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Abstract: Introduction: Lyme disease is a tickborne illness that generates controversy among medical
providers and researchers. One of the key topics of debate is the existence of persistent infection with
the Lyme spirochete, Borrelia burgdorferi, in patients who have been treated with recommended doses
of antibiotics yet remain symptomatic. Persistent spirochetal infection despite antibiotic therapy
has recently been demonstrated in non-human primates. We present evidence of persistent Borrelia
infection despite antibiotic therapy in patients with ongoing Lyme disease symptoms. Methods:
In this pilot study, culture of body fluids and tissues was performed in a randomly selected group of
12 patients with persistent Lyme disease symptoms who had been treated or who were being treated
with antibiotics. Cultures were also performed on a group of ten control subjects without Lyme
disease. The cultures were subjected to corroborative microscopic, histopathological and molecular
testing for Borrelia organisms in four independent laboratories in a blinded manner. Results: Motile
spirochetes identified histopathologically as Borrelia were detected in culture specimens, and these
spirochetes were genetically identified as Borrelia burgdorferi by three distinct polymerase chain
reaction (PCR)-based approaches. Spirochetes identified as Borrelia burgdorferi were cultured from
the blood of seven subjects, from the genital secretions of ten subjects, and from a skin lesion of one
subject. Cultures from control subjects without Lyme disease were negative for Borrelia using these
methods. Conclusions: Using multiple corroborative detection methods, we showed that patients
with persistent Lyme disease symptoms may have ongoing spirochetal infection despite antibiotic
treatment, similar to findings in non-human primates. The optimal treatment for persistent Borrelia
infection remains to be determined.
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1. Introduction

Lyme disease (LD) and similar Lyme-like Borrelia infections are caused by members of the
Borrelia burgdorferi (Bb) sensu lato complex or by members of the Borrelia relapsing fever complex
such as B. miyamotoi, respectively [1–4]. Following initial infection, Borrelia spirochetes can evade host
defenses, sequester in immune privileged sites such as joints or the central nervous system, and persist
in pleomorphic forms [5–8]. Tickborne coinfections including Babesia, Anaplasma, Ehrlichia, Bartonella
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and Rickettsia may complicate the clinical picture [6,9,10]. If LD is not treated early in the course of
infection, chronic illness may result and a variety of symptoms may develop. These symptoms include
fatigue, musculoskeletal pain, arthritis, cardiac disease and neurological involvement with peripheral
neuropathy, meningitis, encephalitis, cranial neuritis and cognitive dysfunction [6,8,11,12].

Although LD was first recognized in 1975, it remains a controversial illness and the topic of
polemic debate [6,10,13–15]. One viewpoint claims that persistent Lyme disease symptoms are related
to ongoing spirochetal infection despite antibiotic therapy. This scenario has been demonstrated in
animal models including rodents, dogs and horses using various detection methods [16–36], and a
recent study in non-human primates showing “persistent, intact, metabolically-active B. burgdorferi after
antibiotic treatment of disseminated infection” offers the strongest support for this pathogenesis [37].
Furthermore, comparable studies have suggested persistent infection after antibiotic therapy as a cause
of chronic symptoms in humans [38–60]. The opposing viewpoint claims that persistent Lyme disease
symptoms may be due to spirochetal “debris” without active infection. While a number of studies
from Europe and the USA have demonstrated persistence of Bb DNA or antigens in human bodily
tissues or fluids, very few studies have demonstrated culture of live Borrelia spirochetes, the highest
form of evidence for persistent infection in chronic Lyme disease patients [4,51,53,59].

In this pilot study, we present detailed evidence of persistent Borrelia infection despite antibiotic
therapy in 12 randomly-selected North American patients with ongoing LD symptoms. Spirochetal
infection was demonstrated by corroborative microscopic, histopathological and molecular detection
of live Borrelia organisms in cultures of body fluids and tissues from these patients.

2. Methods

2.1. Subject Selection

Subjects included in the study were chosen at random from our North American patient
population. All of the LD patients in the study were either clinically diagnosed with LD or had
positive Bb serological testing prior to study participation. Serological testing for LD was performed by
a Clinical Laboratory Improvement Amendments (CLIA)-certified laboratory (IGeneX Laboratory in
Palo Alto, CA, USA), as described in detail elsewhere [60]. Subjects with Morgellons disease (MD) who
were seropositive for LD were included in the study (see below) [61]. All subjects had been treated
with antibiotics prior to the study, and symptomatic patients who remained on antibiotic treatment
were included in the study.

2.2. Control Selection

Ten healthy subjects were recruited as controls after informed consent was obtained. These
subjects were then tested serologically for LD and those who were negative were accepted as controls.
Vaginal or seminal fluids were collected from negative controls and cultured for Borrelia, as described
below. Culture pellets underwent PCR testing for Borrelia in a blinded manner at the University of
New Haven and Australian Biologics, as described below.

