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Abstract: Male infertility is a relevant public health problem, but there is no systematic review of
the different machine learning (ML) models and their accuracy so far. The present review aims to
comprehensively investigate the use of ML algorithms in predicting male infertility, thus reporting
the accuracy of the used models in the prediction of male infertility as a primary outcome. Particular
attention will be paid to the use of artificial neural networks (ANNs). A comprehensive literature
search was conducted in PubMed, Scopus, and Science Direct between 15 July and 23 October 2023,
conducted under the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
guidelines. We performed a quality assessment of the included studies using the recommended tools
suggested for the type of study design adopted. We also made a screening of the Risk of Bias (RoB)
associated with the included studies. Thus, 43 relevant publications were included in this review, for
a total of 40 different ML models detected. The studies included reported a good quality, even if RoB
was not always good for all the types of studies. The included studies reported a median accuracy of
88% in predicting male infertility using ML models. We found only seven studies using ANN models
for male infertility prediction, reporting a median accuracy of 84%.

Keywords: machine learning; male infertility; artificial intelligence; statistical models

1. Introduction

Demographers tend to interpret (define) infertility as childlessness in a population of
women of reproductive age, whereas the epidemiological definition refers to trying for or
time to pregnancy in a population of women exposed to the probability of conception [1].
Infertility is a universal health issue, covering about 8 to 12% of couples worldwide [2],
and as a chronic condition, it can result in distress, stigma, and financial hardship, affecting
people’s mental and psychosocial well-being [3].

Approximately 30% of infertility cases are attributed to male factors [4]. Recent meta-
analysis studies show that male factors are present in 20–70 percent of infertility cases [5].
These findings are significantly broader than previously reported [4,5]. However, the
wide range of male infertility in meta-analysis studies [6] may not reflect the prevalence
of this complication in all parts of the world because of reasons, such as the lack of
rigorous statistical methods that include bias, heterogeneity in data collection, and cultural
constraints [6]. Indeed, the inability to conceive a child can be emotionally taxing, leading
to feelings of inadequacy, and men may contemplate their masculinity, as societal standards
frequently associate potency with manliness. The constant demand to excel and procreate
can intensify these feelings [7]. As mentioned before, in almost all cases, it is not only the
man who suffers from it, as couples also facing fertility issues often experience increased
tension in their relationships. The strain comes from various factors, such as the emotional
reaction to fertility treatments, the financial burden, and the pressure to conceive [8].
Furthermore, the necessity for timed sexual intercourses and a heightened focus on fertility
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can take away the spontaneous nature of such interactions, causing them to feel more like
clinical procedures than intimate moments, which may lead to an environment unsuitable
for conception [9].

Recent studies addressed the investigation of genetic abnormalities [10], such as
chromosomal abnormalities and gene mutations [11], as factors affecting sperm production
and function [10]. Furthermore, the role of hormonal imbalances, such as low levels
of testosterone or high levels of prolactin, in disrupting the normal functioning of the
reproductive system and sperm production has been investigated [12]. Indeed, lifestyle
factors, including smoking, excessive alcohol consumption, drug use, and exposure to
environmental toxins, can also contribute to male infertility [13,14]. Recently, there has
been an increasing interest in chemical exposure as a cause of male infertility [14], which
likely plays a substantial role in the sperm count trend.

Last but not least, risk factors exhibit a correlation with obesity, which is a known
risk factor for diminished-quality sperm [15]. Diet is another important factor that is
hard to decouple from chemical exposures since pesticide residues linger on much of the
food we eat [16].

Given the complexity of the topic, it is essential to have predictive models that can
provide accurate information on the factors that influence male infertility. Traditionally,
the total motile sperm count (volume × concentration × motility) has been used as the
most predictive factor in determining fertility compared to volume, concentration, and
motility individually [17]. On the other hand, a recent study [18] reported that semen
analysis (sperm quality) is a fundamental method for evaluating male fertility, including
the analysis of sperm count, motility, morphology, and volume. Therefore, abnormalities in
these parameters can indicate male infertility.

Since many factors have been investigated as potential risk factors related to male
infertility [5,7,9–17], it is important to identify statistical models that can accurately predict
how much each single risk factor impacts the onset of male infertility.

The introduction of artificial intelligence (AI) into the healthcare field promoted a
significant change in the approach of medical practitioners to diagnosing, treating, and
anticipating health ailments. Indeed, the use of AI, which is powered by machine learning
algorithms, data, and computational capabilities, allows for the analysis of large datasets
with impressive speed [18]. This transformative technology can predict illnesses, categorize
patient information, and offer tailored treatment recommendations. Predictive analytics
in medicine leverages AI to forecast patient outcomes, identify potential health risks, and
optimize care pathways using algorithms such as the Random Forest (RF) Classifier [19,20].
Exploiting different types of information AI models can forecast the commencement and
advancement of diseases, such as in the study of heart disease [21], cancer [22], and
diabetes [23], in which AI models have already proven their efficiency in facilitating timely
intervention and tailored healthcare strategies.

Machine learning (ML), artificial neural networks (ANNs), and deep learning have
emerged as feeble tools, stagnating our approach to comprehending and addressing male
reproductive health. These tools have been employed to scrutinize extensive datasets,
thereby assisting in the identification of pivotal factors that influence fertility outcomes.

Currently, in the scientific literature, there are not many review documents that have
specifically addressed the use of machine learning models for predicting male infertility.
A recent review [24] addressed the topic in a non-systematic and narrative way. The
authors [24] drew up examples of possible applications of ML algorithms in a hospital
setting, providing indications on robots and mechanics in vogue for specialized analyses,
such as Advancing Computer-Assisted Semen Analyses (CASA), in the investigation of
preoperative images before surgical sperm retrieval, for intra-operative advancement to
identify genetic material at a microscopic level and sperm identification and analysis. This
review, although concise and well argued, has the limitation of being focused on assisted
reproductive technologies without any specific reference to machine learning models. An-
other review [25] analyzed the role of ML models exclusively for sperm selection before
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fertilization practices without considering other factors. Two other reviews instead investi-
gated azoospermia in patients with Klinefelter Syndrome [26] or, in an all-encompassing
way [27], about both male and female fertility, raising important consideration about the
need for data augmentation, feature extraction, explainability, and the need to revisit the
meaning of an effective system for fertility analysis.

