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Abstract: Major Depressive Disorder (MDD) and Generalized Anxiety Disorder (GAD) pose sig-
nificant burdens on individuals and society, necessitating accurate prediction methods. Machine
learning (ML) algorithms utilizing electronic health records and survey data offer promising tools
for forecasting these conditions. However, potential bias and inaccuracies inherent in subjective
survey responses can undermine the precision of such predictions. This research investigates the
reliability of five prominent ML algorithms—a Convolutional Neural Network (CNN), Random
Forest, XGBoost, Logistic Regression, and Naive Bayes—in predicting MDD and GAD. A dataset rich
in biomedical, demographic, and self-reported survey information is used to assess the algorithms’
performance under different levels of subjective response inaccuracies. These inaccuracies simulate
scenarios with potential memory recall bias and subjective interpretations. While all algorithms
demonstrate commendable accuracy with high-quality survey data, their performance diverges
significantly when encountering erroneous or biased responses. Notably, the CNN exhibits superior
resilience in this context, maintaining performance and even achieving enhanced accuracy, Cohen’s
kappa score, and positive precision for both MDD and GAD. This highlights the CNN’s superior
ability to handle data unreliability, making it a potentially advantageous choice for predicting mental
health conditions based on self-reported data. These findings underscore the critical importance of
algorithmic resilience in mental health prediction, particularly when relying on subjective data. They
emphasize the need for careful algorithm selection in such contexts, with the CNN emerging as a
promising candidate due to its robustness and improved performance under data uncertainties.

Keywords: mental health prediction; machine learning; stability; electronic health records; data
perturbation; algorithmic bias; survey data analysis

1. Introduction

MDD and GAD are prevalent psychiatric conditions that significantly impact individ-
uals’ mental health and overall well-being [1]. MDD is characterized by persistent feelings
of sadness, diminished interest in activities, altered sleep patterns, appetite disturbances,
and, in severe cases, thoughts of self-harm or suicide. In contrast, GAD is characterized by
excessive, uncontrollable worry about various life aspects, resulting in heightened anxiety,
restlessness, muscle tension, and fatigue. If left untreated, these disorders can severely
compromise daily functioning, interpersonal relationships, and overall quality of life [2].

Given the substantial societal and economic burdens posed by MDD and GAD,
early detection and intervention are of paramount importance [3]. With technological
advancements and the proliferation of data, there is a burgeoning interest in harnessing
ML to predict and understand these complex conditions. ML, with its capability to de-
cipher intricate patterns within vast datasets, offers a promising avenue over traditional
statistical methods.
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While ML offers new avenues for understanding mental health through self-reported
data, this approach is not without its difficulties. Survey responses, rich with personal
insights, are often marred by errors like recall bias and personal interpretation, intro-
ducing variability that could affect the reliability of ML predictions [4,5]. Despite recent
advances, there is a notable shortage of comprehensive research examining how well
these sophisticated ML algorithms can handle such inconsistencies. Closing this gap is
vital—our confidence in ML to accurately predict mental health conditions relies heavily
on its performance amidst the natural variability of survey data.

Considering this, the current study aims to critically assess the stability of various ML
algorithms, including the increasingly popular CNNs [6], against the backdrop of survey
data inaccuracies. By simulating a range of subjective response errors and evaluating
algorithm performance, we seek to identify the most reliable methods for predicting MDD
and GAD in the context of imperfect data.

CNNs have gained prominence in the field of deep learning due to their powerful
feature extraction capabilities, particularly from image data [7]. Here, CNNs are applied to
analyze patterns in electronic health records and survey data, hypothesizing their potential
to identify subtle, non-linear interactions that may signify the onset of MDD or GAD.

Alongside CNNs, this study examines four established ML algorithms: XGBoost,
Random Forest, Logistic Regression, and Naive Bayes. Each algorithm is selected for its
proven strengths: XGBoost for its performance and flexibility [8]; Random Forest for its
accuracy with complex datasets [9]; Logistic Regression for its interpretability in binary
classification tasks [10]; and Naive Bayes for its efficiency in high-dimensional spaces [11].

The selection of these algorithms is driven by their diverse methodologies, providing
a comprehensive perspective to the prediction task. By amalgamating the strengths of these
algorithms, this study aims for a holistic approach to predicting MDD and GAD, ensuring
robust and comprehensive findings. This endeavor bridges the gap between cutting-edge
ML techniques and the pressing need for early, precise prediction of psychiatric conditions,
heralding timely interventions and enhanced patient outcomes.

While ML models, particularly tree-based methods like Random Forest and XGBoost,
have shown promise in mental health predictions [12–19], the reliability of these models
when processing subjective survey data is yet to be fully established. Subjective data might
be susceptible to biases or errors [20], and the robustness of these models in such contexts
remains underexplored.

This study’s core objective is to evaluate the efficacy and stability of these four ML
algorithms—and the newly integrated CNN—in interpreting the extensive University of
Nice Sophia Antipolis (UNSA) dataset [21]. Their performance will be assessed under
various scenarios of subjective response errors, such as memory recall biases, subjective
interpretation, and health-related biases. By evaluating their resilience to such noisy inputs,
the study aims to discern the more reliable algorithm for mental health prediction tasks
involving subjective data.

The insights gained from this research will illuminate the practicality and robustness
of ML models in mental health prediction. Furthermore, findings from this study have the
potential to catalyze refinements in early detection and intervention strategies for MDD
and GAD, ultimately contributing to better mental health outcomes for individuals and the
broader community.

2. Related Review

Recent advancements in ML have revolutionized the field of mental health diagnostics.
An increasing body of research has explored the nuanced capabilities of ML in uncovering
complex patterns within multifaceted health-related datasets, often revealing insights that
traditional statistical methods may overlook. Studies have demonstrated ML’s effectiveness
in diagnosing psychiatric conditions by analyzing diverse data sources, such as genetic
profiles, neuroimaging, patient-reported histories, and social media data [22–29]. Notably,
machine learning algorithms like Support Vector Machines (SVMs) and Gradient Boosting
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Machines (GBMs) have been extensively investigated for their predictive capabilities in
mental health applications, reflecting a growing interest in the integration of technology
and psychology [24,25,28,30–32].

However, the subjective nature of mental health data, including self-reported symp-
toms, poses a significant challenge to the predictive accuracy of ML models. The quality of
input data is paramount, as inconsistencies in symptom reporting—attributable to memory
biases, variable self-assessment thresholds, and other subjective factors—can significantly
diminish the reliability of ML outputs [5,33]. Researchers have endeavored to mitigate these
biases through novel data preprocessing techniques and algorithmic adjustments [34–39],
while others have explored the use of ensemble methods to enhance model accuracy and
stability, thereby bolstering the robustness of predictions against subjective errors [40,41].

Despite concerted efforts, there remains a discernible gap in the existing literature
regarding the resilience of various ML algorithms when faced with data perturbed by
subjective response errors. This study aims to bridge this gap by not only critically an-
alyzing the performance of several established ML algorithms but also by investigating
the potential of CNNs in addressing the unique challenges posed by subjective mental
health data.

This research contributes to the discourse by conducting a systematic evaluation of ML
algorithms’ performance, particularly when confronted with the inherent subjectivity of
mental health data. The subsequent sections will detail the methodology, implementation,
and findings of this study, with a special emphasis on the comparative resilience of the
chosen algorithms to subjective response errors in the prediction of MDD and GAD. In
doing so, this work aspires to underscore the critical need for robust ML applications in
mental health diagnostics and to provide valuable insights into the effective integration of
technology in psychological assessments.

3. Methods

The research methodology of this study is informed by the understanding that real-
world data, especially from self-reports, are often imperfect. Drawing on the precedent set
by seminal works in machine learning robustness, this study aims to simulate real-world
conditions within our dataset to evaluate the resilience of the chosen algorithms. These
foundational studies have demonstrated the necessity of testing against perturbed data
to truly assess model performance in practical scenarios, a principle that is central to our
approach.

As illustrated in Figure 1, the research flow of the current study begins with the
preparation of the UNSA dataset [21]. To reflect the challenges presented by real-world data
collection, we generate perturbed datasets by introducing random errors into 17 selected
survey features known to be susceptible to subjective response bias. This perturbation
process is quantitatively defined as follows: for each susceptible feature χ with a set of
possible responses A, we introduce a random error with a defined probability p, such that
a response r is replaced by U(A) (i.e., a uniformly random selection from the set of all
possible answers A for feature χ), aiming to model the variability and uncertainty inherent
in subjective self-reporting. For each feature susceptible to subjective bias, a probabilistic
perturbation, defined by the following function, is applied.{

r, with probability 1 − p,
U(A), with probabilty p.

This approach is critical to the subsequent analysis, as it mirrors the character-level
and word-level input perturbations in natural language processing systems that have been
shown to significantly impact model performance [42].
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Figure 1. Schematic diagram illustrating the proposed evaluation of machine learning stability
in predicting depression and anxiety using five algorithms under varying degrees of subjective
response errors.

The perturbed datasets enable us to perform a comparative evaluation of five distinct
ML algorithms—each with varying capacities to process and analyze data—in classifying
depression and anxiety. This comparison across unperturbed and perturbed data serves to
assess the impact of simulated subjective response errors on the algorithms’ classification
abilities, thereby addressing the gap in the literature regarding algorithm robustness in the
context of mental health predictions.

In line with the robustness analysis frameworks from related studies [42–44], a novel
composite score is proposed to identify the configurations that yield the highest accuracy
and the most reliable identification of positive cases. This composite score is formulated
to weigh the performance accuracy and precision, accommodating the impact of data
perturbations, which is paramount in real-world applications where data imperfections
are prevalent.

Employing this composite score, we conduct an ablation study to pinpoint the optimal
configurations for each algorithm. This step ensures that we compare the algorithms at
their highest potential, providing a fair and precise assessment of their respective strengths.

The comprehensive performance evaluation of the algorithms does not stop at ac-
curacy; it extends to a suite of metrics that together provide a multifaceted view of their
capabilities. These include recall, precision (both positive and negative), F1 score, Cohen’s
kappa score, error rate, loss value, computing time, and the Area Under the Receiver
Operating Characteristic (AUC). Each metric offers a unique lens through which to view
performance, from general accuracy to the nuances of model reliability and efficiency.

