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Abstract: Abundant studies have examined mental health in the early periods of the COVID-19
pandemic. However, empirical work examining the mental health impact of the pandemic’s subse-
quent phases remains limited. In the present study, we investigated how mental vulnerability and
resilience evolved over the various phases of the pandemic in 2020 and 2021 in Germany. Data were
collected (n = 3522) across seven measurement occasions using validated and self-generated measures
of vulnerability and resilience. We found evidence for an immediate increase in vulnerability during
the first lockdown in Germany, a trend towards recovery when lockdown measures were eased,
and an increase in vulnerability with each passing month of the second lockdown. Four different
latent trajectories of resilience–vulnerability emerged, with the majority of participants displaying a
rather resilient trajectory, but nearly 30% of the sample fell into the more vulnerable groups. Females,
younger individuals, those with a history of psychiatric disorders, lower income groups, and those
with high trait vulnerability and low trait social belonging were more likely to exhibit trajectories as-
sociated with poorer mental well-being. Our findings indicate that resilience–vulnerability responses
in Germany during the COVID-19 pandemic may have been more complex than previously thought,
identifying risk groups that could benefit from greater support.

Keywords: mental health; vulnerability; resilience; COVID-19; pandemic; trajectories

1. Introduction

The spread of the Coronavirus Disease 2019 (COVID-19) since early 2020 has created
significant health and socioeconomic challenges for global society. Crucially, the pandemic
and the related lockdowns imposed across the world to curb the spread of the disease
have come to be seen as a severe and sustained stressor that has left us grappling with
psychological consequences [1]. Initial cross-sectional studies documented high levels
of psychological distress, depression, anxiety, and worry as an immediate response to
the declaration of pandemic and confinement measures while also indicating low levels
of resilience (see reviews [2–5]). Significant increases in mental health challenges were
corroborated by existing cohort studies and longitudinal studies in the early months of the
pandemic [6–17]. However, these initial studies could not account for longer-term changes
in the pandemic trajectory and the mental health response to changing pandemic features,
such as second lockdowns or the introduction of vaccination programs. Therefore, in the
present study, we sought to investigate how mental health evolved over the longer course
of the pandemic in Germany in 2020 and 2021, during the various phases of lockdowns
and deconfinement periods. To provide a more comprehensive picture, we focused on
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changes in multiple aspects of mental health, such as depression, anxiety, loneliness, coping
behavior, pandemic-related mental burdens, psychosomatic complaints, stress recovery,
and life satisfaction, to name a few.

After the initial COVID-19 pandemic-related lockdowns in March 2020, several suc-
cessive waves of the pandemic led in many countries to repeated lockdowns, requiring
classroom closure, remote work, confinement, and physical distancing, such as the second
longer and more gradual lockdowns in Germany starting in November 2020 and lasting
until April 2021. This re-tightening of safety measures after a summer of deconfinement
could have led to further disturbances in the mental health of different segments of the
population. Initial evidence from empirical studies indicates significant deterioration of
mental health in the second lockdowns [18,19]. Moreover, a small number of studies that
examined the longitudinal trajectories of mental health during 2020 and 2021 found poor
mental health outcomes in several different sub-groups of people [20–25]. In particular,
few of these longitudinal studies showed that levels of mental health problems tended to
increase with each measurement occasion [26,27], which is in line with cumulative risk
models [28–30]. This points to a unique feature of the COVID-19 pandemic, such that the
longer individuals were under strict lockdown conditions, the worse their mental health
became, leading to what can be termed a pandemic fatigue effect [31].