For this reason, it seems important to provide precise indications on what types of
algorithms and their relevant clinical performances are currently used in the scientific
panorama, being able to discriminate specific models and data in which they have been
used. Among the multiple ML models currently available, artificial neural networks (ANNs)
are widely used in medical settings to improve the delivery of care at a reduced cost [28].
These models are particularly interesting since they are inspired by the neural organization
of the human brain, which is modelled as an interconnection of nodes. In the context of
male infertility, ANNs have played a crucial role in predicting sperm concentration [29].
This predictive ability is invaluable in assessing sperm quality, an essential determinant of
male fertility.

Even though we have access to several computational predictive models, challenges
remain, such as understanding which of all these models is or has the potential to be the
most accurate overall.

By conducting a review on the accuracy of ML, with a focus on ANNs, in predicting
male infertility, this research will provide valuable insights into this emerging field. There-
fore, this review does not aim to claim a technical contribution, but it is intended to be a
reference guide. Therefore, the aim of this review is to fill this gap and contribute to the
existing literature by critically evaluating the accuracy of ML in predicting male infertility
and gaining insights about which model might be more efficient.

2. Materials and Methods

We used the PICO framework [30] for formulating the research questions reported
in Table 1. The literature search was undertaken between August 2023 and October 2023
by two independent researchers (VS, DDB) using three databases (PubMed, Scopus, and
ScienceDirect). Therefore, a search string was created as similar as possible for every
database. The search strategy was conducted through the combination of Mesh, Tiab, and
synonym terms for the general string of “Man, infertility, prediction”. In Appendix A, we
report specifications about Mesh, Tiab, synonyms (Table A1), and the specific strings search
(Table A2) adapted for each database. This review followed the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA) checklist [31].

Table 1. PICO framework.

Acronym Definition Motivation Research Question

P Population Gain insights about the predictive tools using
ML for Male infertility

Are there any models that predict male
infertility?

I Intervention
Analyze state of the art of the different ML and

ANN algorithms used to predict male
infertility

Which computational models have been used
to predict Male infertility?

C Comparison Compare the different algorithms and the
features/indicators

Which of these computational models require
fewer features in the algorithm?

O Outcome Understand the prediction accuracy of the
algorithms

What is the accuracy of the ML in comparison
to other predictive models?

All results from Pubmed, Scopus, and Science Direct searches were aggregated in an
Excel sheet, arranging the titles in alphabetical order. Since the aim of this review was to
make a comprehensive panoramic of ML models used to predict male infertility, we did
not introduce any new approaches or databases to claim a technical contribution.
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2.1. Inclusion Criteria

After removing duplicates manually, the search results underwent title and abstract
screening, applying criteria for inclusion and exclusion of search results as follows:

- Inclusion: Studies published in a peer-reviewed journal; any year of publication; all
study designs; human male population.

- Exclusion: Any language other than English; grey literature, letter to the editor, or
reviews; search results with content not directly relevant to the research question after;
undergoing a title and abstract screening; studies with different target populations
(female, animals); articles with ambiguity in the context of male infertility in humans
and machine learning; paper with no direct access to the full text.

The reference lists of the included studies were screened for further relevant publica-
tions. For a paper in which animal and male models are mutually included, we considered
only data relating to human male infertility.

2.2. Quality of the Studies and Risk of Bias Analysis

Two independent researchers analyzed the quality (VS) and the Risk of Bias (RoB)
(DDB) of the included studies. The selected studies were grouped following the study
design, and then a suitable tool for quality appraisal had to be chosen according to the study
design. Retrospective and prospective studies were both assessed with the JBI Checklist for
Case Series, which consists of a rapid assessment based on the identification of ten specific
items of information regarding the participants (from enrolment to the final stage of the
experiment) and the procedure [32]. The remaining studies were assessed according to
the EQUATOR guidelines [33]. Indeed, cohort, case–control, and cross-sectional studies
were assessed through the STROBE guidelines for reporting observational studies. This
tool is made of 22 items, assessing in detail all the sections of the paper and also including
sub-items to further distinguish specific criteria of scoring according to the study design
(cohort, case–control, cross-sectional) for the participants, the statistical methods, and the
results sections. Studies using a multivariable prediction model were assessed through
the Transparent Reporting of a multivariable prediction model for Individual Prognosis or
Diagnosis (TRIPOD) checklist [34]. Similar to the STROBE, this tool is made up of 22 items
including sub-items, thus collecting a score made up of 35 investigated domains.

For each study, we collected a score based on the screening performed using the
suitable tool. This scoring was then normalized to the total, expressed as a percentage, and
we called it quality grade. This normalization was applied to all the studies included in
this review and allowed us to make a direct comparison of studies with different designs.
Since these tools do not provide a cut-off score for further classification of the study quality,
according to a previous study [35], we considered it as good quality an assessed adherence
ranging from 60 to 80%.

The RoB analysis was performed through the administration of the prediction model
risk of bias assessment tool (PROBAST) [36]. This instrument is suitable for reviews of
studies about clinical prediction models. The PROBAST checklist assesses the risk that
arises from the methods used and the consequential applicability of the prediction model.

3. Results

From a total of 254 results in the above-mentioned database searches, 39 duplicates
were removed manually, and 215 results remained for title and abstract screening. Of them,
142 records had to be ruled out after applying the exclusion criteria on titles and abstracts,
and the remaining 73 records were sought for retrieval. It was not possible to get full access
to 1 of them, and, thus, the full-text screening of 72 studies was performed according to the
inclusion and exclusion criteria. From the full-text reading, 29 papers were excluded for a
final 43 eligible studies included in this review, as reported in the flowchart in Figure 1.
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Figure 1. PRISMA flowchart diagram of the review. ** Reasons for the 142 records exclusion were:
(1) used animals or females as participants; (2) did not use ML; (3) the format of the paper was review,
letter to the editor, or others; (4) the aim of the study was out of scope concerning the prediction of
male infertility.

