += − + −  (23) 
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Figure 4. Determining the slack. 

Example 4. In the previous example, the data required for deriving the slack in each 3D printing facility are 
summarized in Table 7, based on which the following results are derived: 

(1) max(5 102, 0) max(77 109, 0)
max( 97, 0) max( 32, 0)
0 0
0

S = − + −

= − + −
= +
=

 

(2) max(109 77, 0) max(123 111, 0)
max(32, 0) max(12, 0)
32 12
44

S = − + −

= +
= +
=

  

(3) max(111 123, 0)
max( 12, 0)
0

S = −

= −
=

  

which implies that in 3D printing facility 3 (that is, the second visited), if the printing process of the 
dental part is stopped 44 min or earlier after printing begins, it can be resumed from the beginning 
in the same 3D printing facility without changing the optimal delivery plan. 

Table 7. Required data for deriving the slacks. 

i Facility ( )ir  *
( )ic  

1 2 5 102 
2 3 109 77 
3 1 111 123 

On the basis of the provided slack information, a 3D printing facility can make a quick and 
independent decision. 

Theorem 1. The slack calculated using Equation (23) is greater than that calculated using Equation (21). 

Proof. 
If * *

i ir c< , then * *
i il c= . The slack calculated using Equation (21) becomes: 

* *

* *

0

i i i i i

i i

S l a n p

l c

= − −

= −
=

 (24) 

Whereas that calculated using Equation (23) becomes: 

truck arrived

3D object outputted

truck arrived at
the next facility

3D object outputted

slack
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* * * *
( ) ( ) ( ) ( 1) ( 1)

* *
( 1) ( 1)

max( , 0) max( , 0)

0 max( , 0)
0

i i i i i

i i

S r c c r

c r
+ +

+ +

= − + −

= + −

≥
 (25) 

Clearly, the slack calculated using Equation (23) is greater than that calculated using Equation 
(21). By contrast, if * *

i ir c≥ , then * *
i il r= . The slack calculated using Equation (21) becomes: 

* *

* *
i i i

i i

S l c

r c

= −

= −
 (26) 

Whereas that calculated using Equation (23) becomes: 

* * * *
( ) ( ) ( ) ( 1) ( 1)

* * * *
( ) ( ) ( 1) ( 1)

* *
( ) ( )

max( , 0) max( , 0)

max( , 0)
i i i i i

i i i i

i i

S r c c r

r c c r

r c

+ +

+ +

= − + −

= − + −

≥ −

 (27) 

The slack calculated using Equation (23) is again greater than that calculated using Equation 
(21). Theorem 1 is thus proven.  

4. Experiment 

To the best of our knowledge, the collaborative and ubiquitous additive manufacturing network 
established in this study is the first attempt in the dental industry. There are no similar cases (with 
early termination and restarting data) that can be used as benchmarks. For this reason, the 
effectiveness of the collaborative and ubiquitous additive manufacturing network was assessed 
through a regional experiment conducted in Taichung City, Taiwan (see Figure 5). The experimental 
region had an area of approximately 17.8 km2 in which there were up to eleven dental clinics. For 
serving the dental clinics, there were six 3D printing facilities (indicated with A–F) providing 3D 
printing networks. In the experiment, each dental clinic placed an order using a Web-based interface. 
The order was transmitted to the system server. After receiving this, the system server searched the 
system database to find out nearby 3D printing facilities to print the order in a collaborative way. All 
3D printing facilities were available at the beginning of the experiment, however, only the 3D printing 
facilities within a distance of approximately 20 min to a customer were considered. Therefore, not all 
of the 3D printing facilities were able to serve each customer. In addition, this study investigated the 
operations on the system server, including order splitting, production planning, scheduling and re-
scheduling, and transportation planning. For these purposes, the participating 3D printing facilities 
provided various time-related information. The technical details of the participating 3D printing 
facilities, including the additive manufacturing technologies, 3D printers, and pre-processing and 
post-processing methods, were not concerned. In fact, the 3D printing facilities for printing different 
orders might not be the same. A 3D printing facility might even use different 3D printers to print 
different orders. Nevertheless, the time-related information provided by the 3D printing facilities was 
the outcomes of their actions. 