2.3. Informed Consent

All subjects were adults who gave informed consent to participate in the study. Signed informed
consent to collect specimens was obtained in accordance with the ethics approval requirements for
sample collection of the Western Institutional Review Board, Puyallup, WA, USA (Study # 1148461).
Approval for anonymous sample testing was also obtained from the Institutional Review Board of the
University of New Haven, West Haven, CT, USA. Additional signed informed consent to publish the
results was obtained from each subject.
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2.4. Cultures

To avoid contamination, all cultures were performed under strict aseptic conditions in a laboratory
that was free of Borrelia reference strains, and cultures of control and patient samples were processed
in an identical manner. Inocula were placed in Barbour-Stoner-Kelly H (BSK) complete medium
with 6% rabbit serum (Sigma-Aldrich, #B8291, St. Louis, MO, USA) containing the following
antibiotics: phosphomycin (0.02 mg/mL) (Sigma-Aldrich), rifampicin (0.05 mg/mL) (Sigma-Aldrich),
and amphotericin B (2.5 µg/mL) (Sigma-Aldrich), as described previously [62]. Inocula were prepared
as follows:

A. Blood—whole blood (10 mL) was collected by venipuncture and left at room temperature to
clot, then centrifuged at low speed to separate red blood cells from sera. The serum supernatants
with a small amount of blood cells below the serum layer were collected and were inoculated into the
BSK medium.

B. Skin—whole calluses or skin from lesions were removed from MD subjects by scraping with a
scalpel blade.

C. Vaginal—vaginal secretions were collected by swabbing inside the vagina with sterile
cotton-tipped swabs that were then introduced into the BSK medium.

D. Seminal—semen was self-collected into a sterile vial, then was pipetted into the BSK medium.
8 mL tubes of inoculated medium were filled to minimize the airspace present, thus providing

a microaerobic environment, and incubated at 32 ◦C. Culture fluid was examined by darkfield
microscopy for visible spirochetes weekly for up to 4 weeks. Cultures were concentrated by
centrifuging the fluid at 15,000 g for 20 min, retaining the pellet and discarding the supernatant. For
imaging, a small amount of culture pellet was resuspended in 50 µL 0.85% saline solution, washed and
centrifuged again. The pellet was mixed with gelatin and then fixed with formalin for further staining.

2.5. Dieterle and Anti-Bb Immunostaining

Dermatological specimens and/or culture pellets from patients were fixed, sectioned and
processed for specialized staining at either McClain Laboratories LLC, Smithtown, NY, USA, or
the Department of Biology and Environmental Science, University of New Haven, West Haven,
CT, USA, as previously described [59]. Dieterle silver-nitrate staining was performed at McClain
Laboratories. Anti-Bb immunostaining was performed at McClain Laboratories or the University
of New Haven. In brief, immunostaining was performed using an unconjugated rabbit anti-Bb
polyclonal antibody (Abcam ab20950, Cambridge, MA, USA), incubated with an alkaline phosphatase
probe (Biocare Medical #UP536L, Pacheco, CA, USA), followed by a chromogen substrate (Biocare
Medical #FR805CHC), and counterstained with hematoxylin. Positive and negative controls were
prepared for comparison purposes using liver sections from Bb-inoculated and uninfected C3H/HeJ
mice followed by Dieterle and immunostaining. Culture pellets from mixed Gram-positive bacteria
(Streptococcus and Staphylococcus) and Gram-negative bacteria (Escherichia coli and Klebsiella) were also
prepared for comparison purposes as negative controls to exclude cross-reactivity with commonly
encountered microorganisms.

2.6. Molecular Testing

Patient and negative control samples were submitted in a blinded manner to the laboratories
performing polymerase chain reaction (PCR) amplification of DNA, as described below. PCR detection
of Borrelia was performed for research purposes only. No data resulting from this study was
used diagnostically.

2.7. PCR—University of New Haven

DNA was extracted from culture pellets as previously described [59]. Reactions of blinded
samples were performed in triplicate.



Healthcare 2018, 6, 33 4 of 19

Borrelia DNA in extracted samples was detected using a published TaqMan assay targeting
a 139-bp fragment of the gene encoding the Borrelia 16S rRNA, as described previously [59,63,64].
Amplifications were conducted on a CFX96 Real-Time System (Bio-Rad, Hercules, CA, USA) with
cycling of 50 ◦C for 2 min, 95 ◦C for 10 min, followed by 40 cycles of 95 ◦C for 15 s and 60 ◦C for
60 s, and fluorescent signals were recorded using CFX96 Real-Time software with the Cq threshold
set automatically.

Nested PCR primers for the 16S rRNA, flagellin (Fla), OspC, uvrA and pyrG genes were used
as previously described [59,64–66], with a final volume of 50 µL using 10 µL template DNA and final
concentrations of 20 mM Tris-HCl (pH 8.4), 50 mM KCl (1 × Buffer B, Promega, Fitchburg, WI, USA),
2 mM MgCl2, 0.4 mM dNTP mix, 2 µM of each primer, and 2.5 U Taq polymerase (Invitrogen, Carlsbad,
CA, USA). The first reaction used “outer” primers and the second reaction used “inner” primers,
and 1 µL of PCR product from the first reaction was used as template for the second. Cycling was
programmed as follows: 94 ◦C for 5 min followed by 40 cycles of denaturation at 94 ◦C for 1 min,
annealing for 1 min, and extension at 72 ◦C for 1 min, with a final extension step at 72 ◦C for 5 min.
DNA products were visualized in 1–2% agarose gels.

PCR amplification was followed by Sanger sequencing. PCR products were extracted using
the QIAquick Gel Extraction kit (Qiagen, Hilden, Germany) in accordance with the manufacturer’s
instructions. Eluates were sequenced in both directions, then were compared by BLAST analysis using
the GenBank database (National Center for Biotechnology Information).