Since the studies are very different from each other, it was not possible to carry out a
meta-analysis. Therefore, to answer the PICO questions formulated in the previous section,
we organized and schematically summarized them in the upcoming tables. Indeed, the stud-
ies were divided based on the general topic they dealt with; therefore, the specific variables
considered in each model included sperm retrieval (Table 2, four studies [37–40]); sperm
quality, further divided into the investigation of sperm quality and morphology (Table 3a,
seventeen studies [41–57]) and quality of sperm and environmental factors (Table 3b, four
studies [58–61]); non-obstructive azoospermia (Table 4, three studies [62–64]); IVF out-
come (Table 5, three studies [65–67]); environmental and medical factors (Table 6, twelve
studies [68–79]) as a function of male infertility, according to a recent review addressing the
broad causes and risk factors of male infertility [80]. For the sake of brevity, we decided to
shorten the content in the tables as much as possible. Therefore, many acronyms normally
used in AI and ML papers have been adopted. Indeed, to avoid repetition in the caption of
the table, we decided to put a detailed glossary of these terms in the Abbreviations section.
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Table 2. In this table, studies in which ML models were employed to investigate the relationship between male infertility and the potential sperm retrieval as a risk
factor for male infertility are grouped. Quality grade is the normalized scoring obtained through the administered chosen tool according to the criteria exposed in
Section 2.2. Accuracy of the model refers to the tested accuracy of the model in the prediction of male infertility. Abbreviation: BMI stands for body mass index; LH
is luteinizing hormone; FSH is follicle-stimulating hormone; ICSI is intracytoplasmic sperm injection; TESE is testicular sperm extraction; T is testosterone; AUC is
the area under the curve; NOA is non-obstructive azoospermia.

Authors Quality Grade Algorithms Used Data Source Outcome Accuracy

Bachelot et al.,
2023 [37] 80% ML, SVM, RF, GBT, XGB,

LR, DL, KNN

Age, BMI, tobacco consumption, FSH
and LH assessment, T, inhibin B,

prolactin, karyotype and search for
Y-chromosome microdeletion, urogenital

history (cryptorchidism, infection,
trauma, gonadotoxic therapy, urogenital

surgery, and varicoceles).

The presence/absence of spermatozoa
after examination of the surgical

specimens. A positive outcome was
defined as obtaining enough

spermatozoa for the ICSI procedure.

The models achieved an accuracy
greater than the 60%, with the best

performance of RF (84.6%), GBT
(76.9%), and XGB (80.8%).

Zeadna et al.,
2020 [38] 80% GBT, MvLRM Baseline hormonal profile (before TESE)

of serum FSH, LH, and T

The cutoff value for successful sperm
retrieval was the presence of at least one
viable of mature sperm in the testicular

tissue.

AUC = 0.807 for predicting the
presence of spermatozoa in patients

with NOA.

Ramasamy et al.,
2013 [39] 100% ANN, LR Clinical and laboratory data of sperm

extraction

Development of an ANN and
nomogram to predict sperm retrieval
with microdissection testicular sperm

extraction.

Nomogram accuracy: 59.6% ANN
accuracy: 59.4%

Ma et al.,
2011 [40] 90%

Three ANNs with feed
forward-back

propagation architecture
were used

Leptin and FSH level

Leptin resulted in a good assistant
marker for NOA diagnosis. ANNs

improved the prediction accuracy of
sperm retrieval.

ANN1 performance resulted in the
best in the prediction of sperm

recovery in NOA patients
(AUC = 0.83).
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Table 3. (a) In this table, studies in which ML models were employed for investigating sperm quality e/o morphology as a function of male infertility are grouped.
Quality grade is the normalized scoring obtained through the administered chosen tool according to the criteria exposed in Section 2.2. Accuracy of the model refers
to the tested accuracy of the model in the prediction of male infertility. Abbreviation: CASA is Computer Assisted Sperm Analysis, DFI is DNA fragmentation index;
GC-MS is gas chromatography-mass spectrometry; AAA is Artificial Algae Algorithm; SMA is sperm morphology analysis; MAE is mean absolute error. (b) In this
table, studies dealing with the sperm quality analysis are grouped, thus exploring the environmental factors that may be associated with predisposition with male
infertility. Quality grade is the normalized scoring obtained through the administered chosen tool according to the criteria exposed in Section 2.2. Accuracy of the
model refers to the tested accuracy of the model in the prediction of male infertility.

(a)

Authors Quality Grade Algorithms Used Data Source Outcome Accuracy

Guo et al.,
2023 [41] 91% LR, RF, SVM Metabolomics and proteomics

using CASA and DFI

Proteins related to energy
metabolism and oxidative stress

were found to be differential
biomarkers.

Estimated accuracy for each
algorithm was 87% each

Yuzkat, Ilhan and
Aydin, 2023 [42] 100% YOLOv5 Deep Learning Based

Object
Dataset including 12 sperm

specimen videos

YOLOv5 achieved the best
results in the first and second

scenarios.
95% for almost all the videos.

Huang et al., 2023 [43] 90% SMOreg, ML, RF, SGB, LASSO,
Ridge, XGBoost

85 videos of human semen
samples and related participants’

data.

ML-based analysis predicted
sperm motility. The addition of

participants’ data did not
improve the algorithm’s

performance.

The two-stream NNs were not
significantly better than the

baseline one.

Lee et al., 2022 [44] 70% CNN based on U-Net
architecture

3-channel input of size
256 × 256 pixels.