Ten customers were involved in the experiment. Each customer placed an order of several pieces 
of a dental part. The dental parts printed in the experiment were mostly denture bases and teeth. The 
content of the order was transmitted to the system server. On the basis of this information, the system 
server searched for 3D printing facilities within the proximity of the customer to print the required 
dental part. The overhead for each order (including confirmation of the availability of each 3D 
printing facility, completion of the transaction with each 3D printing facility, and decision-making) 
was restricted to be completed within 20 min. The objective was to minimize the average 
manufacturing lead time for delivering all orders. 
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Considering the first customer as an example, the details of his order are summarized in Table 
8. There were six 3D printing facilities, named A–F, near this customer. The time required to print 
one piece of the ordered dental part in each 3D printing facility is given in Table 9. The distance 
matrix is shown in Table 10. 

 
Figure 5. The experimental region. 

Table 8. The details of the first order. 

Customer No. 
Detected Location 

(Latitude, Longitude) Time Quantity 

1 (24.25, 120.74) 2017/8/3 11:37 2 

Table 9. Time required to print one piece in each 3D printing facility. 

3D printing Facility Unit Printing Time (min) 
A 140 
B 140 
C 105 
D 140 
E 105 
F 105 

Table 10. Distance matrix (unit: min). 

j 
i O A B C D E F 

O 0 29 27 37 16 30 32 
A 29 0 13 26 18 13 16 
B 27 13 0 29 18 16 19 
C 37 26 29 0 34 20 11 
D 16 18 18 34 0 23 20 
E 30 13 16 20 23 0 7 
F 32 16 19 11 20 7 0 

The optimization result was { *
in } = {0, 0, 0, 0, 1, 1}. The optimal delivery plan was O → F → E → 

O, giving *
2 142Z =  (min). The slacks were derived as 5 6{ , } {7, 0}S S = , indicating that a 3D printing 
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process that terminated early in 3D printing facility E within 7 min could be resumed from the 
beginning in the same place without changing the optimality of the original printing and delivery 
plan. 

The second customer’s order was distributed for the 3D printing facilities to fulfill the order 
collaboratively A, B, C, D, and E, and the dental parts were picked up in the sequence O → D → B → 
A → C → E → O, resulting in a manufacturing lead time of 223 min. The slacks 1 5S S−  were derived 
as 31, 18, 80, 0, and 70.8 min, respectively. The 3D printing process in 3D printing facility C was 
terminated 34 min early after printing, which was less than the slack, so the 3D printing process could 
be resumed from the beginning in the same facility. The manufacturing lead time remained 
unchanged. Without the slack information, the MIQP model would need to be reoptimized, which 
would require additional overhead and might lengthen the manufacturing lead time by 20 min. 

The third customer placed an order of three pieces that were assigned to 3D printing facilities D, 
E and F. The pickup sequence was O → F → E → D → O, and the manufacturing lead time was 214.5 
min. The slacks for the three 3D printing facilities were derived as { 4S , 5S , 6S } = {8.9, 0.0, 74.8}. The 
3D printing process in 3D printing facility D was terminated early at time 14:58 on 2017/8/3, which 
was 13.2 min after printing began. This was greater than the slack and, thus, the MIQP model was 
reoptimized. The new printing plan was { *

in } = {0, 0, 1, 0, 1, 1}, and the new delivery plan was O → F 
→ E → C → O. The manufacturing lead time became 246.5 min. By contrast, if the early-terminated 
3D printing process had been resumed from the beginning in the same facility, the manufacturing 
lead time would have been 282.8 min, much longer than the optimal value. 

The two pieces ordered by the fourth customer were printed collaboratively by 3D printing 
facilities D and F. The delivery plan was O → F → D → O, resulting in a manufacturing lead time of 
238.4 min. The slacks were 0.0 and 90.8 min, respectively. Both pieces were safely printed without 
early termination. 

The fifth customer ordered three pieces of a dental part at 17:49 on 2017/8/3. 3D printing facilities 
C, E, and F printed the required pieces collaboratively. Then, the transportation service collected the 
printed pieces by visiting E, F, and then C. The manufacturing lead time was 165 min. The slacks for 
the three 3D printing facilities were 18, 0, and 6.5 min. The 3D printing processes of all pieces were 
successfully completed. 

The sixth customer placed his order at 19:16. For him, the optimal production and transportation 
plan was O → A → B → D → O. The slacks for the three chosen 3D printing facilities were 0, 13, and 
31 min. After successfully completing the 3D printing process, the manufacturing lead time was 85.8 
min. 