2.8. PCR—Australian Biologics

DNA was extracted from culture pellets using the DNeasy Blood and Tissue kit® (Qiagen) in
accordance with the manufacturer’s instructions. Samples were forwarded to Australian Biologics for
Borrelia DNA and Treponema denticola/Treponema pallidum DNA testing. Blinded samples were run in
duplicate with positive and negative controls using primers for the Borrelia 16S rRNA and rpoC gene
targets, as previously described [59,67,68]. Borrelia DNA was detected by real-time PCR targeting the
16S rRNA gene and/or by endpoint PCR targeting the rpoC gene, as previously described [59,67,68],
using the Eco™ Real-Time PCR system with software version 3.0.16.0. Thermal profiles were performed
with incubation for 2 min at 50 ◦C, polymerase activation for 10 min at 95 ◦C then PCR cycling for
40 cycles of 10 s at 95 ◦C dropping to 60 ◦C sustained for 45 s. The PCR signal magnitude generated
(∆R) was interpreted as either positive or negative as compared to positive and negative controls.

For endpoint PCR, amplicons were visualized on 1–2% agarose gels and extracted from the gels
using the QIAquick Gel Extraction kit (Qiagen) in accordance with the manufacturer’s instructions.
Sanger sequencing was used for gene analysis, as described previously [59,67,68].

2.9. PCR—University California Irvine

The presence of Bb sensu stricto DNA in a set of blinded samples was confirmed by the laboratory
of Dr. Alan Barbour (University of California Irvine) by first quantitative PCR [69], and then by
sequence of the PCR-amplified 16S-23S intergenic spacer [70]. The samples studied included specimens
from two of the subjects in this paper, Case 2 and Case 10, as described below.

3. Results

3.1. Subject Histories

The clinical histories of the 12 study subjects with persistent Lyme disease symptoms (Cases 1–12)
are provided below, and the clinical characteristics of the subjects are summarized in Table 1.
All subjects had received treatment with 2–4 weeks of antibiotics as recommended by Lyme treatment
guidelines endorsed by the Centers for Disease Control and Prevention (CDC) [14]. Six patients were
taking antibiotics at the time of study sampling, as noted in Table 1. The type of Lyme IgM and IgG
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Western blot reactivity detected in each patient is shown in Table 2. Persistent IgM reactivity was
found in several patients, as described in other studies [37].

Table 1. Clinical Characteristics of Study Patients.

Case # Age/Gender EM Rash Sx MD Lesions LD Seroreactivity Co-Infections Abx

Case 1 50F No MS, F Yes Negative Unknown Yes
Case 2 54F Yes MS, F Yes Negative Bab, Bart No
Case 3 63M No MS, F No Positive Bab, Ana Yes

Case 4 53F Yes MS, F No
Negative,

seroconverting to
positive

Bab, Ana Yes

Case 5 40F No MS, N No Positive Bab Yes
Case 6 42M No MS, N No Positive None Yes
Case 7 36F No MS, N No Positive None Yes
Case 8 39M No MS, N No Positive Unknown No
Case 9 71F No MS, F, N No Positive None No
Case 10 72M No MS, F, N No Positive None No
Case 11 57F No MS No Positive Bab, Ehr, Bart No
Case 12 46F No MS Yes Positive Bab No

EM, erythema migrans; MD, Morgellons disease; MS, musculoskeletal; F, fatigue; N, neurological; Bab, Babesia microti
or Babesia duncani; Bart, Bartonella henselae; Ana, Anaplasma phagocytophilum; Ehr, Ehrlichia chafeensis. Abx, on
antibiotics at time of testing.

Table 2. Lyme Western Blot IgM and IgG Results in Study Patients.

Patient Number Western Blot IgM Western Blot IgG

1 Negative Negative
2 Negative Negative
3 Negative Positive
4 Positive Negative
5 Positive Negative
6 Positive Negative
7 Positive Negative
8 Positive Negative
9 Positive Positive

10 Positive Negative
11 Positive Positive
12 Negative Positive

Western blots were interpreted according to IGeneX criteria [60].

Control samples were obtained from two men and eight women ranging in age from 43–63 years
(mean age, 50.6 years). None of the controls had symptoms of tickborne disease, and none had
received antibiotic therapy. All controls were negative on Lyme IgM and IgG Western blot testing, and
additional testing of controls using microscopy, histopathology and PCR techniques was negative, as
outlined below.

3.1.1. Case 1

The subject is a 50-year-old native Canadian woman who resided in an area endemic for LD in
eastern Canada. She did not recall an erythema migrans (EM) rash. She developed extreme fatigue
and musculoskeletal pain as well as ulcerative skin lesions along with symptoms of formication.
Magnification demonstrated filamentous inclusions within the lesions. The subject was seronegative
for anti-Bb antibodies excepting two indeterminate IgM bands showing reactivity to the 41-kDa and
the 93-kDA proteins, and a weakly positive IgG band showing reactivity to the 41-kDa protein. She was
clinically diagnosed with LD by a health care provider in Canada and treated with antibiotics. The
subject had discontinued antibiotics three weeks prior to the sampling period, but continued treatment
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with naturopathic remedies. Despite ongoing treatment with amoxicillin, the subject continues to have
persistent symptoms of Lyme disease.

3.1.2. Case 2

The subject is a 54-year-old Caucasian woman who had a history of outdoor recreational activity in
Western Canada including areas in British Columbia that are endemic for LD. She recalled an EM-like
rash several years previously, and she did not receive treatment. She developed significant joint pains,
muscle aches, headaches, memory loss, fatigue and skin lesions, and she initially tested negative for
Lyme disease. She was clinically diagnosed by a Canadian health care provider, and the diagnosis
was confirmed later by an American health care provider. She also had positive serological tests for
Babesia and Bartonella. She did not have prior knowledge of Morgellons disease, but she did have
ulcerative lesions on her face and torso consistent in appearance with the condition. Upon examination
with a 50× handheld microscope, filamentous inclusions were observed in her lesions. She has
been aggressively treated over the last few years with antibiotic combinations including intravenous
ceftriaxone, metronidazole, telithromycin, doxycycline, amoxicillin, ciprofloxacin, tinidazole and
atovaquone with little benefit.