The algorithm detects and locates
individual sperm cells. Precision 84.0%, Sensitivity 72.7%

Fan et al., 2022 [45] 68%
DeepResolution2 (DNN),

U-Net4S, k-CNN, U-Net4R
models

GC-MS data files—Untargeted
dataset

DeepResolution2 outperformed
other methods in peak

identification and quantification
AUC = 0.99

Miami, Mirroshandel,
and Nasr, 2022 [46] 91%

Genetic Neural Architecture
Search (GeNAS)—GeNAS

Weighting Factor (GeNAS-WF)

MHSMA dataset—images of
human sperm cells

Crossover operation helped
GeNAS change the length of

chromosomes.

91.7% in vacuole detection, and
77.7% in acrosome detection.

Otti et al., 2022 [47] 90%

Sparse optical flow with
Lucas-Kanade algorithm,

Crocker-Grier algorithm (MLP,
RNN, CNN)

A dataset composed of semen
analysis and related participants’

data

Improved prediction of sperm
motility compared to the
previous state of the art

published data.

The MAE was reduced from
8.83 to 7.31.
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Table 3. Cont.

(a)

Authors Quality Grade Algorithms Used Data Source Outcome Accuracy

Ilhan & Serbes,
2022 [48] 80%

Two-stage fine-tuned DNN: soft
voting decision level ensemble

learning scheme

Sperm Morphology Image Data
Set (SMIDS), Human Sperm

Head Morphology Set (HuSHeM)
and SCIAN-Morpho.

The two-stage fine-tuning
approach improves accuracy. The

fusion of deep-nets results in
higher precision scores.

90.9% for SMIDS, 88.9% for
HuSHeM, and 72.1% for

SCIAN-Morpho. The DNN
increased the accuracy up to 92.1.

Abbasi, Miahi, and
Mirroshandel,

2021 [49]
100% DMTL, DTLA Dataset of non-stained grayscale

sperm images.

The algorithm automated sperm
abnormality detection with
improved accuracy in the
identification of the head,
acrosome, and vacuole.

Accuracy for vacuole labels
reached the 93.75%.

Yüzkat, Osman Ilhan
and Aydin, 2021 [50] 68% CNN models Decision-level

fusion techniques
Dataset of normal and abnormal

sperm morphology images

The soft voting-based fusion
approach achieved high

classification accuracies for the
three different data sets.

The accuracy of all tested models
was greater than 94% for

prospective azoospermic patients.

Yibre & Koçer,
2021 [51] 68%

AAA with learning-based fitness
evaluation method, MLP, NB,

SVM, KNN, RF

Dataset for prediction of semen
quality—UCI public data source.

The outcome information from the
automated medical diagnosis

system is directly related to human
health.

AUC = 0.975 for the classification
of sperm quality.

Lesani et al., 2020 [52] 77% ANN, FSNN
Full absorption spectrum data
comprised 711 data points per

sample.

The ML-based spectrophotometry
approach accurately quantifies

sperm concentration.
Over 93% accuracy in prediction.

Javadi &
Mirroshandel,

2019 [53]
95% Deep CNN, PCA, KNN MHSMA dataset. Non-stained

and low-resolution images.
The algorithm resulted seven times

faster than SMA.
84.7% for acromosome, 83.9% for

head, 94.6% for vacuole.

Movahed,
Mohammadi

and Orooj,
2019 [54]

100% K-means clustering (CNN) and
SVM classifier Image data

The model outperformed previous
works for head, acrosome, and

nucleus segmentation.

Dice similarity of 0.90 for the head
segment, 0.77 for the axial filament.

Vickram et al.,
2013 [55] 100% BPNN, mean squared error

calculated for error propagation Seminal fluid

Good correlation between
estimated and predicted values (r =
0.9). Potential for Zinc prediction

in human semen.

The MAE for the BPNN model was
0.025, −0.080, 0.166, and −0.057 for
protein, fructose, glucosidase, and

zinc, respectively.

Steigerwald & Krause,
1998 [56] 80% ANN

CASA system with automatic
determination of midpieces and

sperm tails

Reproducible results for sperm
morphology estimation

No significant difference in the %
of normal forms compared to

direct microscopical inspection.
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Table 3. Cont.

(a)

Authors Quality Grade Algorithms Used Data Source Outcome Accuracy

Vickram et al.,
2016 [57] 90% BPNN model and RBFN Semen samples from human

participants

The BPNN model had an
acceptable absolute error for

predicting biochemical markers.
The RBFN model had higher error

compared to the BPNN model

Mean absolute error for BPNN
model: 0.025, 0.080, 0.166, 0.057.
RBFN model had higher error

compared to BPNN model

(b)

Authors Quality Grade Algorithms Used Data Source Outcome Accuracy

GhoshRoy, Alvi, and
Santosh, 2023 [58] 100% SVM, RF, DT, LR, naive Bayes,

Sdaboost, MLP

UCI datasets covering 9 inputs
including environmental and

lifestyle factors.

DT and RT models performed well,
while SVM and naive Bayes

provided poor prediction
outcomes.

All the seven tested models
achieved an accuracy higher than

the 80% with the best performance
of the RF classifier (96.7% of

prediction).

Ito et al., 2021 [59] 80% Google Cloud, AutoML Vision
Images of testicular tissues

stained with hematoxylin and
eosin.

Improved precision for Johnsen
scores of 4–5 and 6–7 to 95 and 97.

At 400× magnification: 82.6%
average precision of the algorithm

with expansion images: 99.5%

Girela et al., 2013 [60] 80% ANN, MLP
Sociodemographic, demographic,

environmental, and
health-related factors.

ANN predicted semen parameters
with a high evel of accuracy in the
prediction of sperm concentration

and motility.

MLP showed a high accuracy in
prediction of sperm concentration

(93.3%) and motility (89.3%).

Gil et al., 2012 [61] 90% C4.5 algorithm used for decision
tree, MP, and SVM for prediction.

The data included information
on environmental and lifestyle

factors.

MLP and SVM showed the highest
accuracy in prediction. Decision

trees provided a visual and
illustrative approach.