The concept of the pandemic fatigue effect, initially introduced to account for in-
creasing demotivation to adhere to mandated safety measures observed in the general
population [32], has also been theorized in the context of mental health by a recent con-
ceptual model of psychological resilience and vulnerability during the COVID-19 pan-
demic, the Wither or Thrive Model of Resilience (With:Resilience) [31]. The With:Resilience
model proposed that the different phases of the pandemic are likely to have led to distinct
resilience–vulnerability responses. Conceptualizing mental health difficulties on a bipolar
spectrum, ranging from vulnerability on one end to resilience on the other, the model
posited two specific effects. First, the model postulated an acute stressor effect resulting
from the introduction of the first confinement measures leading to an immediate increase
in mental health problems seen in the form of greater psychological vulnerability. After the
lifting of the lockdown and confinement measures, the model proposes that the general
population is likely to demonstrate a tendency towards the resilience end of the spectrum,
i.e., reduced mental health difficulties. The model then proposes a second effect owing to
the long-term stress of repeated confinement and lockdowns, contextualizing pandemic
fatigue from a mental health perspective. Several studies have documented the initial
acute stressor effect and the recovery of mental health difficulties in the early phases of the
pandemic [13–17,33]. However, the pandemic fatigue effect on mental health has remained
understudied [34,35], with only some early evidence of this phenomenon being observed
in some recent studies from Argentina and the UK [26,27]. As such, the full range of
resilience–vulnerability responses concerning the different phases of the pandemic, such
as repeated lockdowns, remain poorly understood so far in many countries, including
Germany. Therefore, the first aim of the present study was to examine pandemic-related
mental health changes in Germany in 2020 and 2021 and investigate acute stressor and
pandemic fatigue effects.

Additionally, it is expected that individual differences would likely lead to further
unique patterns of pandemic-related mental health trajectories being observed during
the pandemic. The With:Resilience model proposed that four different trajectories of
resilience–vulnerability (chronic vulnerability, cumulative vulnerability, resilient recovery,
and non-reactive resilience) would be observed as a function of the various phases of
the pandemic. This view is also in line with prevalent models of post-traumatic mental
health trajectories [36,37]. In support of this view, several studies in the early phases of
the pandemic identified several trajectories of mental health, the number differing across
studies [7,13,26]. A recent study from Argentina, covering a longer period of the pandemic,
found trajectories of mental health that were distinct from those observed in previous
studies examining only shorter time periods [26]. As such, it remains to be seen what kind
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of different resilience–vulnerability time courses would emerge in the German population
when considering a longer course of the pandemic timeline. The second goal, therefore,
was to identify unique resilience–vulnerability trajectories covering multiple measurement
occasions over a longer duration (>12 months) of the pandemic.

Another important goal of the present study was to understand if there are specific
sociodemographic and trait psychological factors that predict heterogeneous responses,
i.e., which display unique mental health trajectories. Unique individual and contextual fac-
tors are likely to enhance or inhibit the probability of an individual exhibiting a certain trajec-
tory. The With:Resilience model posits several key categories of factors, such as individual
psychological and biological or social intersubjective factors, that could influence which
mental health trajectory an individual exhibits over the course of the pandemic. In line with
this proposition, several studies investigating resilience–vulnerability trajectories during
the early phases of the pandemic have delineated a variety of predictors [7,13,15,26,38,39].
For example, demographic factors such as sex, age, employment status, education and
income levels, and trait characteristics such as neuroticism and pessimism have consistently
emerged as key predictors of mental health both before and during the pandemic [40–43].
Accordingly, the third aim of the present work was to identify demographic factors and
other enduring psychological trait aspects that serve as risk factors for the different longitu-
dinal trajectories of resilience–vulnerability in our study.

To investigate these questions, we relied on the data from the CovSocial project, which
is a longitudinal investigation of the effects of the COVID-19 pandemic in 2020 and 2021 on
various biopsychosocial aspects in a large cohort of Berliners [44]. In the first phase of the
CovSocial project, participants reported on several aspects of vulnerability and resilience,
such as depression, anxiety, optimism, and the use of coping strategies. Repeated measure-
ments were taken over seven unique measurement occasions during the pandemic course
in Germany: covering the pre-pandemic timepoint in January 2020, the first lockdown
in March–April 2020, deconfinement and reopening period in May–September 2020, the
“lockdown light” in October 2020, and three timepoints over the second “hard lockdown”
in November 2020–March 2021 (see Figure 1).
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In a previous study reporting on the data from the first three timepoints [11], a
unique bipolar resilience–vulnerability latent factor emerged that incorporated multiple
state indicators of vulnerability and resilience, with positive factor loadings for vulner-
ability indicators and negative factor loadings for resilience indicators. This is in line
with the theoretical conceptualization of resilience and vulnerability as complementary
counterparts [45,46]. Using this composite bipolar latent resilience–vulnerability factor,
Silveira et al. [11] showed a trend towards increased vulnerability during the lockdown
period and a trend towards resilience upon re-opening and easing of lockdown measures. A
drawback of many of the studies examining mental health trajectories during the pandemic
so far is the use of single measures that often only account for limited aspects of psycholog-
ical vulnerability or resilience, such as the use of the General Health Questionnaire [7,13].
The With:Resilience model postulates that by over-reliance on one single measure, the risk
of failing to capture unique aspects of vulnerability becomes pronounced. Aspects which
gained particular salience during the pandemic, such as loneliness resulting from social
isolation or mental burdens emerging from multi-tasking due to school closures, have
been largely ignored in the determination of resilience–vulnerability profiles in the studies
published so far. The approach adopted by Silveira et al. [11] counters this limitation,
providing a more comprehensive picture. Therefore, in the present study, we took the same
approach as that implemented by Silveira et al. [11] and constructed a composite bipolar
resilience–vulnerability latent factor at each of the seven timepoints. We then used these
factors to investigate the three aims of the present work.