3.1.3. Case 3

The subject is a 63-year-old Caucasian man who had a history of outdoor recreational activity in
endemic areas for Lyme disease, including Europe, Western Canada, and the USA (Connecticut and
Rhode Island). Although he recalls tick bites, he did not recall an EM rash. The subject developed
musculoskeletal pain and extreme fatigue. His wife (Case 4) had an EM rash and a LD diagnosis
that prompted him to get tested for LD. He was seroreactive for anti-Bb antibodies, and Bb DNA
was detected in serum using PCR technology. He tested serologically positive for Babesia microti
and Anaplasma phagocytophylum. He had received ongoing treatment with antibiotics, including
doxycycline, clarithromycin, cefdinir, tinidazole, atovaquone, clindamycin and hydroxychloroquine.
He was symptomatic and taking doxycycline at the time of sampling. His condition has since improved,
but he still suffers from musculoskeletal pain.

3.1.4. Case 4

The subject is a 53-year-old Caucasian woman and the wife of Case 3. She had a history of outdoor
recreational activity in Lyme endemic areas of the USA and Canada. She has a history of tick bites and
recalled an EM rash after visiting both Connecticut and Rhode Island. Her symptoms included seizures,
neuropathy, palpitations and musculoskeletal pain. She had serological testing for Bb and was initially
negative, but she became seropositive after taking antibiotics. She also had positive serological testing
for Babesia microti and Anaplasma phagocytophylum. She was symptomatic and taking antibiotics during
the time of sample collection. Antibiotics taken included doxycycline, telithromycin, minocycline,
clindamycin, clarithromycin, metronidazole, tinidazole, rifampicin, atovaquone, hydroxychloroquine
and mefloquine. The subject was taking clarithromycin and cefdinir at the time of sample collection.
She is currently asymptomatic.

3.1.5. Case 5

The subject is a 40-year-old Caucasian woman living in Calgary, Canada, and the partner of
Case 6. She is a veterinarian and had a history of work exposure to ticks, and she had also travelled
to areas endemic for LD in Europe. She did not recall an EM rash. Her symptoms were primarily
musculoskeletal and severe headaches. She was seropositive for Bb and Babesia, and she had been
treated with the following antibiotics: doxycycline, clarithromycin, metronidazole and atovaquone.
She had been taking doxycycline for one month at the time of sample collection.
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3.1.6. Case 6

The subject is a 42-year-old Caucasian man living in Calgary, Canada, and the partner of Case 5.
He is a veterinarian and had a history of work exposure to ticks. He had also travelled to areas endemic
for LD in Europe. He did not recall an EM rash. His symptoms were primarily musculoskeletal, severe
headaches, memory loss, vision problems and extreme fatigue. He was seropositive for Bb and Babesia,
and he had been treated with the following antibiotics: doxycycline, clarithromycin, metronidazole
and atovaquone. He had been taking doxycycline for one month at the time of sample collection.

3.1.7. Case 7

The subject is a 36-year-old Caucasian woman living in Calgary, Canada. She was bitten by many
ticks while working as a tree planter in the mountains, but she does not recall an EM rash. In September
1997 she developed profound fatigue, migratory joint pains, peripheral neuropathy and personality
changes consistent with depression. She was seropositive for Bb, and she was eventually treated with
intramuscular penicillin, amoxicillin, and minocycline over two years. She remains symptomatic
despite antibiotic treatment.

3.1.8. Case 8

The subject is a 39-year-old Caucasian man residing in Calgary, Canada. He has a history of
hiking, camping and other outdoor activities in Alberta and Manitoba, Canada, but no known tick
bites or EM rash. He complains of joint pain, low back pain and headaches, and he has been treated
for sciatica, depression, insomnia, and anxiety. He also has an extensive history of periodontal disease
with recurrent gingival infections, and he has received multiple courses of penicillin and amoxicillin
over many years. He had positive serological testing for Lyme disease, and he has not been tested for
tickborne coinfections.

3.1.9. Case 9

The subject is a 71-year-old Caucasian woman living in Ontario, Canada and the partner of Case 10.
She was 40 years old when she became ill in 1986 with severe flu-like symptoms, fatigue, severe pelvic
pain, blurred vision, rib soreness and night sweats. She did not recall a tick bite or an EM rash. The
patient had not knowingly visited a Lyme disease endemic area. She consulted six different physicians
over a period of four years before being treated with six weeks of doxycycline for what was diagnosed
as pelvic inflammatory disease in 1988, and her symptoms transiently improved. She was clinically
diagnosed with Lyme disease in 1990 by a physician in Ontario, as the Ontario government’s ELISA
test was “negative” for Lyme disease. Over the next 20 years the subject was intermittently treated
with doxycycline and her symptoms improved, but never completely resolved, and other symptoms
developed such as muscle aches, joint pains, sleep disturbances, bladder and urethral pain, and
cognitive impairment. These symptoms waxed and waned over the years. She experienced multiple
Jarisch–Herxheimer reactions with repeated doxycycline treatment. The subject’s two children were
treated for congenital Lyme disease between 1990 and 2004 and are asymptomatic today. In May 2011,
the subject was tested by a CLIA-approved laboratory in the USA and was found to be serologically
positive for Lyme disease.