This methodology could provide valuable insights to the field of mental health diag-
nostics, extending the conversation about the robustness of machine learning algorithms
and setting the stage for future research that can build upon our findings to develop even
more resilient predictive models.

3.1. Participants

The participants in this cross-sectional study consisted of 4184 undergraduate students
from the UNSA [21]. Conducted between September 2012 and June 2013, the study included
students from diverse faculties, such as sciences, humanities, medicine, law, sports science,
engineering, and business. To be part of the study, participants underwent a mandatory
medical examination at the university medical service (UMS), except for those summoned
for specific reasons like disability management or psychological support. The de-identified
dataset, publicly available on Dryad, adhered to strict privacy protocols and was considered
observational, obviating the need for written informed consent in accordance with non-
interventional clinical research regulations in France. Of the participants, 57.4% identified
as female, while 42.6% identified as male, with their ages grouped into four categories: less
than 18, 18, 19, and 20 or older, representing 5%, 36%, 28%, and 31%, respectively. The
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prevalence rates of MDD and GAD were found to be 12% and 8%, respectively. A summary
of the participants in this study is shown in Table 1. This table presents an overview of the
participant demographics, including sample size, study period, recruitment source, faculty
representation, gender distribution, age groups, and prevalence of MDD and GAD.

Table 1. Demographic characteristics of undergraduate students participating in the cross-sectional
study.

Feature Description Value

Sample Size Total number of participants 4.18 × 103

Study Period Dates of data collection September 2012–June 2013

Recruitment Source University medical service (UMS) N/A

Faculty Representation Diversity of academic disciplines Sciences, humanities, medicine, law, sports
science, engineering, business

Gender Distribution Percentage of female and male
participants Female: 57.4%, Male: 42.6%

Age Groups Distribution of participants by age Less than 18: 5%, 18: 36%, 19: 28%, 20 or
older: 31%

MDD Prevalence Percentage of participants diagnosed
with depression 1.20 × 10−1

GAD Prevalence Percentage of participants diagnosed
with anxiety 8.00 × 10−2

3.2. Measures

The comprehensive measures employed for data collection are fully detailed in the
other study [21]. Briefly, the University of Lorraine (France) implemented the CALCIUM
software program to standardize data entry and ensure consistent metric collection across
a wide array of variables, including demographic information, socioeconomic status, and
career-related aspirations [21].

Standardized Biometric Measurements: Following established guidelines, trained pro-
fessionals meticulously measured and recorded biometric variables, including heart rate,
blood pressure, BMI, and visual acuity.

Investigating Mental Health: Employing a screening process based on clinical experience
and the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) criteria, the study
investigated psychiatric symptoms, with a specific focus on depressive disorder, anxiety
disorder, and panic attacks.

Lifestyle Factors and Mental Wellness: While parental childhood abuse was reported
as potentially related to depression and anxiety [45], it was not directly assessed in the
questionnaire. Instead, the study focused on individual lifestyle factors, including alco-
hol consumption, tobacco use, recreational drug usage, and dietary habits, with partic-
ular attention paid to unhealthy dietary behaviors, such as irregular meal patterns and
unbalanced diets.

Comprehensive Data for Insight: The comprehensive data collection aimed to decipher
the complex interplay between these diverse factors and the overall well-being of under-
graduate university students. This valuable resource promises to offer further insights into
their health and mental wellness.

3.3. Psychiatric Diagnoses

The investigation into psychiatric diagnoses involved a comprehensive assessment
of mental health conditions among undergraduate university students. To determine
the prevalence of these conditions, a multi-stage process was implemented. Initially,
a screening questionnaire was administered, focusing on four key symptoms of MDD
and GAD. For MDD, these symptoms encompassed feelings of sadness or irritability,
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anhedonia, changes in activity levels, and fatigue or loss of energy. Similarly, the screening
for GAD emphasized excessive anxiety and worry, restlessness, fatigue, and irritability.
Subsequently, students with positive indications for either MDD or GAD underwent further
evaluation to ascertain a complete diagnosis based on the DSM-IV criteria. Qualified
medical providers conducted these assessments to ensure accuracy and comprehensiveness.
The diagnoses were not viewed in strict binary terms, but rather as dimensional constructs,
considering the likelihood of having the disorder based on the presence of at least two
associated symptoms. Notably, “anhedonia” and “excessive anxiety and worry” served
as core features for depression and anxiety, respectively. Additionally, for the diagnosis
of panic attacks, students who reported experiencing at least one panic attack in the past
year underwent a rigorous evaluation, requiring the presence of four or more specified
symptoms. This thorough examination provided valuable insights into the prevalence and
impact of MDD, GAD, and panic attacks among the undergraduate student population,
informing the development of targeted interventions and support services tailored to their
specific needs.

3.4. Data with Unreliability

Survey-based research provides valuable insights into complex mental health phe-
nomena, but ensuring response reliability is crucial when predicting significant outcomes
like mental health conditions. This study focuses on 17 specific features within the UNSA
dataset known to introduce potential biases in survey responses and which could signif-
icantly impact the prediction of mental health conditions (see Table 2 for details). These
features cover various areas identified in the literature as susceptible to factors like memory
recall errors and health-related biases. By carefully examining these features and their
potential biases, the research aims to ensure the data’s reliability and the findings’ accuracy.

Table 2. A list of the 17 selected survey features.

Index Survey Features

1 Difficulty memorizing lessons

2 Satisfied with living conditions

3 Financial difficulties

4 Unbalanced meals

5 Eating junk food

6 Irregular rhythm or unbalanced meals

7 Long commute

8 Irregular rhythm of meals

9 Physical activity (3 levels)

10 Physical activity (2 levels)

14 Cigarette smoker (5 levels)

12 Cigarette smoker (3 levels)

13 Drinker (3 levels)

14 Drinker (2 levels)

15 Prehypertension or hypertension

16 Binge drinking

17 Marijuana use

Subjective Interpretation: Some features are open to personal perceptions and subjec-
tive interpretations, which can vary among respondents. These include (1) “difficulty
memorizing lessons”, (2) “satisfied with living conditions”, (3) “financial difficulties”,
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(4) “unbalanced meals”, (5) “eating junk food”, and (6) “irregular rhythm or unbalanced
meals”. For instance, perceptions of “satisfying” living conditions can differ widely among
individuals. Additionally, familiarity bias, where respondents gravitate towards famil-
iar options, can influence responses, especially in habitual behaviors, as documented by
research on product identification [46].

Memory Recall Biases: Features that require respondents to recall past behaviors
or habits are particularly susceptible to memory recall biases. These features include
(7) “long commute”, (8) “irregular rhythm of meals”, (9) “physical activity (3 levels)”,
(10) “physical activity (2 levels)”, (11) “cigarette smoker (5 levels)”, (12) “cigarette smoker
(3 levels)”, (13) “drinker (3 levels)”, and (14) “drinker (2 levels)”. Schwarz et al. [47] empha-
sized that respondents often rely on their memory to reproduce previous answers, which
can introduce inaccuracies. Borland, Partos, and Cummings [48] further highlighted the
susceptibility of certain events to recall biases based on their salience.

Health-Related Biases: Features related to health and lifestyle, such as (15) “prehy-
pertension or hypertension”, (16) “binge drinking,” and (17) “marijuana use” can be
influenced by social desirability bias. This bias arises when participants present answers
that are more socially acceptable than their true behaviors or opinions, especially in health-
related contexts [49]. For instance, respondents might underreport substance use due to
societal stigmas.

Given the potential biases in these features, data interpretation demands careful con-
sideration. Enhancing survey data reliability and validity necessitates employing strategies
like refining instructions, minimizing ambiguities in questions, and cross-validating self-
reported data with objective measures. By proactively addressing these biases, this research
strives to offer more credible insights into the intricate relationship between lifestyle factors
and mental health outcomes.

3.5. Data Preprocessing

In this study, missing data were imputed using mean values, and categorical columns
were transformed into numerical data using Label Encoding. To create biased datasets,
a selected probability of 0.2 was applied to randomly choose students for each of the
17 features considered unreliable. The inputs of the selected students were then converted
to exclusive inputs, introducing bias into the dataset. The creation of the biased dataset
aimed to explore the impact of unreliable features on predictive models and investigate the
robustness of the algorithms in the presence of biased data.

Metrics and Composite Score Proposition. The multifaceted nature of healthcare appli-
cations necessitates a comprehensive evaluation of machine learning models’ predictive
capabilities. This evaluation employs a suite of metrics, including accuracy, precision, recall,
F1 score, Cohen’s kappa, error rate, and AUC.

Accuracy is the most intuitive performance measure, and it is simply the ratio of
correctly predicted observations to the total observations. It is useful when the target
classes are well balanced. Accuracy is defined with Equation (1).

Accuracy =
Number o f correct predictions
Total number o f predictions

(1)

Recall or sensitivity or the true-positive rate is the ratio of correctly predicted positive
observations to all observations in an actual class. It measures the model’s capability to
predict the positive cases. Recall is defined with Equation (2).

Recall =
True Positive

True Positive + False Negative
(2)

Precision can be seen as a measure of a classifier’s exactness. Positive precision is
the ratio of correctly predicted positive observations to the total predicted positives, and
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negative precision is the ratio of correctly predicted negative observations to the total
predicted negatives. Positive precision is defined with Equation (3).

Positive Precision =
True Positive

True Positive + False Positive
(3)

Negative precision is defined with Equation (4).

Negative Precision =
True Negative

True Negative + False Negative
(4)

F1 score is the weighted average of precision and recall. Therefore, this score takes
both false positives and false negatives into account. It is a better measure than accuracy
for imbalanced classes. F1 score is defined with Equation (5).

F1 Score = 2 × Precision × Recall
Precision + Recall

(5)

Cohen’s kappa (κ) is a statistic that measures inter-annotator agreement for categorical
items. It is generally thought to be a more robust measure than simple percent agreement
calculation, since κ considers the possibility of the agreement occurring by chance. Cohen’s
kappa (κ) is defined with Equation (6).

κ =
po − pe

1 − po
(6)

where po is the relative observed agreement and pe is the hypothetical probability of chance
agreement.