The seventh customer was just 5.7 min behind the six customer. Her order was distributed for 
the 3D printing facilities to fulfill the order collaboratively C, E, and F, giving a manufacturing lead 
time of 144 min. The three 3D printing facilities had slacks of 0, 21, and 28 min, respectively. All pieces 
were successfully printed. 

The eighth customer ordered two pieces of a dental part that were printed by 3D printing 
facilities C and E. The slacks for the two 3D printing facilities were 0 and 20 min, respectively. The 
two pieces were successfully printed 111 min after placing the order. 

At 21:41, the ninth customer placed his order. The optimized production and transportation plan 
for fulfilling this order was O → A → B → D → O. After evaluation, the slacks for 3D printing facilities 
A and B were 0 and 13 min, respectively. In contrast, the slack for 3D printing facility D was up to 90 
min. The 3D printing process in 3D printing facility B failed 6.7 min after the process started, which 
was within the slack. Therefore, the 3D printing process was resumed from the beginning in the same 
3D printing facility. 

Subsequently, the last customer placed her order that was distributed for the 3D printing 
facilities to fulfill the order collaboratively C, E, and F. The slacks for these 3D printing facilities 
ranged from 0 to 81 min. All pieces were successfully printed. The manufacturing lead time for 
completing the order was 207 min, which was long because of the accumulation of the waiting time. 

Two existing methods, the nearest-facility-first (NFF) method (i.e., the Google Maps method) 
and the fastest-facility-first (FFF) method, were also applied to the data of the customers for 
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comparison (Table 11). Clearly, the dispatch, delivery, and restart policies of the two methods are 
different from those of the proposed methodology. The printing and delivery plans made using the 
two existing methods are summarized in Table 12. The manufacturing lead times for delivering the 
orders using various methods are compared in Figure 6. 

Table 11. Policies of various methods. 

Method Dispatching Policy Delivery Policy Restarting Policy 

NFF 
Assign the next piece to 
the nearest 3D printing 
facility that is available 

According to the 
dispatching 

sequence 

Restart in the same 
place 

FFF 
Assign the next piece to 
the fastest 3D printing 
facility that is available 

According to the 
dispatching 

sequence 

Restart in the same 
place 

The collaborative 
and ubiquitous 

additive 
manufacturing 

network 

MILP MIQP 

Restart in the same 
place if the slack is not 
exceeded; re-optimize 

if otherwise 

Table 12. Printing and delivery plans prepared using the two existing methods. 

Customer NFF FFF 
1 O → D → B → O O → C → E → O 
2 O → D → B → A → E → F → O O → C → E → F → A → B → O 
3 O → D → A → B → O O → C → E → F → O 
4 O → D → B → O O → C → E → O 
5 O → A → C → B → O O → C → E → F → O 
6 O → B → E → F → O O → C → E → F → O 
7 O → A → B → E → O O → C → E → F → O 
8 O → A → B → O O → C → E → O 
9 O → B → E → F → O O → C → E → F → O 
10 O → A → B → E → O O → C → E → F → O 

 

Figure 6. Manufacturing lead times achieved using various methods. 

From the experimental results, the following results were obtained: 

(1) Between the two existing methods, the FFF method surpassed the NFF method most of the time, 
which was not unexpected because printing time is usually longer than transportation time. 

0
50

100
150
200
250
300
350
400
450
500

0 2 4 6 8 10 12

cy
cl

e 
tim

e 
(m

in
)

customer no.

NFF
FFF
UM-3DET



Healthcare 2019, 7, 103 16 of 19 

 

Therefore, travelling first to a nearer 3D printing facility did not confer much advantage. 
(2) Clearly, the collaborative and ubiquitous additive manufacturing network effectively reduced 

the manufacturing lead times. The advantages over the FFF and NFF methods with respect to 
the average manufacturing lead time were 35% and 34%, respectively. 

(3) In addition, the advantages accumulated over time. For example, compared with the NFF 
method, the collaborative and ubiquitous additive manufacturing network had 23% lower 
manufacturing lead time for the first customer, which increased up to 59% for the fifth customer. 

(4) To ascertain whether such advantages were significant, paired t tests were performed. The 
results are summarized in Table 13, showing that the manufacturing lead times achieved using 
the collaborative and ubiquitous additive manufacturing network were statistically shorter than 
those achieved using the two existing methods at α = 0.05. 