MLP and SVM achieved the
highest accuracy (69%), being SVM
the one with the higher Sensitivity

(73.9%) whereas MLP obtained
superior Specificity values (25%).
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Table 4. In this table, studies in which ML models were used for the diagnosis or investigation of non-obstructive azoospermia (NOA) are grouped. Quality grade is
the normalized scoring obtained through the administered chosen tool according to the criteria exposed in Section 2.2. Accuracy of the model refers to the tested
accuracy of the model in the prediction of male infertility.

Authors Quality Grade Algorithms Used Data Source Outcome Accuracy

Zhou et al.,
2023 [62] 74% LASSO, Boruta, SVM-RFE, Random

Forest

Transcriptome sequencing data of testicular
cells. Immunohistochemical staining data

for protein expression levels

An RF model based on the transcription
factors ETV2, TBX2, and ZNF689 was

successfully developed to diagnose NOA.

RF model achieved an AUC of 1000 and
an F-measure of 1000.

Peng et al.,
2023 [63] 90% ANN, LASSO, SVM-RFE, LR, RF

RNA-binding protein-related genes.
Testicular samples, clinical samples.

scENA-seq data

An ANN diagnosis model based on
RNA-binding proteins DDX20 and NCBP2
was developed. The ANN model exhibited
reliable predictive performance in multiple

cohorts

Training cohort (GSE9210) scored 74.1%
of accuracy, GSE45885 the 90.3%,

GSE45887 the 85.0%, while local cohort
only the 59.1%

Samli & Dogan,
2004 [64] 100% ANN, Logistic Regression Patient age, duration of infertility, serum

hormone levels, and testicular volumes
The NN correctly predicted the outcome in 59

of the 73 test set patients (80.8%)
The accuracy of the ANN model is 80%.
The accuracy of the LR model is 66%.

Table 5. In this table, studies in which ML models were used for the prediction of in vitro fertilization (IVF) outcomes are grouped. Quality grade is the normalized
scoring obtained through the administered chosen tool according to the criteria exposed in Section 2.2. Accuracy of the model refers to the tested accuracy of the
model in the prediction of male infertility.

Authors Quality Grade Algorithms Used Data Source Outcome Accuracy

He et al., 2023 [65] 91% WGCNA

Three azoospermia RNA chip datasets
(GSE145467, GSE45885, and GSE9210), one
COVID-19 RNA chip dataset (GSE157103),

and one cryptozoospermia single-cell
RNA-sequencing dataset (GSE153947) were
downloaded from the NCBI GEO database

Screening of two different molecular subtypes
revealed that azoospermia-related genes were

associated with clinicopathological
characteristics of age, hospital-free-days,
ventilator-free-days, Charlson score, and

d-dimer of patients with COVID-19

The accuracy of successful IVF was 0.72

Mirroshandel,
Ghasemian and

Monji-Azad,
2016 [66]

55% Data mining, NB, SVM, MLP, IBK,
Kstar, RC, J48, RF

Quality of zygote, embryo, and
implantation outcome of injected sperms

Kstar model achieved the 95.1% in
implantation outcome prediction

The RC model achieved the 83.8% of
accuracy. The Kstar model the 95.9%.

Wald et al.,
2005 [67] 68% L & QDFA, LR, NNET

Maternal age, type of sperm retrieval, type
of spermatozoa used (cryopreserved or

“fresh”), and type of male factor infertility

The 4-hidden node NN model demonstrated
high accuracy in predicting IVF/ICSI

outcomes

The NN predicted intrauterine
pregnancy with high accuracy

(AUC = 0.923).
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Table 6. In this table, studies in which ML models were used for the prediction of male infertility as a function of environmental and medical factors are grouped.
Quality grade is the normalized scoring obtained through the administered chosen tool according to the criteria exposed in Section 2.2. Accuracy of the model refers
to the tested accuracy of the model in the prediction of male infertility. Abbreviation: MAE is mean absolute error, TIF is Tamura Image Features, and AUC is the
area under the curve.

Authors Quality
Grade Algorithms Used Data Source Outcome Accuracy

Guo et al.,
2023 [68] 90% DLNM, BKMR PREBIC cohort of semen samples from

3940 males.

Single- and two-pollutant models
showed SO2, O3, PMs, and NO2 were
negatively associated with progressive

motility, total motility, and sperm
morphology.

AUC = 0.889

Zhao et al.,
2023 [69] 77% SVM, XGB, GLM, and RF

Two microarray datasets (GSE4797 and
GSE45885) related to male infertility

(MI) patients with spermatogenic
dysfunction.

Cuproptosis-related genes were found
both in healthy and men with
spermatogenic dysfunction.

XGB model based on 5-gene
showed superior performance on

the external validation dataset
GSE45885 (AUC = 0.812)

Tang et al.,
2023 [70] 86% WGCNA RF, SVM, GLM, XGB NOA microarray datasets (GSE45885,

GSE108886, and GSE145467)

The model based on IL20RB, C9orf117,
HILS1, PAOX, and DZIP1 biomarkers
had the highest AUC value, of up to

0.982, compared to other single
biomarker models.

XGB algorithm that had the
maximum AUC value

(AUC = 0.946)

Ory et al.,
2022 [71] 80% LR, RF, SVM Pre and post-operative clinical and

hormonal data following treatment

A total of 45.6% of men experienced an
upgrade in sperm concentration

following surgery, 48.1% did not change,
and 6.3% downgraded

The RT-supervised machine
learning model had good accuracy

in the prediction of outcome
(AUC = 0.72).

Gunderson et al.,
2021 [72] 100% RF, SGB, LASSO, Ridge, XGBoost Annual health screening data

Ridge regression showed the best
performance for SMAPE and RAE

metrics

ML model predicted successful
conventional IVF with a mean

accuracy of 0.72.