The error rate is the ratio of all incorrect predictions to the total observations and is a
complement of accuracy.

Loss provides a measure of how well the model can achieve the best possible prediction.
The term “loss” in this study specifically refers to the function that guides neural network
training by measuring the cost of wrong predictions. In this context, it often refers to
cross-entropy loss for binary classification tasks. Loss is defined with Equation (7).

Loss = − 1
N

N

∑
i=1

yilog(pi) + (1 − yi)log(1 − pi) (7)

where N is the number of observations, yi is the binary indicator (0 or 1) of the class label
for the ith sample, and pi is the predicted probability of the ith sample being of the positive
class.

Computing time(s) refers to the computational efficiency of the model, which is critical
in real-time applications.

AUC score provides an aggregate measure of performance across all possible classifica-
tion thresholds. The ROC curve plots the true-positive rate (recall) against the false-positive
rate, and AUC represents the area under this curve, quantifying the overall ability of the
model to discriminate between the positive and negative classes.

To address the multi-dimensional nature of model evaluation, a composite score
(CS) is introduced to encapsulate the diverse aspects of performance in a single, coherent
framework. The composite score (CS) is calculated by integrating the weighted components
of the AUC score (AUC), the Cohen’s kappa score (κ), and the recall (R). The formula for
the composite score is as follows:

CS = (w1 × AUC + w2 × κ)× H(R) (8)
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where w1 and w2 are the weights representing the importance given to each metric in the
composite score, AUC is the area under the ROC curve, κ is the Cohen’s kappa score, R is
the recall, and H is the Heaviside step function, where

H(x) =
{

1, i f x > 0
0, i f x = 0

The proposed score ensures that a model must excel across all facets of performance,
balancing the trade-off between various types of errors, to achieve a high composite score.
The exact weights w1 and w2 can be adjusted based on the relative importance of each
metric in the specific context of the application. In this study, the model’s priority lies in
high accuracy, with w1 = 2 and w2 = 0.25.

3.6. Algorithms’ Description

Consider the input data matrix denoted as X ∈ R(N×F), where N represents the
number of patients and F indicates the number of features per patient. Each element xi,j in
the matrix X corresponds to the value of the j-th feature for the i-th patient.

The anxiety/depression status of the patients is encapsulated as Y ∈ {0, 1}N , where
each entry yi aligns with a patient and denotes the presence (1) or absence (0) of anxiety
or depression.

The aim of this study is to deduce a function G that maps the feature space X to the
target variable Y:

Ŷ = G(X).

Here, Ŷ ∈ {0, 1}N is the vector of the predicted outcome, striving to closely approx-
imate the actual target variable Y. The effectiveness of the mapping is measured by the
proximity of Ŷ to Y, often quantified by an appropriate loss function.

Within the framework of neural networks or machine learning models, the function
G is ascertained throughout the training phase. Throughout this phase, the model’s
parameters are fine-tuned to minimize the loss function, thereby enhancing the model’s
predictive accuracy.

Before training the machine learning model, the input data matrix X is divided into
two subsets: Xtrain and Xvalid. This division is made to separate the data used for learning
the parameters of the model (training data) from the data used to evaluate the model’s
performance (validation data).

Consider Xtrain ∈ R(Ntrain×F) and Xvalid ∈ R(Nvalid×F), where Ntrain is the number
of patients in the training set and Nvalid is the number of patients in the validation set.
Correspondingly, the target variable Y is also divided into Ytrain and Yvalid, matching the
division of X. The model then learns a mapping G from Xtrain to Ytrain, and its performance
is evaluated on Xvalid, comparing the predicted outcomes Ŷvalid with Yvalid.

It is important to emphasize that the parameter configurations and the best composite
score, which is denoted as CS∗, are preserved upon the conclusion of the training phase.
These configurations are then consistently employed during the prediction phase across all
machine learning methods, including but not limited to CNNs. This practice ensures that
the integrity of the model’s ability to generalize is maintained from training to application,
thus providing a robust measure of the model’s predictive performance in real-world
scenarios.

XGBoost. XGBoost is a highly efficient and scalable implementation of gradient
boosting. It leverages structured sparsity and parallel computing to boost the performance
of decision tree models. Below is a description of the XGBoost algorithm.

A. Objective Function (XGBoost): In the XGBoost framework, the collective set of model
parameters optimized during training is represented by θ. This includes the leaf weights
across all trees in the ensemble, denoted by w, which are the output scores assigned
to each leaf for any given decision tree within the model. The variable θ is therefore
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a comprehensive representation of the model's learned parameters, encompassing the
decision rules at each node and the final predictions at the leaves.

The training process aims to optimize these parameters θ to minimize the overall
objective function Obj(θ). The objective function is a balance between the fidelity of the
model to the training data, expressed by the loss function L, and the simplicity of the model,
enforced by the regularization term Ω. By tuning θ, XGBoost refines the predictive capacity
of the ensemble while preventing overfitting, ensuring that the model remains robust and
generalizable.

For the binary classification employing logistic loss, the deviation between the actual
and predicted values is captured by the loss function:

L(y, ŷ) = −ylog(ŷ)− (1 − y)log(1 − ŷ),

where y is the true label (0 or 1) and ŷ is the predicted probability of the instance being in
class 1.

Consider a tree function f (X) that consists of M leaves, the prediction for an input X
is given by the following:

f (X) = ∑M
m=1 cm·I(x ∈ Rm),

where cm is the value predicted by the m-th leaf and I is an indicator function that returns
1 if X falls into the region Rm of the m-th leaf and 0 otherwise.

The final prediction ŷi is the sum of the predictions of all individual trees of a set of
trees ( fk represents the k-th tree) in the model:

ŷi = ∑K
k=1 fk(Xi),

where K is the total number of trees. The objective function of XGBoost combines the loss
function L and a regularization term Ω to control model complexity and prevent overfitting:

Obj(θ) = ∑n
i=1 L(yi, ŷi) + ∑K

k=1 Ω( fk),

where yi is the corresponding true label and ŷi is the prediction for the i-th instance.
Lastly, the regularization term Ω for a tree fk is defined as follows:

Ω( fk) = γT +
1
2

λ∥w∥2 + α∥w∥1,

where T is the number of terminal nodes in the tree, w is the vector of leaf weights, γ
penalizes the number of leaves to control complexity, λ is the L2 regularization term (Ridge
Regression), and α is the L1 regularization term, encouraging sparsity in the leaf weights.

B. Gradient Boosting (XGBoost): XGBoost refines the gradient boosting method by
constructing an ensemble of decision trees sequentially. Unlike random split selection,
XGBoost chooses the best split based on the gain that is calculated from the gradient gi and
Hessian hi of the loss function. Each tree is built to correct the errors of the preceding ones,
and the model is updated at each step to minimize the objective function:

ŷ(t)i = ŷ(t−1)
i + η ft(xi),

where η is the learning rate and ft is the new tree added at iteration t.
C. Model Complexity and Training Process (XGBoost): Model complexity is regulated by

hyperparameters, such as max_depth, gamma, and colsample_bytree. During training,
trees are grown sequentially to a specified max_depth and pruned when the improvement
in the loss function is not significant (less than gamma).

At each iteration t, the algorithm calculates the gradients gi and Hessians hi for the loss
function, which reflect the first- and second-order conditions for optimization, respectively.
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The gradient gi is the first derivative of the loss function with respect to the prediction
for instance i, indicating the direction of steepest ascent:

gi = ∂
ŷ(t−1)

i
L
(

yi, ŷ(t−1)
i

)
.

The Hessian hi is the second derivative, providing information about the curvature of
the loss function:

hi = ∂2
ŷ(t−1)

i
L
(

yi, ŷ(t−1)
i

)
.

These derivatives are crucial for identifying the optimal split points in the trees and
for calculating the score assigned to each leaf.

Unlike traditional gradient boosting methods that consider only the reduction in loss,
XGBoost evaluates splits using a metric called “gain”, which incorporates second-order
information via the Hessians. The gain for a potential split is quantified as follows:

Gain =
1
2

[
(∑ gi)

2

∑ hi + λ

]
− γ.

Here, λ is the L2 regularization term on leaf weights, which helps to smooth the final
learned weights to prevent overfitting. The term γ is a complexity control that penalizes
the addition of new leaves to the tree. XGBoost computes the gain for each candidate split
and selects the one with the highest gain value. This strategy balances improving the fit of
the model to the training data against the complexity of the model.

D. Ensemble Prediction (XGBoost): For binary classification, the final prediction aggre-
gates the weighted predictions of all trees, transforming the sum into a probability using
the sigmoid function:

p =
1

1 + e−∑N
i=1 η fi(x)

,

where N is the number of trees, η is the learning rate, and fi(x) is the prediction of the
i-th tree.

Random Forest. Random Forest is a machine learning algorithm that operates by
constructing a multitude of decision trees at training time and outputting the class that is
the mode of the classes (classification) of the individual trees. It is an ensemble method
that is particularly well-suited for complex tasks because it can capture the non-linear
relationships between features (represented by input data X) and the target variable. Below
is the mathematical description of Random Forest.

A. Bootstrap Aggregating (Random Forest): Given a training set Xtrain = x1, . . . , xn with
responses Y = y1, . . . , yn, bagging repeatedly (B times) selects a random sample with
replacement of the training set and fits trees to these samples. For b = 1, . . . , B (where B
is the number of trees in the forest), a sample (Xb, Yb) is created by randomly selecting n
examples with replacement from the original dataset (X, Y). A decision tree fb is trained on
this bootstrapped sample (Xb, Yb).

B. Gini impurity (Random Forest): In predicting binary outcomes as the presence or
absence of anxiety or depression, the classes consist of two elements: 1 (indicating presence)
and 0 (indicating absence). The Gini impurity for a dataset D is computed as follows:

IG(D) = 1 −
(

p2
1 + p2

0

)
,

where p1 is the proportion of items labeled with class 1 (presence of anxiety/depression)
in the dataset and p0 is the proportion of items labeled with class 0 (absence of anxi-
ety/depression) in the dataset.
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C. Decision Trees (Random Forest): Each tree grows by recursively partitioning the data.
At each node of the tree, the algorithm chooses the best split among all features based on
the Gini impurity for classification tasks.