3.1.10. Case 10

The subject is a 72-year-old Caucasian man living in Ontario, Canada and the partner of Case 9.
He was 41 years old at the onset of symptoms in 1986 with flu-like muscle aches, joint pains and
unrelenting fatigue. He did not recall a tick bite or an EM rash. The subject had not knowingly
visited a Lyme disease endemic area. He had consulted 12 different doctors over a period of four
years before getting a confirmed diagnosis of Lyme disease, at which point he had developed severe
arthritic symptoms, significant neurological symptoms including encephalopathy and dementia with



Healthcare 2018, 6, 33 8 of 19

brain magnetic resonance imaging (MRI) showing hyperintense white matter lesions. His antibiotic
regimens over 20 years included: tetracycline, amoxicillin plus probenecid, doxycycline, clarithromycin,
intravenous ceftriaxone, and intramuscular benzathine penicillin G. When the subject was on antibiotics
he had relief of many symptoms, but he was never completely free of symptoms associated with Lyme
disease. He had multiple Jarisch-Herxheimer reactions when new antibiotic regimens were initiated.
The two-tiered Lyme disease serology test performed in Canada failed to show positivity for Lyme
disease, but the subject subsequently sent blood to a CLIA-approved laboratory in the United States
and was found to be seropositive for Lyme disease.

3.1.11. Case 11

The subject is a 57-year-old Caucasian woman living in Calgary, Canada. She had exposure
to ticks while hiking and camping in Canada, but she did not recall an EM rash. She developed
musculoskeletal and neuropsychiatric symptoms and was diagnosed with LD after testing serologically
positive. She also had positive testing for Babesia, Ehrlichia and Bartonella. She received intermittent
antibiotic therapy with multiple oral, intramuscular and intravenous antibiotics, and her symptoms
improved while on antibiotics but relapsed when the antibiotics were discontinued. She remains
symptomatic after five years of antibiotic treatment.

3.1.12. Case 12

The subject is a 46-year-old Caucasian woman living in Alberta, Canada who did not have a history
of tick bite or EM rash. She has suffered with skin lesions consistent with Morgellons disease for more
than a decade and was diagnosed with Lyme disease in the USA after testing serologically positive for
Bb. She has had severe gastrointestinal problems that have necessitated frequent hospitalizations. The
gastrointestinal difficulties began after she had gastric bypass surgery. Her intestines form lesions that
fuse together, causing blockages. She has been treated aggressively with antibiotics before and after this
study by doctors both in the USA and Canada with only minimal benefit. Antibiotic therapy included
multiple treatments with intravenous ceftriaxone, doxycycline, clarithromycin and amoxicillin.

3.2. Microscopy and Histopathology

Case 1. Whole calluses were submitted for sectioning, Dieterle and anti-Bb immunostaining.
Spirochetes were visible in both Dieterle and anti-Bb immunostains. Blood culture was performed and
fluid from the culture demonstrated spherical bodies under darkfield microscopy. Dieterle staining
and anti-Bb immunostaining was not performed.

Case 2. Blood culture was performed and fluid from the culture demonstrated spherical bodies
under darkfield microscopy. Dieterle staining and anti-Bb immunostains demonstrated spherical
bodies. Anti-Bb immunostaining was positive. Vaginal culture was performed and fluid from the
culture demonstrated spirochetes and biofilm under darkfield microscopy. Dieterle staining and
anti-Bb immunostaining demonstrated spirochetes and biofilm. Skin specimens were not submitted
for staining or culture. Repeat blood and vaginal cultures were positive for Borrelia by immunostaining
and PCR (see Tables 3–5).

Case 3. Blood culture was performed and fluid from the culture demonstrated spherical bodies
and occasional spirochetes under darkfield microscopy. Dieterle staining and anti-Bb immunostains
demonstrated spherical bodies and occasional spirochetes. Anti-Bb immunostaining was positive.
Seminal culture was performed and fluid from the culture demonstrated spirochetes under darkfield
microscopy. Dieterle staining and anti-Bb immunostaining demonstrated spirochetes. Repeat blood
culture was positive for Borrelia by immunostaining and PCR (see Tables 3–5).
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Table 3. Summary of Microscopy Results from Patient Culture Samples.

Case # Sample Type Darkfield Dieterle Bb Immunostain

Case 1
whole callus N/A spirochetes positive, spirochetes
blood culture spirochetes N/A N/A

Case 2
blood culture spherules spherules positive, spherules

vaginal culture spirochetes spirochetes positive, spirochetes, biofilm

Case 3
blood culture spirochetes/spherules spirochetes/spherules positive spirochetes/spherules

seminal culture spirochetes spirochetes positive, spirochetes

Case 4
blood culture spirochetes/spherules spirochetes/spherules positive spirochetes/spherules

vaginal culture spirochetes spirochetes positive, spirochetes

Case 5
blood culture spherules spherules positive, spherules

vaginal culture spirochetes spirochetes positive, spirochetes

Case 6
blood culture spherules spherules positive, spherules

seminal culture spirochetes spirochetes positive, spirochetes

Case 7 vaginal culture spirochetes spirochetes positive, spirochetes

Case 8 seminal culture spirochetes spirochetes positive, spirochetes

Case 9 vaginal culture spirochetes spirochetes positive, spirochetes

Case 10 seminal culture spirochetes spirochetes positive, spirochetes

Case 11 vaginal culture spirochetes spirochetes positive, spirochetes

Case 12
blood culture spherules spherules positive, spherules
skin culture spirochetes spirochetes positive, spirochetes

N/A, not available.