Xu et al.,
2021 [73] 58% CNN, DPPCG

Human protein-coding genes from the
NCBI database and human proteins

from the UniProt database

DPPCG harnessed the utility of
heterogeneous biomedical big data in
the effective indirect prediction of 794

causal genes of male infertility and
associated pathological processes.

The accuracy of the deep CNN
models was 0.70, with an average
precision of 0.74, and an average

recall rate of 0.56.
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Table 6. Cont.

Authors Quality
Grade Algorithms Used Data Source Outcome Accuracy

Wang et al.,
2021 [74] 100% GFLASSO

138 environmental/ behavioral/
psychological variables and 32 male

reproductive biomarkers in 796 young
Chinese men.

Thirty-one of the thirty-two
reproductive biomarkers had positive
correlations with the predictive values,

with an average correlation coefficient of
0.26, ranging from 0.10 to 0.40.

Not reported.

Karthikeyan,
Vickram and

Manian,
2020 [75]

80% Data Mining

Semen samples from three different
categories fertile (N = 20), Infertile (N

= 20), and unilateral varicocele
(N = 15) men.

There were 6 highly significant results:
rs14988405 (R4W), rs201470131 (A52P),

rs570385517 (R90C), rs17104534 (G240R),
rs148319106 (V318M) and rs200608161

(V352L).

Not reported.

Hicks et al.,
2019 [76] 100%

AdaBoost, GP, KNN,
MLP-SKLearn, SVM, CatBoost

and MLP-TensorFlow

Sequences of frames from video
recordings of human semen under a

microscope

Multimodal analysis methods combining
video data with participant data did not
improve the prediction of sperm motility
compared to using only the video data.

RF was the best for participant data
only (MAE = 11.368), for TIF only
SMOreg (MAE = 10.800), TIF and

participant ata RF scored a
MAE = 11.617.

Akinsal et al.,
2018 [77] 90% MLP, ANN

Testicular volume, follicle-stimulating
hormone, luteinizing hormone, total
testosterone, and ejaculate volume of

the patients.

Total testicular volume with LH had the
highest power to find out which

participant requires sex chromosome
evaluation.

LR analyses and ANN predicted
the presence-absence of

chromosomal abnormalities with
more than 95% accuracy.

Ho et al.,
2015 [78] 77% LDA

Detection and interpretation of
pathogenic copy number variants of

gonadal function.

Protein–protein interactions were the
most informative for gene prediction,

followed by gene expression and
epigenetic marks

The AI scored an AUC of 0.711 in
the classification of candidate

genes.

Powell et al.,
2008 [79] 100% NN, LR, discriminant FA Testis volume, sperm density, motility,

and the presence of endocrinopathy.

LR and a neural network performed the
best with receiver operating

characteristic areas under the curve of
0.93 and 0.95

LR and the NN performed the best
with AUC = 0.93 and 0.96

respectively.
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We found that 86% of the included studies in this review used an ML algorithm to
predict male infertility, while the remaining 14% were studies about the development of an
ML algorithm [37–39] or for the purpose of predicting IVF outcome [20,42].

In these studies, about forty different AI and ML methods were used, most of the
time in combination with other methods (mean = 3.1, IQR = 1–9). Two studies [37,43]
reported the generic term ML, while in eight studies [42,43,45–47,51,59,61], algorithms
available on the industrial market were used. Of the 40 models analyzed, most are models
with 73% supervised learning, 20% are unsupervised, 3% are semi-supervised, and the
remaining 5% are models that can be programmed in both modes, as in the case of ANNs.

Unsupervised ML models were always used in conjunction with those supervised to
create classifications or compare ML algorithms’ performance. Found as the most used
models, support vector machine (SVM, 11%), Random Forest (RF, 10%), linear regression
(LR), artificial neural networks (ANNs), and multi-layer perceptron (MLP) were employed
with a frequency of 7%. eXtreme Gradient Boosting (XGBoost), Least Absolute Shrinkage
and Selection Operator (LASSO—GFLASSO), Convolution Neural Network (CNN), and
K-Nearest Neighbor (KNN) had a frequency of 4%. The remaining 31 models were used in
percentages ranging from 3 to 1%. Despite the variety of these studies, from the different
data sources processed, and the methods used, it seems very clear that ML algorithms can
process a huge amount of data, as in the studies [39,43,68,79] in which the sample size
exceeded one thousand units, and multiple variables were combined for the prediction.
However, this does not imply that a lower number of inputs corresponds to lower model
efficiency [52,55,56].

Finally, since the aim of this review was to understand not only which models were
used but also what their actual level of prediction accuracy was, we analyzed the results of
the reported accuracy, considering as a primary outcome measure the tested accuracy of the
model in the prediction of male infertility. In six studies [43,47,55–57,76], the performance of
each model was not evaluated as accuracy, but an error estimation of the model prediction
was made; in two studies [74,75], there was no information on the matter. In the remaining
35 studies, there was an average accuracy of 88% (IQR = 80–94%), with 26 studies declaring
an accuracy greater than 80%. Considering the average of the accuracy values reported
in the individual studies, we found that Boruta, DNN, and KNN had an accuracy of 99%,
AdaBoost 97%, DMTL, and DTLA of 94%,

FSNN, LDFA, and QDFA were at 93%, U-NET and NNET architectures 92%, Bayesian
models (NB—BKMR) 91%, and all other models reported an accuracy between 89 and 71%.
Studies in which ANNs were used reported a mean accuracy level of 84% (IQR = 81–94%),
showing a promising role for the adoption of this model for male infertility prediction.

3.1. Retrospective and Prospective Studies

In this review, 63% of the included papers were retrospective or prospective studies
and, therefore, screened with the JBI critical appraisal quality tool. They reported, on
average, a good quality (mean = 90%, IQR = 80–100%), while a more in-depth analysis
performed with the RoB tool (PROBAST) revealed a lot of uncertainty or high concern
(Figure 2).