For a given node m, representing a region Rm with Nm observations from X, a set
of possible binary splits S of the data is considered. For each s ∈ S of the node m in the
decision tree, we partition the data into Rm,le f t and Rm,right, and the Gini impurity of the
split ∆(s) is computed as follows:

∆(s) =
Nm,le f t

Nm
IG

(
Rm,le f t

)
+

Nm,right

Nm
IG

(
Rm,right

)
.

Here, Nm,le f t and Nm,right are the number of observations in the left and right partitions
created by split s and Nm is the total number of observations in node m. The goal is to find
the split s that minimizes the Gini impurity ∆(s).

The optimal split s∗ is chosen that minimizes ∆(s) :

s∗ = argmin
s∈S

∆(s),

Rm,le f t = Rm,le f t(s∗), Rm,right = Rm,right(s∗).

D. Feature Selection (Random Forest): At each split in a tree, a random subset of features
is chosen, and the best split is determined using the Gini impurity within this subset of
features.

E. Prediction (Random Forest): For classification problems, the Random Forest prediction
Ŷ for an input x is obtained by taking the mode of the predictions of the B trees:

Ŷ(x) = mode
{

fb(x)}B
b=1.

Naive Bayes: Naive Bayes classifiers are a collection of classification algorithms based on
Bayes’ Theorem. They are particularly known for text classification and spam filtering. The
GaussianNB class from sklearn.naive.bayes provides an implementation of the Gaussian
Naive Bayes algorithm.

A. Training (Naive Bayes): Naive Bayes classifiers are probabilistic classifiers based
on applying Bayes’ Theorem with strong (naive) independence assumptions between the
features.

Given a dataset with features X = (x1, x2, . . . , xn) and a binary target variable Y
(representing the presence or absence of depression or anxiety), the Naive Bayes classifier
first computes the prior probability of each class P(Y), which is the frequency of each class
in the training set.

For each feature xi and each class y, it calculates the likelihood P(xi|Y = y). This is
the conditional probability that feature xi appears given that the outcome is class y. The
way this probability is calculated depends on the type of Naive Bayes classifier used. For
instance, if it is a Gaussian Naive Bayes classifier, the features are assumed to follow a
normal distribution.

B. Prediction (Naive Bayes): To make a prediction for a new instance X′, the Naive Bayes
classifier calculates the posterior probability of each class:

P
(
Y = y

∣∣X′) = P(X′|Y = y)·P(Y = y)
P(X′)

Since P(X′) is constant for all classes, we only need to focus on maximizing
P(X′|Y = y)·P(Y = y). Because of the independence assumption, the joint probability
can be expressed as the product of individual probabilities:

P
(
X′∣∣Y = y

)
= ∏n

i=1 P
(

x′i
∣∣Y = y

)
.
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Thus, the class with the highest posterior probability is chosen as the prediction.
Logistic Regression: Logistic Regression, despite its name, is a linear model used for

binary classification tasks rather than regression. It estimates the probability of a binary
response based on one or more predictor variables. The Logistic Regression class from
sklearn.linear model is utilized for this purpose.

A. Training (Logistic Regression): In Logistic Regression, we model the probability that a
particular data point belongs to a particular class. The logistic function is used to convert
the linear regression output to a probability:

P(Y = 1|X) =
1

1 + e−(β0+β1x1+···+βnxn)
.

The coefficients β (including the intercept β0) are learned from the training data
by maximizing the likelihood of the observed data, which can be accomplished using
algorithms like gradient descent. This process is also known as Logistic Regression training.

The “sklearn” implementation allows for regularization (penalty terms on the size of
the coefficients), controlled by the hyperparameters “penalty” and “C”. The “fit_intercept”
parameter dictates whether a bias β0 is included, the “solver” specifies the optimization
algorithm, and “class_weight” can be used to handle imbalanced classes.

B. Prediction (Logistic Regression): For prediction, the learned coefficients are used with
the logistic function to estimate the probability that Y = 1 (depression or anxiety present).
If the probability is greater than 0.5, the classifier predicts that the instance belongs to
class 1 (depression or anxiety present); otherwise, it predicts class 0 (absence).

Convolutional Neural Network. CNNs are deep learning algorithms which are partic-
ularly powerful for processing data with a grid-like topology, such as images. For the
task of binary classification in this study, a 1D CNN was used, capable of capturing tem-
poral features from an input sequence. The CNN was built using the Sequential model
from keras.models, incorporating convolutional layers (Conv1D), pooling layers (MaxPool-
ing1D), and dropout layers (Dropout) to prevent overfitting. The network also includes
a flattening step (Flatten) before connecting to dense layers (Dense), concluding with a
sigmoid activation function to predict binary outcomes. The model is compiled with the
Adam optimizer and binary cross-entropy loss function, reflecting the binary nature of the
classification task.

The input data Xtrain are passed into the CNN that consists of multiple layers with
parameters. The Convolutional Neural Network is obtained in the training process with
a total number of epochs T. The optimized set of parameters θ∗ gives the best composite
score CS∗.

For each iteration at t < T, θt is updated via several steps which are briefly described
below, from step A to step E.

A. Forward Pass (CNN): Computation of predictions Ŷ using current parameters θt.
B. Loss Calculation (CNN): Computation of the loss L(t) based on Ŷ and true labels Y.
C. Backward Pass (CNN): Calculation of gradients ∇θ L(t).
D. Parameter Update (CNN): Adjustment of θt using gradients ∇θ L(t).
E. Callback Adjustment (CNN): Update the best model parameter θ∗ for the next epoch

based on the gradients ∇θ L(t) and the composite score CSt at time t and adjust
hyperparameters ϕt such as learning rate if a callback condition is met, based on
composite score CSt.

F. Prediction (CNN): Make predictions after training.

A. Forward Pass (CNN): At the t iteration during the training process, Ŷtrain is computed
using the input data Xtrain passing through multiple layers. For simplicity, the time-
dependence of parameters is ignored within the layers.
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A1. Convolutional Layers (CNN): For each convolutional layer l with filter size f (l),
kernel size k(l), and input shape I for the first layer:

H(l) = σ
(

conv
(

W(l), A(l−1)
)
+ b(l)

)
,

where H(l) is the output of the l-th convolutional layer, W(l) and b(l) are the weights and
biases of the layer, σ is the ReLU activation function, and A(l−1) is the input to the l-th layer
(with A(0) = I for the first layer, where I is the processed input matrix derived from Xtrain).

A2. Pooling Layers (CNN): After some convolutional layers, a pooling operation is
applied to reduce the spatial dimensions of the feature maps. In the case of max pooling:

P(l)
i,j = max

(
H(l)

m,n

)
,

where P(l) is the output of the pooling operation for layer l, and the max operation is
applied over a predefined neighborhood around the position (i, j) in the feature map H(l).
The indices m and n iterate over the height and width of the pooling window, respectively.
The size of the neighborhood (the “pooling window”) and the stride of the operation are
hyperparameters.

A3. Dropout Layers (CNN): D(l) represents the output of applying dropout to the l-th
layer’s output in a CNN that incorporates dropout layers. Dropout is a regularization
technique used to prevent overfitting by randomly setting a fraction of the input units to 0
at each update during training time.

The operation of dropout on a layer’s output can be described as follows:

D(l) = H(l) ⊙ M(l),

where D(l) is the output after applying dropout, H(l) is the output of the l-th layer before
applying dropout, ⊙ denotes element-wise multiplication, and M(l) is a mask vector left
(or matrix, depending on the dimensionality of H(l)).

Each element is drawn from a Bernoulli distribution with probability p (the dropout
rate), indicating whether each unit should be kept (1) or dropped (0). The dropout rate p is
a hyperparameter that determines the likelihood of an input unit being set to zero. The
purpose of D(l) is to introduce randomness into the training process, which helps to make
the model more robust and less likely to rely on any small set of neurons, thereby reducing
overfitting. Dropout is only applied during training, not during evaluation or inference,
ensuring that the full capacity of the model is used for predictions.

A4. Flatten Layer (CNN): After applying dropout, the Flatten operation converts the
tensor into a vector as described earlier. D(l) ∈ R(Ntrain×F) represents the output from
the last Dropout layer. The Flatten operation transforms D(l) into a vector A( f l), where
A( f l) ∈ Rn and n = Ntrain· F.

A5. First Dense (Fully Connected) Layer (CNN): The output of the Flatten layer A( f l) is
passed to the first Dense layer, which is computed as follows:

Z(dense1) = W(dense1)A( f l) + b(dense1),

where W(dense1) ∈ Rm×n and b(dense1) ∈ Rm are the weights and biases of the layer, respec-
tively; m is the number of dense neurons (“num_dense_neurons”); and n is the size of the
input vector A( f l). The activation function A(dense1) = ReLU

(
Z(dense1)

)
is then applied,

where ReLU(x) = max(0, x).
A6. Second Dense (Output) Layer (CNN): The output A(dense1) from the first Dense layer

is input to the second Dense layer, which is computed as follows:

Z(dense2) = W(dense2)A(dense1) + b(dense2),
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where W(dense2) ∈ R1×m and W(dense2) ∈ R. The sigmoid activation function
A(dense2) = σ

(
Z(dense2)

)
is applied to produce the output, where σ(x) = 1

1+e−x . Ŷtrain = 1

if A(dense2) > 0.5, otherwise Ŷtrain = 0.
B. Loss Calculation (CNN): To evaluate the loss function L, which measures the differ-

ence between the predicted output and the true target values, binary cross-entropy is used
in the current study as the common loss function.

The binary cross-entropy loss for a prediction Ŷtrain and true label Ytrain is given by
the following:

L
(
Ŷtrain, Ytrain

)
= − 1

N

N

∑
i=1

[ŷtrain,ilog(ytrain,i) + (1 − ŷtrain,i)log(1 − ytrain,i)],

where N is the number of samples in the dataset.
C. Backward Pass (CNN): The gradient of the loss L with respect to a weight W or bias

b at layer l by propagating the gradient back through each layer from the output towards
the input.