Table 4. Summary of PCR Results from Patient Culture Samples.

Case # Sample Type University of New Haven Australian Biologics UC-Irvine

1
whole callus 16S rRNA (N), pyrG (N) *, fla (N) * N/A N/A
blood culture pyrG (N), fla (N) * N/A N/A

2
blood culture 16S rRNA (N) 16S rRNA (RT), rpoC (E) * N/A

vaginal culture pyrG (N) *, fla (N) 16S rRNA (RT) * qPCR 16S-23S
intergenic spacer

3
blood culture 16S rRNA (N) * 16S rRNA (RT) N/A

seminal culture 16S rRNA (RT), 16S rRNA (N) *,
fla (N) 16S rRNA (RT), rpoC (E) * N/A

4
blood culture 16S rRNA (N), pyrG (N) 16S rRNA (RT), rpoC (E) * N/A

vaginal culture 16S rRNA (RT), 16S rRNA (N),
pyrG (N), fla (N) 16S rRNA (RT), rpoC (E) * N/A

5
blood culture 16S rRNA (RT), 16S rRNA (N),

pyrG (N) 16S rRNA (RT) N/A

vaginal culture 16S rRNA (N) 16S rRNA (RT), rpoC (E) * N/A

6
blood culture 16S rRNA (RT), 16S rRNA (N),

pyrG (N) 16S rRNA (RT) N/A

seminal culture 16S rRNA (RT), 16S rRNA (N) 16S rRNA (RT) N/A

7 vaginal culture 16S rRNA (N) * N/A N/A

8 seminal culture 16S rRNA (N) * N/A N/A

9 vaginal culture pyrG (N) 16S rRNA (RT) N/A

10 seminal culture pyrG (N) 16S rRNA (RT)
(+/−)

qPCR16S-23S
intergenic spacer

11 vaginal culture 16S rRNA (N) 16S rRNA (RT), rpoC (E) * N/A

12
whole callus uvrA (N) * N/A N/A
blood culture pyrG 16S rRNA (RT) N/A

* Sequenced; RT, real time PCR; N, nested PCR; E, endpoint PCR; N/A not available; (+/−) One specimen was
positive for Bb DNA, one specimen was negative (different collection dates).
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Table 5. Summary of BLAST Sequence Analysis of Patient PCR Samples.

Case # Culture Specimen Sequence Length E-Value BLAST Match Bbss LAB

1

callus pyrG 680 0.0 100% UNH
callus fla 367 2e-172 100% UNH
blood fla F 364 2e-176 99% UNH
blood fla R 367 2e-172 99% UNH

2

vaginal pyrG F 656 0.0 99% UNH
vaginal pyrG R 659 0.0 99% UNH
vaginal rpoC 79 4e-32 100% AB

vaginal 16S-23S Intergenic
spacer 474 0.0 100% UCI

3

blood 16S rRNA F 415 0.0 99% UNH
blood 16S rRNA R 415 0.0 99% UNH

seminal 16S rRNA 388 0.0 99% UNH
blood 1 month Abx rpoC 103 0.11 96% AB

seminal 1 month Abx rpoC 146 9e-57 100% AB
seminal 4 months Abx rpoC 158 3e-52 98% AB

4 vaginal rpoC 118 1e-51 99% AB

5 vaginal rpoC 109 6e-47 99% AB

7 vaginal 16S rRNA 396 0.0 99% UNH

8 seminal 16S rRNA 221 7e-10 100% UNH

10 seminal 16S-23S Intergenic
spacer 474 0.0 99% UCI

11 vaginal rpoC 156 1e-25 100% AB

12
callus uvrA F 653 0.0 99% UNH
callus uvrA R 651 0.0 99% UNH

UNH, University of New Haven; AB, Australian Biologics; UCI, University of California Irvine. F, forward sequence;
R, reverse sequence; Bbss, B. burgdorferi sensu stricto; Abx, antibiotics.

Case 4. Blood culture was performed and fluid from the culture demonstrated spherical bodies
and occasional spirochetes under darkfield microscopy. Dieterle staining and anti-Bb immunostains
demonstrated spherical bodies and occasional spirochetes. Anti-Bb immunostaining was positive.
Vaginal culture was performed and fluid from the culture demonstrated spirochetes under darkfield
microscopy. Dieterle staining and anti-Bb immunostaining demonstrated spirochetes. Repeat blood
culture was positive for Borrelia by immunostaining and PCR (see Tables 3–5).

Case 5. Blood culture was performed and fluid from the culture demonstrated spherical bodies
under darkfield microscopy. Dieterle staining and anti-Bb immunostaining demonstrated spherical
bodies. Vaginal culture was performed and fluid from the culture demonstrated spirochetes under
darkfield microscopy. Dieterle staining and anti-Bb immunostaining demonstrated spirochetes. Repeat
blood culture was positive for Borrelia by immunostaining and PCR (see Tables 3–5).

Case 6. Blood culture was performed and fluid from the culture demonstrated spherical
bodies under darkfield microscopy. Dieterle staining and anti-Bb immunostains demonstrated
spherical bodies. Anti-Bb immunostaining was positive. Seminal culture was performed and
fluid from the culture demonstrated spirochetes under darkfield microscopy. Dieterle staining and
anti-Bb immunostaining demonstrated spirochetes. Repeat blood culture was positive for Borrelia by
immunostaining and PCR (see Tables 3–5).