Most of the studies reported an overall unclear applicability, mainly due to missing
information about inclusion and exclusion criteria in the selection of data sources (60%).
This is mainly due to the use of datasets when authors do not report specific information
about the selection of records but merely information about data extracted for their analysis.
Further, 40% of the included studies in this category also reported a high concern due
to the applicability of the chosen analysis because no information is available about the
distinction of predictors in the outcomes of the study. This does not allow us to infer
the causality of results, which are, most of the time, summarized in terms of probability,
association, and rates. Despite these considerations, the results are properly reported in
most of the studies (93%), even if, most of the time, the results are mainly related to the ML
algorithm, i.e., its validation or comparison with other models, and no specific outcomes
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are related with respect to the data sources. For this reason, the overall risk of bias is unclear
or with high concern.
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3.2. Observational Studies

Furthermore, 25% of the included papers were clinical research with an observational
design and were assessed according to the STROBE guidelines. They reported, on average,
a good quality (mean = 86%, IQR = 77–91%), which mainly reflects the RoB analysis. Only
one study [66] reported high concern for both the overall Risk of Bias and applicability
score. This study [66] combined ML algorithms with data mining in its method. Indeed,
the authors used mixed data to predict the increment in the rate of implantation, also
computing the classification of sperm quality. The results are also not properly reported
in terms of prediction of the determined outcomes and, instead, as a function of the



Healthcare 2024, 12, 781 15 of 22

goodness of performance computed for each algorithm. As for the previous group of papers,
these studies are also missing specific information about the enrollment and selection of
participants, which may lead to an unclear RoB due to participant selection. On the other
hand, the methods are well described, so 73% of these studies have a low concern in this
regard (Figure 3).
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3.3. Multivariable Prediction Model Studies

The remaining 12% of papers were studies on multivariable prediction models, as-
sessed using the TRIPOD tool. They report an average adherence of 67%. In this small
group of studies, no one reported high concern in any of the overall RoB and applicability
scores. Since these studies properly set their aim as the diagnostic/prognostic prediction
of male infertility, PROBAST assessment is probably more in line with these categories of
studies than the others reported above (Figure 4).
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4. Discussion

During the last few years, researchers have been exploring the use of machine learning
(ML), artificial neural networks (ANN), and deep learning (DL) techniques to predict male
infertility. This review covers a diverse array of studies and presents a comprehensive
overview of the published literature in the field of male infertility prediction using machine
learning. Advancements in the prediction of male infertility have been witnessed through
the integration of machine learning (ML), artificial neural networks (ANN), and deep
learning techniques. Noteworthy studies, such as the one proposed by Chen A. [81] based
on region-based convolutional neural networks (R-CNNs), exemplify the potential of deep
learning architectures in the assessment of sperm morphology.

Some studies [58,62,63,66] are actually comparative analyses, encompassing the uti-
lization of diverse AI techniques, including ANNs, DT, and SVM, for the detection of male
fertility. These methodologies demonstrated differing degrees of accuracy, emphasizing
the significance of choosing the suitable algorithm for specific tasks. ANNs, in association
with the LR, have exhibited promise in the prediction of biochemical parameters associated
with male infertility [63]. The adaptability of ANNs permits one to consider intricate
relationships within the data, thereby facilitating precise predictions. Furthermore, deep
learning techniques have been investigated for the prediction of sperm fertility. Machine
learning frameworks, such as the one proposed for the automatic prediction of human
semen parameters [60], offer potential applications in assisted reproductive technologies.
In addition, the application of machine learning-based spectrophotometry for quantifying
sperm concentration presents a rapid and cost-effective technique [52].

Certain studies have the limitation of being vaguely defined [54,58,59,66,70,71], thereby
posing challenges in assessing the robustness of predictive models. It is crucial to clearly
delineate the limitations of the study for appropriate interpretation of the results.

This is the first review that attempted to collect all the studies addressing the use of
machine learning to predict male infertility, including multiple approaches and different
data sources to build the model. This meant that even if our intent was ambitious, it
encompasses some limitations. Indeed, during the screening of the studies, we found in-
complete or insufficient information about datasets or the adopted method, which impeded
a punctual analysis of the accuracy of the ML models used in the studies included in the
present review.

Machine learning (ML) models, despite their effectiveness, may lack interpretability,
thereby making it difficult to comprehend the reasoning behind the predictions. It is
imperative to ensure the transparency and interpretability of models to instill trust in their
clinical applications. Indeed, in the included studies, we found huge differences in the
input information used to build models. As we reported in Tables 1–6, the data sources
used for building each model were very different, including demographic data, RNA,
quality of the embryo, sperm retrieval, hormonal data, and others. This variety, in addition
to the fact that, in many studies, multiple variables were used as a combination matrix,
limited possible direct comparisons among the models, also leading to different results.
This also means that it is not possible to make a precise statement about what variables are
strictly correlated to the pathogenesis of male infertility, since each model made a unique
combination of the set variables to be included for prediction. Further reviews may face
this problem, formulating a specific question that could be addressed with a meta-analysis.

Another limitation of our study is that a mathematical discussion of the ML algorithms
used in the reviewed studies is missing. Although an interesting point of view, this aspect
was excluded because it was out of the scope of this review and because it would need
considerable work, most suitable for a book or an article collection.

Despite the focus of this review being precisely to analyze ANN models, we found that
only a few studies used this model for this purpose. However, even if they are a small number,
it seems that these studies have a lower RoB, like those of Ma et al. [40] and Girela et al. [60],
who obtained low concern regarding the overall applicability of the methods.
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Finally, considering that the ANN was associated with a high level of accuracy in
the prediction of male infertility, we can hypothesize that it has potential, so its use may
increase in the future.

5. Conclusions

Models based on artificial neural networks (ANNs) have demonstrated potential in pre-
dicting male fertility, with a few achieving remarkable accuracy. One ANN model achieved
a maximum accuracy of 95% in predicting male fertility utilizing explainable AI [77]. Deep
learning techniques, a subset of ML, have been employed to evaluate sperm motility and
morphology [44,45,68]. Unlike traditional methods, CNNs excel at processing visual data,
making them particularly well suited for tasks involving embryo morphology and have
also demonstrated effectiveness in assessing spermatozoid motility [44,45,47,53]. Cer-
tain investigations might employ a combination of ML, ANN, and DL techniques for a
comprehensive analysis, harnessing the strengths of each.