Let us denote the gradient of the loss L with respect to the activation A at layer l
and time t as ∂L

∂A(l)
t

. If the activation A(l)
t is a function of the weight W(l)

t and the input

to the layer Z(l−1)
t , then the gradient of L with respect to W(l)

t at time t can be computed
as follows:

gW(l)

t =
∂L

∂W(l)
t

=
∂L

∂A(l)
t

· ∂A(l)
t

∂Z(l−1)
t

· ∂Z(l−1)
t

∂W(l)
t

,

where ∂A(l)
t

∂Z(l−1)
t

represents the derivative of the activation function at layer l with respect to

its input and ∂Z(l−1)
t

∂W(l)
t

is the input to the activation function at layer l (which is the output of

the previous layer or the input data for the first layer).
Similarly, the gradient with respect to the biases b(l)t can be computed as follows:

gb(l)
t =

∂L

∂b(l)t

=
∂L

∂A(l)
t

· ∂A(l)
t

∂b(l)t

.

This process is repeated for each layer in the network during backpropagation to
compute gradients for all weights, which are then used to update the weights in the
direction that minimizes the loss using the Adam optimizer.

D. Parameter Update (CNN): The Adam optimizer combines ideas from two other
popular optimization algorithms: AdaGrad and RMSProp. It computes adaptive learning
rates for each parameter.

Suppose that α is the step size (also known as the learning rate) and β1 and β2 are the
exponential decay rates for the moment estimates, typically set to 0.9 and 0.999, respectively.
Also, let ϵ represent a small scalar (e.g.,

(
10−8)) to prevent division by zero, and let θ denote

the parameters of the model, which include the weights W(l)
t and bias b(l)t at layer l. The

term gθ
t is the gradient of the loss with respect to the parameter at timestep t.

Adam maintains two moving averages for each parameter θ, where mθ
t is the first

moment (the mean of gradients) and vθ
t is the second moment (the uncentered variance of

gradients). The updates are computed as follows:

1. Update biased first moment estimate:

mθ
t = β1·mθ

t−1 + (1 − β1) · gθ
t .
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2. Update biased second raw moment estimate:

vθ
t = β2·vθ

t−1 + (1 − β2) ·
(

gθ
t

)2
.

3. Compute bias-corrected first moment estimate:

m̂θ
t =

mθ
t

1 − βt
1

.

4. Compute bias-corrected second raw moment estimate:

v̂θ
t =

vθ
t

1 − βt
2

.

5. Update the parameters:

θt+1 = θt −
α · m̂θ

t√
v̂θ

t + ϵ
.

E. Callback Adjustment (CNN): The training process with a callback that monitors and
saves the best model parameters based on the composite score is as follows:

CSt = CS(θt) is the composite score on the validation set. If CSt is higher than the best
composite score observed so far CS∗, then update the best score and save the corresponding
parameters:

i f CSt > CS∗, then :
CS∗ = CSt

θ∗ = θt

F. Prediction (CNN): During the prediction phase of CNNs, the input data are passed
through the network to obtain the output predictions. This phase involves several steps,
which exclude the calculation of loss since the goal is not to train the network but to
evaluate new data:

1. Input Processing: The input data are preprocessed to match the input size expected
by the network and are often normalized or standardized based on the same criteria
used during training.

2. Forward Propagation: The preprocessed input is then fed forward through the net-
work’s layers, including convolutional layers, activation functions, pooling layers,
and fully connected layers. Since dropout is not used during prediction, all neurons
participate in computing the forward pass.

3. Activation Function: The final layer’s activation function is interpreted as the prediction.

3.7. Ablation Study

This study investigated various parameters across several ML models, including
Random Forest, XGBoost, and a CNN. For each parameter, 10-fold cross-validation, a
robust method for model evaluation, was utilized to ensure that the findings were not
influenced by overfitting or dataset-specific biases. The flow of the ablation study is
summarized in the pseudocode shown in Figure 2.
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Figure 2. A pseudocode describing the steps of the ablation study. The analysis script is available 
on GitHub: https://github.com/wailimku/ MDD_GAD.git (accessed on 7 March 2024). 

3.8. Methods for Imbalanced Data 
Several ML methods were employed to address the imbalanced nature of the dataset. 

The algorithms, including XGBoost, Random Forest, and Logistic Regression, inherently 
handle imbalanced datasets through their internal mechanisms. For the CNN model, the 
Synthetic Minority Oversampling Technique (SMOTE) [50] was applied to the original 
dataset to address the class imbalance before feeding it into the model. 

3.9. Model Training and Validation 
To evaluate the performance and generalizability of the classifier models, a rigorous 

cross-validation technique was employed. Specifically, a 10-fold cross-validation across 
the dataset was utilized, as depicted in Figure 3. This method involves partitioning the 
dataset into 10 equal or nearly equal subsets. In the process of cross-validation, each subset 
is used once as the validation set while the remaining nine subsets form the training set. 
Thus, for each validation fold, the data are split in a ratio of 0.1 for validation and 0.9 for 
training. 

This 10-fold cross-validation approach ensures that every data point is used for vali-
dation once, allowing us to comprehensively assess the model’s predictive performance. 
Additionally, this method mitigates the risk of overfitting and provides an unbiased esti-
mate of model performance, as each fold provides an independent test of the model’s 
ability to generalize to unseen data. 

By leveraging the entire dataset for both training and validation, the statistical valid-
ity of the results is enhanced. The use of cross-validation is particularly pertinent in stud-
ies like the current study where the objective is not only to achieve high predictive accu-
racy but also to ensure the model’s robustness and reliability in various data scenarios. 

Pseudo Code for Ablation Study:
1. Load the original depression data

2. Define Composite Score Function using accuracy, recall, and AUC

3. Define Callback Class for Composite Score (for CNN)
   Create a custom callback class that calculates the composite score at the end of each epoch
   If the score improves, save the model weights.

4. Ablation Study (for CNN)
   Define a set of configurations to test
   For each configuration:
 CNN:

       a. Build a CNN model
       b. Train and evaluate the model on the oversampled data
       c. Save the best-performing model and its metrics
       d. Update the results file with the configuration and metrics

 For XGBoost, Random Forest, Logistic Regression, Naive Bayes:
       a. Perform ablation study using cross-validation
       b. Calculate the average of the metrics across folds
       c. Update the results file with the configuration and metrics

5.  Identify Best Configurations based on the composite score

Figure 2. A pseudocode describing the steps of the ablation study. The analysis script is available on
GitHub: https://github.com/wailimku/MDD_GAD.git (accessed on 3 March 2024).

The ablation study culminated in the identification of the most effective configurations
for each model. For the CNN model, the optimal settings were: 64 filters, a kernel size of
3, a pool size of 2, dropout utilization with a rate of 0.5, 50 dense neurons, and a single
convolutional layer, all processed in batch sizes of 16.

The optimal configurations for the ensemble and linear models were also identified.
The Random Forest model performed best with a balanced class weight, 1000 estimators, a
maximum depth of 12, a minimum sample split of 12, and a minimum sample leaf of 10.
XGBoost achieved superior performance with a binary logistic objective, 50 estimators, a
maximum depth of 7, a learning rate of 0.0001, gamma set to 0, alpha at 2.5, and a colsample
by tree of 0.2. Logistic Regression yielded the best outcomes with a maximum iteration of
100, L2 regularization, a regularization strength C of 10, fit intercept set to false, a balanced
class weight, a solver of Newton-CG, and an L1 ratio of none. Finally, the Naive Bayes
model performed optimally with a variance smoothing of 0.0001.

3.8. Methods for Imbalanced Data

Several ML methods were employed to address the imbalanced nature of the dataset.
The algorithms, including XGBoost, Random Forest, and Logistic Regression, inherently
handle imbalanced datasets through their internal mechanisms. For the CNN model, the
Synthetic Minority Oversampling Technique (SMOTE) [50] was applied to the original
dataset to address the class imbalance before feeding it into the model.

3.9. Model Training and Validation

To evaluate the performance and generalizability of the classifier models, a rigorous
cross-validation technique was employed. Specifically, a 10-fold cross-validation across the
dataset was utilized, as depicted in Figure 3. This method involves partitioning the dataset
into 10 equal or nearly equal subsets. In the process of cross-validation, each subset is used
once as the validation set while the remaining nine subsets form the training set. Thus, for
each validation fold, the data are split in a ratio of 0.1 for validation and 0.9 for training.

https://github.com/wailimku/MDD_GAD.git
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Figure 3. A pseudocode describing the steps of classification of depression and anxiety. Code avail-
ability: the analysis script is available on GitHub: http://github.com/wailimku/MDD_GAD.git (ac-
cessed on 7 March 2024). 

3.10. Model Evaluation 
Additionally, Shapley Additive Explanations (SHAP) scores [51] were utilized for 

XGBoost and Random Forest to visualize and interpret feature importance within the 
original data. This comprehensive analysis was conducted to enhance understanding of 
the models’ predictive performance and robustness under various conditions. 

3.11. System Configuration for Model Training 
To ensure the transparency and reproducibility of our findings, a detailed overview 

of the system configuration used for training and evaluating the models is described be-
low. The computational environment consisted of a server without a Graphics Processing 
Unit (GPU), equipped with 20 Central Processing Units (CPUs) to facilitate parallel pro-
cessing. The system was supported by 1 terabyte (TB) of RAM to efficiently handle large 
datasets and complex computations without memory constraints. The operating system 
deployed was Red Hat Enterprise Linux (RHEL) 8/Rocky Linux 8, providing a stable and 
secure foundation for running our machine learning experiments. All models were imple-
mented and executed using Python version 3.11.0, leveraging state-of-the-art libraries for 
data manipulation, machine learning, and statistical analysis. 

This configuration underscores our commitment to utilizing robust computational 
resources to ensure the accuracy and reliability of our model evaluations, even in the ab-
sence of GPU acceleration. 

4. Results 
Ablation study of the ML algorithms. This study investigated the impact of individual 

parameter modifications on the predictive power of the ML algorithms, focusing on the 
composite score defined in the Section 3. This score is crucial for evaluating both the mod-
els’ ability to distinguish between classes (discriminative ability) and identify positive 
cases (sensitivity). Due to the greater number of positive cases, the original depression 
dataset was used for the ablation study. 