First, we scrutinized the temporal dynamics of the resilience–vulnerability latent factor
over the seven timepoints to chart out the general course of mental health. Importantly,
we investigated whether an “acute stressor effect” and a “pandemic fatigue effect” can
be observed in the general mental health time course during the two national lockdowns
in Germany. Second, we explored the presence of unique heterogeneous trajectories of
resilience–vulnerability and whether these are in line with the theoretical predictions of the
With:Resilience model. Finally, we examined whether certain demographic factors, such
as sex, age, and income, and trait psychological aspects, such as neuroticism, pessimism,
and empathy, can predict which trajectory of resilience–vulnerability is exhibited by an
individual. This will allow a more differentiated and nuanced understanding of the impact
of the pandemic on mental health, leading to the identification of risk factors and specific
vulnerable groups.

2. Materials and Methods
2.1. Sample

The current study is part of the multi-phase CovSocial project. The first phase of
the project examined the impact of the pandemic-related lockdowns in Germany on var-
ious biopsychosocial domains, including vulnerability, resilience, and social cohesion,
in a sample from Berlin, Germany. The second phase of the project focused on the effi-
cacy of app-delivered interventions for mental health and social capacities. The present
study uses data from the first phase of the project. The sample for the current study, re-
cruited from the general Berlin population, includes 3522 participants aged 18–65 years
(mean age = 43.95 ± 12.69 years, 65.11% female). Table 1 provides an overview of the
sample characteristics.

Participants for the CovSocial study were recruited during the period August 2020 to
November 2020 using a variety of recruitment methods, such as sending 56,000 letters to
addresses that were randomly selected by the residents’ registration office in Berlin, e-mail
lists of academic and research institutions, flyers at churches and sports clubs, social media
postings, as well as advertisements in newspapers and on public transportation. Initially,
7214 individuals signed up to participate in the study. Eventually, only 3681 individuals
completed the first survey comprising demographic and trait questionnaires, as well as
the state-level questionnaires for the first three retrospective timepoints. Participants were
excluded from the study if they did not meet the inclusion criteria: age between 18 and
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65 years (n = 81) and residing in Berlin (n = 44). Participants were also excluded based
on their speed of filling out the questionnaires, i.e., too fast or merely clicking through
the questionnaire (n = 30), and content-based inconsistencies in demographic questions
(n = 4). This led to a final sample of 3522 participants. Supplement File S1 provides further
information on the recruitment and exclusion of participants.

Table 1. Demographic and COVID-19-related characteristics of the sample.

Mean (SD) Count (%)

Age 44 (12.7)
Female 2293 (65.1)

Marital status
Single 1709 (48.5)

Married 1302 (37)
Divorced 293 (8.3)

Other 218 (6.2)
Years of education 17 (3.9)

Average monthly net household income
in EUR 3227 (1210)

Migration background 384 (10.9)
Working situation

Full-time 1937 (55)
Part-time 752 (21.4)
Retired 116 (3.3)

Unemployed 93 (2.6)
Other 624 (17.7)

Working hours per week; mean 35.7 (11)
Diagnosed mental disorder in lifetime 876 (24.9)