Table 13. Results of paired t tests. 

 NFF FFF 3DUM-ET 
Mean 329.54 307.91 195.09 
Variation 12,104.52 6085.21 1825.08 
Observations 10 10 10 
Pearson correlation coefficient 0.139 0.542  
Degree of freedom 9 9  
t statistics 3.784 5.442  
P(T ≤ t) one-tail 0.002 0.000  
t critical one-tail 1.833 1.833  
P(T ≤ t) two-tail 0.004 0.000  
t critical two-tail 2.262 2.262  

5. Conclusions 

3D printing is resulting in evolutionary changes to services. However, studies in this field have 
been primarily focused on rapid prototyping, that is, the product design phase. Very few studies 
have been conducted on the ubiquitous service phase. In addition, early termination of a 3D printing 
process that is destined to fail and then resuming it from the beginning is common practice. Early 
termination and resuming becomes a critical problem if a 3D printer is used for providing a 
ubiquitous service. To address this problem, this study established the collaborative and ubiquitous 
additive manufacturing network. The collaborative and ubiquitous additive manufacturing network 
is a composite client–server system that distributes the required pieces of an order for several 3D 
printing facilities to fulfill the order collaboratively. Different from traditional service networks, such 
as supply chains, only the 3D printing facilities in the proximity of a customer are considered. That 
is, the participating 3D printing facilities vary from customer to customer and are unknown in 
advance, resembling the characteristics of a cloud service system. 

To fulfill the tasks of dispatch and delivery in the collaborative and ubiquitous additive 
manufacturing network, a MILP model and a MIQP model were proposed and optimized, 
respectively. In addition, a slack was derived to determine the longest time for a 3D printing facility 
to early terminate and resume a 3D printing process from the beginning without violating the 
optimality of the original printing and delivery plan. The applicability of the proposed methodology 
was illustrated using a numerical example. Furthermore, a regional study was conducted to validate 
the effectiveness of the collaborative and ubiquitous additive manufacturing network. According to 
the experimental results, the proposed methodology exhibited the following advantages over the 
existing methods: 

(1) Compared with the two existing methods, the collaborative and ubiquitous additive 
manufacturing network reduced the average manufacturing lead time by 35% on average. 

(2) The advantage of the collaborative and ubiquitous additive manufacturing network over the 
two existing methods accumulated over time. 
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(3) With the slack information, a 3D printing facility can make an independent decision about the 
feasibility of resuming the same 3D printing process locally from the beginning. In this way, the 
proposed methodology enabled the distributed and localized decision-making. 

However, the proposed methodology also has shortcomings: 

(1) It is assumed that the participating 3D printing facilities can achieve the same quality level. 
Otherwise, the overall quality of the printed pieces cannot be guaranteed, which will discourage 
customers from using the collaborative and ubiquitous additive manufacturing network. 

(2) The pricing policies chosen by different 3D printing facilities are not the same, which needs to 
be tackled before inviting the 3D printing facilities to join. 

Some possible directions for future research are provided as follows: 

(1) In this study, the experiment was conducted in a large city. In a smaller city, there are fewer 3D 
printing facilities, which reduces the size of the MIQP model and increases the efficiency of the 
system server. However, the manufacturing lead time for delivering an order may be lengthened 
owing to the limited choices of 3D printing facilities. For this reason, more experimentation must 
be performed in the future to elaborate the effectiveness of the collaborative and ubiquitous 
additive manufacturing network. 

(2) In addition, if the 3D object to be printed is more complex, the 3D printing process is more likely 
to fail [48]. The required decision-making also becomes more complicated. Nevertheless, by 
providing more slack to each 3D printing facility, the proposed methodology is more robust 
than the existing methods without slack or Chen’s method with limited slack [31]. 

(3) Further, the proposed methodology can be applied to establish collaborative and ubiquitous 
systems for other types of products [49]. Although different collaborative and ubiquitous 
systems adopt different materials and print different products, there is still some overlap 
between these systems, leaving some space for their cooperation. 

(4) Furthermore, the decision-making models proposed in this study can be expanded to 
incorporate cost- or due-date-related information so that multiple objective functions (such as 
the manufacturing lead time, total cost, and number of tardy orders) can be optimized 
simultaneously. Further, the system can be deployed in a cloud-based environment [49–51]. 
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