Pseudo Code for Classification of Depression and Anxiety
1. Load Data
   If perturb == "original":
       Load the original dataset
   Else if perturb == 'perturbation':
       Load the perturbation dataset 

2. Define Composite Score Function using accuracy, recall, and AUC

3. Define Callback Class for Composite Score (for CNN)

5. Classification
    For each model type (XGBoost, Random Forest, Logistic Regression, Naive Bayes, CNN):
       a. Initialize the model with the best configurations
       b. Perform K-Fold cross-validation
       c. Inside the K-Fold loop:
           - Train the model on the training fold
           - Evaluate the model on the testing fold
           - Calculate all the metrics including the composite score
       d. Aggregate the results across folds
       e. Plot ROC curves for each model

Figure 3. A pseudocode describing the steps of classification of depression and anxiety. Code
availability: the analysis script is available on GitHub: http://github.com/wailimku/MDD_GAD.git
(accessed on 3 March 2024).

This 10-fold cross-validation approach ensures that every data point is used for vali-
dation once, allowing us to comprehensively assess the model’s predictive performance.
Additionally, this method mitigates the risk of overfitting and provides an unbiased es-
timate of model performance, as each fold provides an independent test of the model’s
ability to generalize to unseen data.

By leveraging the entire dataset for both training and validation, the statistical validity
of the results is enhanced. The use of cross-validation is particularly pertinent in studies
like the current study where the objective is not only to achieve high predictive accuracy
but also to ensure the model’s robustness and reliability in various data scenarios.

3.10. Model Evaluation

Additionally, Shapley Additive Explanations (SHAP) scores [51] were utilized for
XGBoost and Random Forest to visualize and interpret feature importance within the
original data. This comprehensive analysis was conducted to enhance understanding of
the models’ predictive performance and robustness under various conditions.

3.11. System Configuration for Model Training

To ensure the transparency and reproducibility of our findings, a detailed overview of
the system configuration used for training and evaluating the models is described below.
The computational environment consisted of a server without a Graphics Processing Unit
(GPU), equipped with 20 Central Processing Units (CPUs) to facilitate parallel processing.
The system was supported by 1 terabyte (TB) of RAM to efficiently handle large datasets
and complex computations without memory constraints. The operating system deployed
was Red Hat Enterprise Linux (RHEL) 8/Rocky Linux 8, providing a stable and secure
foundation for running our machine learning experiments. All models were implemented
and executed using Python version 3.11.0, leveraging state-of-the-art libraries for data
manipulation, machine learning, and statistical analysis.

This configuration underscores our commitment to utilizing robust computational
resources to ensure the accuracy and reliability of our model evaluations, even in the
absence of GPU acceleration.

http://github.com/wailimku/MDD_GAD.git
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4. Results

Ablation study of the ML algorithms. This study investigated the impact of individual
parameter modifications on the predictive power of the ML algorithms, focusing on the
composite score defined in the Section 3. This score is crucial for evaluating both the models’
ability to distinguish between classes (discriminative ability) and identify positive cases
(sensitivity). Due to the greater number of positive cases, the original depression dataset
was used for the ablation study.

The analysis revealed that specific parameters played a significant role in driving
model performance. Figure 4 exemplifies how strategic hyperparameter tuning can signif-
icantly improve performance. For CNNs, adjustments to the number of epochs and the
size of dense layers were crucial (Figure 4a). The Random Forest model critically relied on
modifications to the maximum depth and minimum sample leaf parameters (Figure 4b).
In gradient boosting models, variations in the learning rate and the number of estimators
demonstrated notable effects on the outcome measures (Figure 4c). Finally, for Logistic
Regression, the L1 ratio and C parameter exhibited a significant influence on performance
(Figure 4d).
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Figure 4. Heatmaps illustrating the impact of hyperparameter tuning on model performance. These
heatmaps visualize how strategic adjustments to key hyperparameters affect the model’s performance,
measured by the composite score defined in the Section 3. Each heatmap corresponds to a different ML
algorithm: (a) CNN, (b) Random Forest, (c) XGBoost, and (d) Logistic Regression. The color intensity
in each cell represents the corresponding composite score, with brighter colors indicating higher
performance. These heatmaps demonstrate that strategic hyperparameter tuning can significantly
improve model performance, highlighting the importance of careful parameter optimization for
achieving optimal results.
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The best configuration for each algorithm, as described in the Section 3, was used for
the classification study in both the original and perturbation datasets.

4.1. Predictive Performance for the Original Dataset

In evaluating the predictive capabilities of various models for MDD and GAD, a
CNN was utilized in conjunction with four ML algorithms: XGBoost, Random Forest,
Logistic Regression, and Naive Bayes. These models were tasked with interpreting survey
data in their unaltered state, absent of any introduced errors. The AUC scores for MDD
were closely matched, with XGBoost, Random Forest, Logistic Regression, Naive Bayes,
and CNN yielding scores of 0.64, 0.63, 0.63, 0.60, and 0.64, respectively (as illustrated in
Figure 5a). Similar patterns were observed for GAD, with AUC scores reported as 0.65 for
Random Forest, 0.67 for XGBoost, and 0.65 for both Logistic Regression and CNN (depicted
in Figure 5b).
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Figure 5. Plots displaying the AUCs for the prediction of (a) MDD and (b) GAD in the test set,
without the introduction of any random errors. The predictions were generated using various
models, including Random Forest, XGBoost, Logistic Regression, Naive Bayes, and CNN. The curves
show the averaged sensitivity and specificity at different thresholds for prediction using 10-fold
cross-validation. The diagonal dashed blue line corresponds to a random classifier.

Comparative analysis demonstrated that Random Forest, XGBoost, and CNN provided
a slight edge over their counterparts in terms of accuracy, recall, F1 score, Cohen’s kappa,
positive precision, negative precision, error rate, loss, and computing time for both MDD
and GAD, as detailed in Tables 3 and 4. Notably, Random Forest yielded the highest
positive precision scores (0.3 for MDD in Table 3 and 0.17 for GAD in Table 4), indicative of
its robustness in correctly identifying true-positive cases, while the positive precision was
slightly lower for both XGboost (0.2 for MDD in Table 3 and 0.13 for GAD in Table 4) and
CNN (0.27 for MDD in Table 3 and 0.16 for GAD in Table 4).
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Table 3. Evaluations of five classification models in predicting MDD. The table presents the perfor-
mance metrics of these models on the original dataset without any added random errors. The metrics
include accuracy, F1 score, Cohen’s kappa score, positive precision, negative precision, error rate,
loss, and computing time (seconds). The values and errors are the averages and standard deviations
calculated over the results of 10-fold cross-validation.

MDD (Original Data)

Model Accuracy Recall F1
Weighted

Cohen’s
Kappa

Positive
Precision

Negative
Precision Error Rate Loss Computing

Time (s)

XGBoost 0.71 ± 0.03 0.43 ± 0.05 0.75 ± 0.02 0.12 ± 0.04 0.2 ± 0.03 0.9 ± 0.02 0.29 ± 0.03 0.69 ± 0.0 0.14 ± 0.02

Random
Forest 0.86 ± 0.02 0.11 ± 0.04 0.82 ± 0.02 0.1 ± 0.05 0.3 ± 0.11 0.88 ± 0.01 0.14 ± 0.02 0.52 ± 0.01 2.99 ± 0.11

Logistic
Regression 0.62 ± 0.02 0.55 ± 0.08 0.68 ± 0.02 0.1 ± 0.05 0.18 ± 0.04 0.91 ± 0.02 0.38 ± 0.02 0.65 ± 0.02 0.24 ± 0.03

Naive
Bayes 0.53 ± 0.05 0.6 ± 0.1 0.6 ± 0.04 0.05 ± 0.02 0.15 ± 0.02 0.9 ± 0.02 0.47 ± 0.05 0.92 ± 0.08 0.04 ± 0.0

CNN 0.82 ± 0.07 0.17 ± 0.13 0.8 ± 0.04 0.09 ± 0.06 0.27 ± 0.1 0.88 ± 0.02 0.18 ± 0.07 0.44 ± 0.08 228.93 ± 4.67

Table 4. Evaluations of five classification models in predicting GAD. The table presents the perfor-
mance metrics of these models on the original dataset without any added random errors. The metrics
include accuracy, F1 score, Cohen’s kappa score, positive precision, negative precision, error rate,
loss, and computing time (seconds). The values and errors are the averages and standard deviations
calculated over the results of 10-fold cross-validation.

GAD (Original Data)

Model Accuracy Recall F1
Weighted

Cohen’s
Kappa

Positive
Precision

Negative
Precision Error Rate Loss Computing

Time (s)

XGBoost 0.75 ± 0.03 0.4 ± 0.07 0.8 ± 0.02 0.1 ± 0.05 0.13 ± 0.03 0.94 ± 0.01 0.25 ± 0.03 0.69 ± 0.0 0.14 ± 0.02

Random
Forest 0.9 ± 0.02 0.08 ± 0.03 0.88 ± 0.02 0.06 ± 0.05 0.17 ± 0.07 0.93 ± 0.01 0.1 ± 0.02 0.42 ± 0.01 2.99 ± 0.1

Logistic
Regression 0.64 ± 0.03 0.58 ± 0.09 0.73 ± 0.02 0.08 ± 0.03 0.12 ± 0.02 0.95 ± 0.01 0.36 ± 0.03 0.64 ± 0.02 0.18 ± 0.04

Naive
Bayes 0.68 ± 0.04 0.5 ± 0.13 0.76 ± 0.03 0.08 ± 0.04 0.12 ± 0.03 0.94 ± 0.01 0.32 ± 0.04 0.74 ± 0.1 0.04 ± 0.0

CNN 0.8 ± 0.1 0.32 ± 0.19 0.83 ± 0.06 0.1 ± 0.03 0.16 ± 0.05 0.94 ± 0.01 0.2 ± 0.1 0.46 ± 0.12 236.47 ± 5.02

While the AUC values across the models were similar, Random Forest, XGBoost, and
CNN exhibited superior performance in other metrics. This discrepancy suggests that
although AUC is a crucial indicator of a model’s ability to discriminate between classes, it
does not necessarily reflect a model’s precision or its balance of false positives and nega-
tives. Therefore, a model may present a high AUC but still underperform in precision or
recall, underscoring the necessity of a multi-metric evaluation approach. Consequently, the
Random Forest model emerges as a strong candidate for mental health predictive analy-
ses, particularly where the emphasis is placed on precision over sensitivity. Specifically,
the effectiveness of Random Forest in mental health prediction was demonstrated in the
study by Tate, A.E. et al. [22], where it outperformed other machine learning techniques,
including XGBoost, Logistic Regression, Support Vector Machines, and Neural Networks,
in predicting mental health problems in adolescence. In alignment with our findings,
Ram Kumar, R.P. et al. [23] also reported superior performance of Random Forest over
other classifiers, including a CNN, in the context of predicting heart diseases. Although
the studies by Tate, A.E. et al. [22] and Ram Kumar, R.P. et al. [23] are situated in different
domains—adolescent mental health and heart disease prediction, respectively, the consis-
tent performance of Random Forest across these varied contexts underscores its potential
as a versatile tool for medical diagnostics, including our focus on MDD and GAD. Never-
theless, the application of Random Forest should be tailored to the specific characteristics of
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the dataset at hand, and further research may be necessary to fully understand its suitability
across various settings of mental health diagnostics.