Case 7. Vaginal culture was performed and fluid from the culture demonstrated spirochetes under
darkfield microscopy. Dieterle staining and anti-Bb immunostaining demonstrated spirochetes.

Case 8. Seminal culture was performed and fluid from the culture demonstrated spirochetes
under darkfield microscopy. Dieterle staining and anti-Bb immunostaining demonstrated spirochetes.

Case 9. Vaginal culture was performed and fluid from the culture demonstrated spirochetes,
including one that was quite actively motile, under darkfield microscopy. Dieterle staining and anti-Bb
immunostaining demonstrated spirochetes.
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Case 10. Seminal culture was performed and fluid from the culture demonstrated spirochetes
under darkfield microscopy. Dieterle staining and anti-Bb immunostaining demonstrated spirochetes.
Repeat seminal culture was positive for Borrelia by immunostaining and PCR (see Tables 3–5).

Case 11. Vaginal culture was performed and fluid from the culture demonstrated spirochetes,
including one that was quite actively motile, under darkfield microscopy. Dieterle staining and anti-Bb
immunostaining demonstrated spirochetes.

Case 12. Blood culture was performed and fluid from the culture demonstrated spherical bodies
under darkfield microscopy. Dieterle staining and anti-Bb immunostains demonstrated spherical
bodies. Anti-Bb immunostaining was positive. Skin culture was performed and fluid from the culture
demonstrated spirochetes under darkfield microscopy. Dieterle staining and anti-Bb immunostaining
demonstrated spirochetes.

The results of darkfield microscopy, Dieterle silver stains and anti-Bb immunostaining from
Cases 1–12 are summarized in Table 3. Examples of these spirochete detection methods are shown in
Figure 1A–C. All controls tested negative using these techniques (data not shown).

Figure 1. (A) (Top left): Darkfield microscopy of blood culture showing live spirochete and spherules.
Magnification 400×. (B) (Bottom left): Dieterle silver stain of culture fluid from Case 10 showing live
spirochetes. Magnification 1000×. (C) (Top right): Borrelia immunostain of culture fluid from Case 9
showing live spirochetes. Magnification 1000×. (D) (Bottom right). Typical dermal filaments from
patient with Morgellons disease. Magnification 100×.

3.3. Molecular Testing

PCR Detection of Borrelia

Samples (whole dermatological calluses, blood culture, vaginal cultures, and seminal cultures)
from the study patients were submitted for PCR detection and sequencing of Borrelia DNA at both
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the University of New Haven, CT, and Australian Biologics, Sydney, Australia in a blinded manner.
Borrelia DNA was detected by at least one laboratory for all 12 patients, and amplicon sequences
consistent with Bb DNA were obtained for 10/12 patients. Blinded negative cultures from healthy,
seronegative subjects along with the blinded suspected positive cultures from LD patients were sent to
University of New Haven and Australian Biologics.

Australian Biologics performed PCR for the detection of Treponema denticola and Treponema pallidum
on all study samples and blinded controls. Treponemal DNA was not detected in any samples.
For Cases #2 and #10, additional PCR and sequencing on genital cultures was performed at the
University of California, Irvine, in the laboratory of Dr. Alan Barbour. In these samples, Borrelia
DNA was detected with qPCR and then confirmed as Bb sensu stricto by sequence of the 16S-23S
intergenic spacer.

Positive PCR results are summarized in Table 4, and positive sequencing results are summarized
in Table 5. PCR sequences and BLAST analyses are shown in Supplemental File. All negative controls
were PCR-negative for Borrelia species (data not shown).

4. Discussion

In this pilot study, we cultured live Borrelia organisms from 12 antibiotic-treated subjects with
persistent Lyme disease symptoms, thus showing that viable spirochetes can be found in LD patients
despite antibiotic therapy. Half of these subjects were taking antibiotics at the time of sampling.
Patient cultures showed Borrelia spiral forms and spherical bodies, as described in other publications
(Figure 1A–C) [7,59,66]. We demonstrated the presence of Borrelia infection in cultures from these
patients using corroborative microscopy, histopathology and PCR techniques, and we obtained
sequences for amplicons from 10/12 patients. Repeat cultures of blood, semen and vaginal secretions
were positive for Bb by microscopy, histopathology and PCR in six patients tested by four different
laboratories. Cultures from healthy Borrelia-seronegative controls were consistently negative using
microscopy, histopathology and PCR techniques, making the possibility of Borrelia contamination in
LD patient samples extremely unlikely.

Persistent Borrelia infection may result in part from the wide variety of tissues and fluids that
support spirochetal growth [16–37]. The tissues susceptible to Borrelia infection include fibroblasts,
skin, synovial tissue, ligaments, cardiac tissue, glial cells, neurons, endothelial cells, lymphoid tissue
and hepatic tissue [5,48,59,71–81]. The pleotropic nature of Borrelia infection may allow the spirochete
to evade the host immune system and antibiotic therapy, as outlined below.

The role of round body cysts and biofilms in persistent Borrelia infection is controversial [10,82,83].
Ongoing Lyme disease symptoms may arise from spirochetes hidden in biofilms or surviving as round
body cysts or cell wall-deficient L-forms, by intracellular Borrelia sequestration or by sequestration
within privileged sites where antibiotics do not attain therapeutic levels [13,37,84–86]. Regardless of
the mechanism by which Borrelia spirochetes persist in tissues, persistent Borrelia infection requires
treatment, and options at present are limited and controversial [10,13,83]. The controversy is fueled by
disagreement over viability of the spirochetes, as described below.