Depressive disorder 652 (18.4)
Anxiety disorder 297 (8.4)

Trauma-related disorder 162 (4.6)
COVID-19

Biological risk group 836 (23.8)
Job with heightened risk of

infection 865 (25.2)

Initially, the first phase of the project was planned as a retrospective assessment of
psychosocial factors during the first pandemic-related lockdown in Germany and the
periods preceding and following it (T1–T3; Figure 1). However, due to the dynamic nature
of the pandemic, the study was extended to cover not only the first German lockdown
but also the second wave of slowly increasing lockdown restrictions and the introduction
of the vaccination program in 2020 and 2021. Therefore, participants who completed all
questionnaires at the first three retrospective timepoints were invited to answer monthly
follow-up questionnaires at four further timepoints (T4–T7). Given the extended nature
of the assessment, we witnessed longitudinal drop-out during this second period of data
acquisition (see Figure 1). In the analysis, this was dealt with through multiple imputations
for missing data at T4–T7 timepoints (see Analysis section). All participants provided
written informed consent before participation. The study was approved by the Ethics
Committee of Charité—Universitätsmedizin Berlin (#EA4/172/20 and #EA1/345/20) and
was conducted in accordance with the Declaration of Helsinki.

2.2. Measures

Resilience–vulnerability measures consisted of both validated scales and self-generated
questions. Stress perception was measured by the short version of the Perceived Stress
Scale (PSS-4; [47]), using a sum score of the four items. Depressive symptoms were assessed
using the Patient Health Questionnaire-2 (PHQ-2; [48]), and anxiety symptoms using the
Generalized Anxiety Disorder Scale (GAD-2, [49]), each by summing the respective two
items. Moreover, beliefs about self-efficacy were assessed by the General Self-Efficacy
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Short Scale (ASKU; [50]), using the mean score of the three items. Self-generated questions
were developed specifically for capturing aspects of resilience–vulnerability that are spe-
cific to the given pandemic and its dynamic nature, including pandemic-related burdens,
psychosomatic complaints, loneliness, stress recovery, coping approaches, optimism, life
satisfaction, and the perception of the pandemic as a chance or an opportunity for self and
society (positive reappraisal of the pandemic). All self-generated questions were answered
using a 9-point Likert scale. A full list of these questions and their mean values at each
of the 7 timepoints can be found in the Supplementary Information (Files S2 and S3). All
questionnaires and self-generated questions were presented in German, either by using the
validated German form or by translating them for the study.

2.3. Study Design

Data for the present study were collected with repeated online surveys of the state mea-
sures mentioned above, administered through the CovSocial web app (www.covsocial.de
(accessed 24 February 2023)). Assessments took place at seven timepoints: T1 (before lock-
down in January 2020), T2 (during the first lockdown from mid-March to mid-April 2020),
T3 (in June 2020 when restrictions were eased), T4 (November 2020), T5 (December 2020),
T6 (January 2021), and T7 (mid-March to mid-April 2021). The first three timepoints were
assessed retrospectively, in three separate blocks of questionnaires, from 11 September 2020
to 7 December 2020. During this retrospective phase, participants were asked to respond to
questions taking the perspective of the particular timeframe. For example, when respond-
ing to questions in the T1 block, participants had to respond to how they felt and behaved
during January 2020. For the last four timepoints (T4–T7), participants answered the blocks
of questionnaires at the end of each month and rated their feelings, perceptions, and be-
havior for the last four weeks. As part of the online survey for the retrospective period,
participants also completed blocks of demographic and trait measures. Trait measures com-
prised validated psychological questionnaires assessing various time-stable aspects of trait
resilience-vulnerability, adaptive capacities, social belonging, and social capacities (Chronic
stress, neuroticism, trait anxiety, pessimism, trait loneliness, trait maladaptive emotion reg-
ulation styles (self-blame and catastrophizing), trait stress recovery, trait self-compassion,
trait life satisfaction, trait optimism, trait adaptive regulation styles (such as active coping
and positive reframing), trait trust, trait social support, trait prosocial behavior, trait em-
pathy, and trait perspective taking. For further details on trait questionnaires that were
used to previously formulate the latent trait factors, please see Silveira et al. [51]). These
trait measures, assessed as part of the CovSocial project, have been previously validated as
latent trait factors and previously published [51]. In the present study, the estimated factor
scores of these trait latent factors are being used for the first time to assess trait influence on
state resilience–vulnerability trajectories.