Next, the assessment of feature importance for predicting MDD and GAD was con-
ducted using the Random Forest model (see Figure 6). Notably, there were no common
features among the top five ranked for both conditions. For MDD, the top three ranked
features were diastolic blood pressure, up-to-date vaccination status, and parental home. In
contrast, the need for a control examination, gender, and height emerged as the top three for
GAD. These distinctions are consistent with findings from previous studies, underscoring
the unique characteristics associated with each disorder.
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Figure 6. Plots illustrating the importance of features for predicting (a) MDD and (b) GAD. The plots
display the means of the absolute values of SHAP scores across all top-ranked features. A higher
SHAP value indicates that the corresponding feature significantly influenced the prediction of the
Random Forest model. These plots offer valuable insights into the relative significance of different
features in informing the predictions of MDD and GAD, helping to identify the key factors that
contribute to the model’s performance.

Similarly, when evaluating feature importance for predicting MDD and GAD using
XGBoost (see Figure 7), a contrast was observed compared to the Random Forest results.
Specifically, features such as other recreational drugs and heart rate were shared among
the top five ranked features for both MDD and GAD. For MDD, diastolic blood pressure,
up-to-date vaccination status, and parental home were of relatively higher importance. In
contrast, the need for a control examination, gender, and field of study were more pivotal
for GAD prediction. This variation in feature importance between MDD and GAD aligns
with the findings from the Random Forest model.
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Figure 7. Plots illustrating the importance of features for predicting (a) MDD and (b) GAD. The plots
display the mean of the absolute values of SHAP scores across all top ranked features. A higher
SHAP value indicates that the corresponding feature significantly influenced the prediction of the
XGBoost model.

4.2. Predictive Performance for the Biased Dataset

Before diving into the robustness test, it is important to acknowledge that some features
might have a higher predictive power, necessitating careful consideration. Random Forest
identified 5 and 7 features among the top 20 important features that could potentially be
prone to bias for MDD and GAD, respectively. On the other hand, XGboost identified 8
and 7 features among the top 20 important features that could be susceptible to bias for
MDD and GAD, respectively (see Figures 6 and 7). Recognizing the potential for bias in
17 self-selected features, a robustness test was conducted by introducing random errors
into these features, as described in the Section 3.

Subsequently, a CNN along with four other ML models—Random Forest, XGBoost,
Logistic Regression, and Naive Bayes—were applied to the biased dataset. The resulting
AUC scores for MDD exhibited a decline across the board, with scores of 0.56 for Random
Forest, 0.58 for XGBoost, 0.57 for Logistic Regression, 0.58 for Naive Bayes, and 0.58 for
CNN (as shown in Figure 8a). For GAD, similar reductions were noted, with the AUC
values recorded at 0.55, 0.58, 0.58, 0.57, and 0.61 for Random Forest, XGBoost, Logistic
Regression, Naive Bayes, and CNN, respectively (illustrated in Figure 8b). These figures
represent a marked decrease from the AUC values computed using the original dataset
(displayed in Figure 5).
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Figure 8. Plots displaying AUCs for the prediction of (a) MDD and (b) GAD in the test set, with
random error introduced to the data of the 17 survey features. The predictions were generated using
various models, including Random Forest, XGBoost, Logistic Regression, Naive Bayes, and CNN.
The curves show the averaged sensitivity and specificity at different thresholds for prediction using
10-fold cross-validation. The diagonal dashed blue line corresponds to random classifier.

It is important to highlight that, beyond AUC scores, comprehensive metrics revealed
distinct model behaviors. Notably, the CNN not only withstood the introduction of random
errors but also demonstrated enhanced performance in several key metrics, including
accuracy, Cohen’s kappa score, and positive precision, for both MDD and GAD (as seen
in Tables 5 and 6). After the error introduction, the CNN’s positive precision for MDD
improved from 0.27 to 0.28, and that for GAD from 0.16 to 0.3. This improvement under-
lines the CNN’s capability to handle data unreliability, bolstering its predictive precision.
In contrast, the Random Forest model’s positive precision plummeted to zero for both
disorders, indicating a significant vulnerability to data errors. XGBoost showed a slight
decline in positive precision from 0.2 to 0.17 for MDD and from 0.13 to 0.1 for GAD. These
outcomes underscore the CNN’s potential advantage in managing survey data fraught
with uncertainties.

Table 5. Evaluations of five classification models in predicting MDD. The table presents the perfor-
mance metrics of these models on the original dataset with random error introduced to the data of the
17 survey features. The metrics include accuracy, F1 score, Cohen’s kappa score, positive precision,
negative precision, error rate, loss, and computing time (seconds). The values and errors are the
averages and standard deviations calculated over the results of 10-fold cross-validation.

MDD (Perturbed Data)

Model Accuracy Recall F1
Weighted

Cohen’s
Kappa

Positive
Precision

Negative
Precision Error Rate Loss Computing

Time (s)

XGBoost 0.81 ± 0.02 0.13 ± 0.03 0.8 ± 0.02 0.04 ± 0.04 0.17 ± 0.06 0.88 ± 0.01 0.19 ± 0.02 0.69 ± 0.0 0.14 ± 0.03

Random
Forest 0.87 ± 0.02 0.0 ± 0.0 0.82 ± 0.02 0.0 ± 0.0 0.0 ± 0.0 0.87 ± 0.02 0.13 ± 0.02 0.49 ± 0.01 2.95 ± 0.02

Logistic
Regression 0.6 ± 0.02 0.48 ± 0.08 0.66 ± 0.02 0.05 ± 0.03 0.15 ± 0.03 0.89 ± 0.01 0.4 ± 0.02 0.67 ± 0.02 0.28 ± 0.03

Naive
Bayes 0.45 ± 0.05 0.7 ± 0.07 0.52 ± 0.06 0.04 ± 0.02 0.15 ± 0.02 0.91 ± 0.02 0.55 ± 0.05 0.82 ± 0.07 0.04 ± 0.0

CNN 0.84 ± 0.03 0.1 ± 0.08 0.81 ± 0.02 0.06 ± 0.16 0.28 ± 0.16 0.88 ± 0.02 0.16 ± 0.03 0.44 ± 0.04 252.11 ± 5.38

Note: CNN shows better performance in Positive Precision (0.28 ± 0.16) and Error Rate (0.16 ± 0.03) for MDD
perturbed data.



Healthcare 2024, 12, 625 25 of 32

Table 6. Evaluations of five classification models in predicting GAD. The table presents the perfor-
mance metrics of these models on the original dataset with random error introduced to the data of the
17 survey features. The metrics include accuracy, F1 score, Cohen’s kappa score, positive precision,
negative precision, error rate, loss, and computing time (seconds). The values and errors are the
averages and standard deviations calculated over the results of 10-fold cross-validation.

GAD (Perturbed Data)

Model Accuracy Recall F1
Weighted

Cohen’s
Kappa

Positive
Precision

Negative
Precision Error Rate Loss Computing

Time (s)

XGBoost 0.75 ± 0.06 0.27 ± 0.09 0.8 ± 0.04 0.04 ± 0.04 0.1 ± 0.03 0.93 ± 0.01 0.25 ± 0.06 0.69 ± 0.0 0.2 ± 0.02

Random
Forest 0.92 ± 0.01 0.0 ± 0.0 0.89 ± 0.02 0.0 ± 0.0 0.0 ± 0.0 0.92 ± 0.01 0.08 ± 0.01 0.39 ± 0.01 6.95 ± 0.29

Logistic
Regression 0.63 ± 0.02 0.44 ± 0.07 0.72 ± 0.01 0.03 ± 0.02 0.09 ± 0.02 0.93 ± 0.01 0.37 ± 0.02 0.66 ± 0.02 1.08 ± 0.2

Naive
Bayes 0.51 ± 0.05 0.62 ± 0.09 0.62 ± 0.05 0.03 ± 0.03 0.09 ± 0.02 0.94 ± 0.02 0.49 ± 0.05 0.79 ± 0.04 0.08 ± 0.0

CNN 0.9 ± 0.02 0.08 ± 0.06 0.88 ± 0.02 0.07 ± 0.07 0.3 ± 0.27 0.93 ± 0.01 0.1 ± 0.02 0.31 ± 0.05 810.6 ± 16.78

Note: CNN shows better performance in Positive Precision (0.3 ± 0.27) and Error Rate (0.1 ± 0.02) for GAD
perturbed data.

It is important to understand the impact of subjective response errors on machine
learning models used to predict mental health conditions. In this study, emphasis was
placed on the CNN algorithm with potential application to other models. A feature-by-
feature analysis was conducted, comparing the performance of the CNN on the original
dataset and a perturbed counterpart, where each feature was independently infused with
a 0.2 probability error. This granular approach allowed us to calculate differences across
various metrics, revealing the influence of feature bias on the predictive accuracy for MDD
and GAD.

For MDD prediction (Figure 9), specific features significantly reduced both AUC score
and positive precision, compromising the CNN’s efficacy. One explanation for the dis-
crepancy between the decrease in positive precision with individual feature perturbations
and its increase when perturbing all 17 features is that combined errors across multiple
features might reduce the misidentification of depression, leading to a paradoxical increase
in positive precision. For recall and Cohen’s kappa score, the decreases are mainly related
to features with memory recall bias (e.g., drinker and smoker) and health-related bias
(e.g., hypertension and bridge drinking), except one feature from subjective interpretation
(i.e., eating junk food). Interestingly, the same biases have a less pronounced effect on
anxiety prediction (Figure 10), suggesting a differentiated sensitivity within the model’s
feature set.