Although there is evidence of post-treatment Borrelia infection in animals and humans, some
researchers speculate that Borrelia antigens and DNA detected in studies are merely spirochetal
“debris” [36,87–89]. Wormser et al. offered an “amber” hypothesis as a possible explanation for
persistent symptoms, namely that persistent Lyme arthritis is caused by non-viable spirochetes
enmeshed in joints within host-derived fibrinous or collagenous matrices [88]. Bockenstedt et al.
proposed that the inflammation seen in mice described in their study following antibiotic treatment
was caused by Borrelia DNA and proteins representing non-infectious spirochetal “debris” deposited
in tissues [36].

In contrast, those who support the idea that active infection is responsible for persisting Lyme
disease symptoms propose that there are various protective mechanisms providing spirochetal
resistance or tolerance to antibiotics, including intracellular invasion and formation of cell-wall
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deficient L-forms, round body cysts, biofilms and persister cells [78,84–86]. Furthermore the “amber”
and “debris” hypotheses of symptom persistence are difficult to support because Borrelia DNA is
rapidly cleared from murine tissues after prompt antibiotic treatment [21], and the DNA of non-viable
spirochetes is cleared from mouse tissue within several hours [90]. The present study confirms the
presence of live Borrelia spirochetes in patients who had been treated with antibiotics for persistent
Lyme disease symptoms.

Recent studies have focused on “persister cells” and “sleeper cells” as spirochetal agents of
persistence in Lyme disease [91–93]. The concept involves organisms that are tolerant to antibiotics and
can downregulate their metabolic needs via a “stringent response” to survive in a hostile environment,
only to reemerge when the environment becomes more favorable. A similar mechanism of persistent
infection has been described in E. coli, Mycobacteria and Salmonella [93]. The survival of metabolically
tolerant spirochetes in privileged sites would explain our findings of viable Borrelia in antibiotic-treated
patients once the antibiotics are withdrawn and culture conditions are optimized. The factors that
influence viability of “persister cells” and “sleeper cells” in patients with persistent Lyme disease
symptoms merit further study.

Three of our study subjects had a controversial skin condition commonly called Morgellons
disease (MD) [61,94–98]. The distinguishing feature of this skin condition is the presence of white,
black, or brightly colored filaments that lie under, are embedded in, or project from skin lesions
(see Figure 1D). While some medical practitioners erroneously consider MD to be a purely delusional
disorder, MD appears to be a Borrelia-associated filamentous dermatitis [94,95]. MD patients exhibit
symptoms that resemble those of Lyme disease such as fatigue, joint pain, and neuropathy, and the skin
condition has been shown to be associated with Borrelia infection [94–98]. Spirochetes from different
Borrelia species have been detected in MD patient specimens [61,94,99,100]. We obtained positive
Borrelia cultures from all three of our MD subjects.

The mechanism of MD filament evolution has not been resolved, but as collagen and keratin
filaments arise from proliferative keratinocytes and fibroblasts in human epithelial tissue, we speculate
that Borrelia infection alters keratin and collagen gene regulation [99,100]. Borrelia bacteria can invade
fibroblasts and keratinocytes where they survive and replicate intracellularly [74,76,101]. As shown
by in vitro studies, Borrelia spirochetes can be isolated from keratinocyte and fibroblast monolayers
despite treatment with antibiotics [74,76]. Persistent refractory infection in MD patients may therefore
result in part from sequestration of live Borrelia spirochetes within keratinocytes and fibroblasts.

Borrelia spirochetes have been detected in vaginal and seminal secretions [13,100]. We cultured
Borrelia spirochetes in genital secretions from ten of our study subjects who had taken or were
currently taking antibiotic therapy. Bb is a complex organism that is related to the spirochetal agent
of syphilis, and therefore may have similar infectious capabilities [13,100,102]. As outlined above,
Borrelia spirochetes penetrate tissues, can form cystic structures and L-forms, hide in biofilms, become
intracellular, and sequester in privileged sites (brain, eye and synovium) [9,10,13,83,103–105]. These
specialized abilities of the Borrelia spirochete suggest that the genital tract could harbor infection. The
vagina and the seminal vesicles are privileged sites, and that may explain why the organism can persist
in the genital tract despite antimicrobial therapy in a manner similar to syphilis, chlamydia, human
immunodeficiency virus (HIV), Ebola and Zika virus [102,106–110].

5. Conclusions

In summary, in this pilot study we demonstrated persistent infection despite antibiotic therapy in
12 North American patients with ongoing symptoms of LD. Cultures were positive in all 12 patients in
our study, indicating that the Borrelia spirochetes were replicating and therefore alive. The spirochetes
were genetically identified as Bb in a blinded fashion using PCR and gene sequencing in three separate
laboratories. In contrast, cultures from control subjects without Lyme disease were negative for Borrelia
spirochetes. Our findings provide evidence that persistent infection rather than spirochetal “debris”
was at least in part responsible for ongoing symptoms in these cases of Lyme disease, and the results
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mirror recent observations in a non-human primate model of treated Lyme disease [37]. Larger clinical
studies using corroborative techniques are needed to confirm the findings in this pilot study.

Supplementary Materials: The following are available online at http://www.mdpi.com/2227-9032/6/2/33/s1,
Supplemental File: PCR Sequences and BLAST Analyses from Individual Patient Cultures.
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