Choosing one model based only on the highest accuracy reported might be an inap-
propriate decision since it is crucial to consider the nature of the data, the complexity of
the prediction task, and the interpretability of the results when selecting the most suitable
model. We conclude that the use of ML models for the identification of risk factors and
prediction of male infertility has the potential to assist personalized medicine in achieving
its goal of creating optimally tailored diagnostic, preventive, and therapeutic measures.
This review had the ambitious intent to collect all the studies in which ML models were
used to predict male infertility to support those who are approaching the use of machine
learning in the medical field for the first time in choosing the most suitable model, based
on the accuracy levels already established by previous research. Future studies on male
infertility prediction may consider other computational methods, such as the exploitation
of the graph contrastive clustering techniques [82] that are based on the use of deep neural
networks for representation learning before clustering. This approach, for example, has
the advantage of bringing similar or positive sample pairs closer and pushing dissimi-
lar or negative sample pairs further away, thus going beyond the clustering methods of
unsupervised machine learning algorithms.

Finally, considering that claiming a technical contribution was out of the scope of
this review, we think that further research should address this point by introducing new
approaches or databases.

Author Contributions: Conceptualization, M.I., D.D.B. and V.S.A.; methodology, V.S.A. and D.D.B.;
software, D.D.B.; validation, D.D.B.; formal analysis, D.D.B.; investigation, M.I., D.D.B. and V.S.A.;
resources, M.I. and D.D.B.; data curation, V.S.A. and D.D.B.; writing—original draft preparation,
D.D.B.; writing—review and editing, M.I., G.A., D.D.B. and V.S.A.; visualization, D.D.B.; supervision,
M.I. and G.A.; project administration, M.I.; funding acquisition, M.I. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was funded by the Santa Lucia Foundation and the Italian Ministry of Health,
name of grant: “NEURO-METAVERSE: Application in Neurorehabilitation and Neuroscience of
Metaverse Technologies as Virtual Reality and Artificial Intelligence”.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflicts of interest.



Healthcare 2024, 12, 781 18 of 22

Abbreviations
Glossary of all terms used in this paper.

Abbreviations Description
AAA Artificial Algae Algorithm
AdaBoost Adaptive Boosting
ANN Artificial Neural Network
ANNs Artificial Neural Networks
BKMR Bayesian Kernel Machine Regression
Boruta Boruta is a features selection algorithm
BPNN Backpropagation Neural Networks
CatBoost It is an open-source gradient-boosting library
CNN Convolutional Neural Network
Data mining It is a model designed to extract the rules from large quantities of data?
DL Deep Learning
DMTL Deep Multi-Task Learning
DNN Deep Neural Network
DPPCG Deep Learning Computational Modeling Alternative
DT Decision Tree
DTLA Design Thinking Learning Approach
FSNN Feedback System Neural Network
GBT Gradient Boosting Technique
GFLASSO Least Absolute Shrinkage and Selection Operator
GFLASSO Graph-Guided Fused Least Absolute Shrinkage and Selection Operator
GLM Generalized Linear Model
GP Gaussian Process
INK Simple instance-based learner that uses the class of the nearest k training instances for the class of the test instances
J48 Also known as the c4.5 algorithm, it examines the data categorically and continuously
KNN K-Nearest Neighbors
Kstar Instance-Based Classifier Algorithm
LDA Linear Discriminant Analysis
LDFA Linear Discriminant Function Analysis
LR Linear Regression
ML Machine Learning
MLP Multi-Layer Perceptron
MvLRM Multivariate Logistic Regression Model
NB Naïve Bayes
NNET Non-Linear Method of Neural Computation

Appendix A

In this section specifications, about search strategy are reported.

Table A1. Mesh, Tiab, and synonyms were used for the literature search.

Target Mesh Tiab Synonym

Man Infertility “Infertility, Male” “male infertil*” [OR]
“male fertil*”

“Male factor infertility” OR
“Male reproductive*” OR

“Male subfertility”

Artificial Neural
networks

“Neural Networks,
computer”

“artificial neural
network*”

“Neural computation” OR
“Neural architectures” OR
“Neural algorithms” OR
“machine learning” OR

“neural models”

Prediction “Prognosis” “predict*”
“Forecasting” OR “Estimating”

OR “Prognosticating”
OR “Calculating”
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Table A2. String used for literature search in each database.

Database String Output

Pubmed

(“Infertility, Male”[Mesh] OR “male infertil*”[tiab] OR “male fertil*”[tiab] OR “Male factor
infertility” OR “Male reproductive*”[tiab] OR “Male subfertility”) AND (“Neural Networks,

computer”[Mesh] OR “artificial neural network*”[tiab] OR “Neural computation” OR
“Neural architectures” OR “Neural algorithms” OR “Machine learning” OR “neural models”)

AND (predict*[tiab] OR “Prognosis”[Mesh] OR “Forecasting” OR “Estimating” OR
“Prognosticating” OR “Calculating”)

44

ScienceDirect

(“Infertility, Male” OR “male infertil*” OR “male fertil*” OR “Male factor infertility” OR
“Male reproductive*”OR “Male subfertility”) AND (“Neural Networks, computer” OR

“artificial neural network*” OR “Neural computation” OR “Neural architectures” OR “Neural
algorithms” OR “Machine learning” OR “neural models”) AND (predict* OR “Prognosis” OR

“Forecasting” OR “Estimating” OR “Prognosticating” OR “Calculating”)

49

Scopus (“male infertility” OR “male fertility”) AND (“artificial neural network” OR “machine
learning” OR “predictive model” OR “neural network”) AND “accuracy”. 161
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