For GAD prediction, different from MDD prediction, perturbation in most single
features led to a decrease in recall and an increase in positive precision (Figure 10). Also,
different from MDD prediction, a decrease in Cohen’s kappa score was more related to bias
in subjective interpretation, especially the feature named “irregular rhythm or unbalanced
meals”. This finding highlights the importance of addressing subjective biases in some
specific features to ensure the reliability of ML models in mental health assessments.
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Figure 9. Impact of feature perturbations on MDD prediction performance. This figure shows how
perturbing individual features affects CNN’s ability to predict MDD. Each subplot presents a bar chart
that compares the change in a specific metric: (a) AUC measures the model’s ability to distinguish
between true and false positives. (b) Recall: the proportion of true positives correctly identified
by the model. (c) Positive precision: the proportion of predicted positives that are true positives.
(d) Cohen’s kappa score: a measure of agreement between the model’s predictions and the true labels,
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considering chance agreement. A negative value in the bar charts indicates a decrease in the model’s
performance for that feature when a 0.2 probability error is added. This means that perturbing that
feature has a detrimental impact on the model’s ability to accurately predict MDD. (e) The scatter
plot on the right shows the relationship between the features and their corresponding indices. This
helps to identify which features are most sensitive to perturbations and therefore most important for
MDD prediction.
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Figure 10. Impact of feature perturbations on GAD prediction performance. This figure shows how
perturbing individual features affects CNN’s ability to predict GAD. Each subplot presents a bar chart
that compares the change in a specific metric: (a) AUC measures the model’s ability to distinguish
between true and false positives. (b) Recall: the proportion of true positives correctly identified by the
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model. (c) Positive precision: the proportion of predicted positives that are true positives.
(d) Cohen’s kappa score: a measure of agreement between the model’s predictions and the true labels,
considering chance agreement. A negative value in the bar charts indicates a decrease in the model’s
performance for that feature when a 0.2 probability error is added. This means that perturbing that
feature has a detrimental impact on the model’s ability to accurately predict GAD. (e) The scatter
plot on the right shows the relationship between the features and their corresponding indices. This
helps to identify which features are most sensitive to perturbations and therefore most important for
GAD prediction.

5. Discussion

Machine Learning’s Rising Influence in Mental Health Prediction: In recent years,
ML methods have gained significant popularity in the field of mental health
prediction [22,24–27]. However, very few studies have evaluated the performance of
these ML methods to ensure their reliability and clinical applicability. In this study, a
comprehensive analysis was conducted to predict MDD and GAD among undergraduate
university students using ML models. The dataset consisted of self-reported survey data
from students, covering various socio-demographic characteristics, health-related informa-
tion, and lifestyle behaviors. Through comparisons of model performance on original and
simulated biased self-reported survey data, this study evaluated their reliability.

Exploring Classifier Performance on Original Survey Data: The current study evaluated a
variety of classifiers, including Random Forest, XGBoost, Logistic Regression, and Naive
Bayes, and placed a specific emphasis on CNNs due to their established robustness to
data inconsistencies. When applied to the original self-reported survey data, we found
that XGBoost, CNN, and Random Forest yielded the highest AUC scores for predicting
both MDD and GAD. Notably, Random Forest not only achieved high AUC scores but also
exhibited the highest positive precision, signaling its acute ability to correctly identify indi-
viduals with these conditions. This result is in line with findings from Smith et al. [22], who
highlighted Random Forest’s effectiveness in mental health prediction among adolescents.
However, this contrasts with reports from Jones et al. [24] and Lee and Kim [25], where
gradient boosting and LightGBM outperformed other models, including Random Forest,
in similar tasks.

The observed discrepancies may be due to several factors, including variations in
data sources, which might contain different feature sets and distributions; differences in
model configurations, such as parameter tuning and feature selection; and the specific
contexts of the studies, including the demographic characteristics of the study populations.
Such factors underscore the importance of considering context when interpreting model
performance.

In our analysis, while the leading algorithms demonstrated similar levels of perfor-
mance, the decision on which model to deploy in practice should consider the characteristics
of the dataset at hand as well as the specific operational requirements of the task. For a
detailed comparison of model performance in our study, refer to Table 7.

Evaluating Model Robustness: A Crucial Innovation: The true novelty of this study lies
in its rigorous assessment of model sturdiness against biased data. While all models
demonstrated competence on unbiased data, the introduction of random errors resulted
in an anticipated decline in performance across all models; however, the CNN’s resilience
remained undeterred. It not only withstood the perturbations but also demonstrated a
commendable increase in positive precision for both MDD and GAD. This unwavering
performance positions the CNN as an exceptional candidate for mental health prediction
amidst data uncertainties, supporting its consideration in clinical and research settings.

Exploring the Role of Physiological and Environmental Factors in Mental Health: The
analysis of feature importance revealed that physiological markers such as weight, height,
heart rate, and blood pressure serve as significant predictors for mental health conditions,
corroborating existing research [26]. Furthermore, environmental factors, exemplified by
the influence of the parental home, emerged as relevant predictors [52,53], underscoring
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the multifaceted nature of mental health that encompasses both biological and socio-
environmental dimensions.

Toward a Symbiotic Approach: Combining Data-driven Techniques with Human Expression
Interpretation: This research presents parallels with a prior study utilizing facial expressions
to predict Depression, Anxiety, and Stress Scale (DASS) levels [54]. Despite methodological
and focal differences, both studies share the goal of enhancing mental health diagnostics.
Juxtaposing this study’s emphasis on data reliability with the other study’s focus on contin-
uous DASS scores and real-time monitoring suggests the potential for an interdisciplinary
approach. This approach could lead to a hybrid predictive model that combines data-
driven ML predictions with the nuanced interpretation of human expressions, potentially
revolutionizing mental health diagnostics.

Table 7. Comparison of other studies using ML classifiers for mental health prediction.

Study Goal Methods Input Data Model Performance Comparison

The current study

Assess ML models’
reliability for mental

health prediction
with subjective data.

CNN, XGBoost,
Random Forest,

Logistic Regression,
Naïve Bayes

Self-reported surveys
from students

(sociodemographics,
health, lifestyle)

CNN best. High
accuracy, resilience
with biased data,
specific features’

impact

NA

Single classifier vs.
ensemble ML

approaches for
mental health
prediction [24]

Evaluate ML
algorithms for mental

health prediction.

Logistic Regression,
Gradient Boosting,
Neural Networks,
KNN, SVM, DNN,

XGBoost, Ensemble
approach

Open data set (OSMI
Mental Health in
Tech Survey) on

mental health in tech
industry

Gradient Boosting
best, NN also good.

Feature selection
important (family

history, age).

Similar use of ML in
a different context

(mental health in tech
focusing on burnout
and anxiety) resulted

in different best
models like Gradient

Boosting for clean
data and ensemble

approaches for
noisy data.

Prediction of Mental
Health Problem
Using Annual
Student Health

Survey: Machine
Learning

Approach [25]

Predict student
mental health using

health survey
responses and

response times.

Logistic Regression,
Elastic Net, Random

Forest, XGBoost,
LightGBM

Responses to health
surveys

(demographics,
survey answers,
response time)

Elastic Net and
LightGBM best,
specific survey
questions and
response times

impactful.

Similar use of ML in
a different data
(health surveys)

resulted in different
best models like
Elastic Net and

LightGBM

Predicting Mental
Health Problems in
Adolescence Using
Machine Learning

Techniques [22]

Develop a model for
predicting mental
health problems in

adolescence
using ML.

Random Forest,
XGBoost, Logistic

Regression, Neural
Network, SVM

Parental report and
register data

(474 predictors), SDQ
for mental health

Random forest and
SVM best, but similar

performance to
Logistic Regression.
Parental reports and

environment
important.

Their study and the
current study both
identified Random
Forest as the best

performing model,
for data without

added error.

6. Conclusions

This study underscores the significant potential of ML algorithms for mental health
prediction, emphasizing that their effectiveness critically hinges on resilience to data
imperfections. The standout performance of CNNs, even amid subjective response errors,
underlines the necessity of choosing algorithms wisely for mental health diagnostics.
As we advance, the development of ML models must prioritize not only precision but
also robustness to the variances inherent in real-world data—a challenging yet essential
pursuit for enhancing model refinement and understanding of mental health disorders and
ensuring the reliability and applicability of findings. This endeavor promises to leverage
ML’s capabilities to offer real benefits for individuals facing mental health challenges.

The methodologies and insights from this study have broader implications for health-
care, suggesting several avenues for future research and application:
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• Disease Prevention: Utilizing ML to analyze patterns in lifestyle and genetic data could
lead to early identification of risk factors for chronic diseases, such as diabetes and
heart disease, enabling preventative measures to be implemented sooner.

• Symptom Prediction: ML can be applied to predict the onset of symptoms for diseases
like Alzheimer’s and Parkinson’s based on subtle changes in behavior or biomarkers,
facilitating early intervention.

• Personalized Treatment Plans: By analyzing patient data, ML algorithms can help tailor
treatment plans to individual needs, improving outcomes in conditions ranging from
cancer to depression.

• Infection Outbreak Prediction: ML can be instrumental in predicting the outbreak of
infectious diseases by analyzing travel, climate, and health data, allowing for timely
public health responses.

Additionally, the integration of multimodal data sources promises to enhance the
accuracy and robustness of ML algorithms in these applications. There is a compelling need
for innovative methodologies to improve the handling and interpretation of subjective
data, not just in mental health but across healthcare. Investigating the deployment of these
algorithms in clinical settings will be key to understanding their practical utility, including
their interpretability by healthcare professionals.

Expanding our focus to include a broader range of health conditions, alongside a
rigorous examination of the ethical and privacy aspects of using electronic health records
and self-reported data for ML predictions, will be critical. These steps will ensure that
ML technologies can be effectively and ethically integrated into healthcare, providing a
foundation for innovative solutions to some of the most pressing health challenges.
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