2.4. Data Analysis

Statistical analysis was performed in four steps: (1) missing data imputation, (2) mea-
surement model and invariance analyses, (3) growth mixture modeling, and (4) multinomial
regression. R (v4.0.3; [52]) with packages mice (v3.13.0; [53]) and lavaan (v0.6-11; [54]) was
used for the first two steps, and Mplus (v8; [55]) for the last two steps. All analyses that
included significance testing were performed with a significance level of α = 0.05.

2.4.1. Missing Data Imputation

While only complete data were used from T1 to T3, data of entire measurement
timepoints were missing for some persons due to the extended longitudinal design in
timepoints T4 to T7. Additionally, to avoid unreliable data, we removed an individual’s
measurement occasion if a participant answered at least 2 out of 8 control questions (‘please
set the slider on 3’) incorrectly, which was the case for n = 3 participants in T4, T6 and T7,
respectively. We imputed missing data using predictive mean matching for all numeric
variables through the multivariate imputation by chained equations (mice) method [56].

www.covsocial.de
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Trait, demographic, and repeated state measures served as predictor variables for the
imputation model. A variable was only used as a predictor if the proportion of usable cases
was at least 0.25 and the correlation with the to-be-imputed variable was higher than 0.25.
An average of 20 predictor variables for each imputed variable was used. In total, 21 fully
imputed data sets were used for further analyses.

2.4.2. Measurement Model

For each of the seven timepoints, we specified a latent resilience–vulnerability factor
using confirmatory factor analyses (see Figure 2A). The measurement model was adapted
from Silveira et al. [11], where data from the first three retrospective timepoints were used
to examine different latent factor models, including a latent resilience–vulnerability factor.
In the present study, we also modeled such a bi-polar factor comprising vulnerability indi-
cators of stress, burdens, loneliness, perceived stress, psychosomatic complaints, depressive
symptoms, and anxiety, as well as resilience indicators of resistance, life satisfaction, self-
efficacy, optimism, coping, and crises as a chance. Moreover, an additional adaptive coping
factor was modeled at each of the seven timepoints, in line with Silveira et al. [11], which
captured residual variances of the resilience indicators. However, while the residual adap-
tive coping factor was specified in the measurement model, it was not used for further anal-
yses because this paper focuses on classic aspects of the resilience–vulnerability construct.
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Figure 2. Panel (A) presents the latent factor model with the various indicators of resilience–
vulnerability that entered the model. It also shows the additional adaptive coping factor that
was modeled at each of the seven timepoints, which captured residual variances of the resilience
indicators. However, this additional factor is not used for further analyses in this paper due to the low
factor score reliabilities for this factor at all seven timepoints and also due to the focus of the current
paper on more classic resilience–vulnerability aspects. Panel (B) presents the resilience–vulnerability
growth trajectory across the seven timepoints, with acute lockdown and pandemic fatigue effects
being observed during two lockdowns. Grey panels indicate the two lockdown periods in Germany.

To ensure that means of the latent factors are comparable across measurement occa-
sions, constraints of scalar measurement invariance (i.e., equality of factor structure, factor
loadings, as well as intercepts across measurement timepoints) were introduced. Due to the
differences in data acquisition between T1–T3 and T4–T7, and because no direct comparison
of mean values between the two periods was intended, factors of T1 to T3 and factors of T4
to T7 were constrained to measurement invariance separately, that is, parameters were set
equal only within each period. However, all timepoints, regardless of different constraints,
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were modeled in the same structural equation model with the factor mean of T1 set to 0
and factor variance of T1 set to 1. Thereby, we tried to enable the descriptive presentation
of the whole trajectory and a relative level of all timepoints compared to the baseline.

Maximum likelihood estimation was used for parameter estimation. The analysis was
repeated for each imputed data set, and results were pooled across analyses afterward.
Model fit indices indicated an acceptable fit of the scalar measurement invariance model
with CFI = 0.93, TLI = 0.93, and RMSEA = 0.026. In the last step, we estimated factor
scores of the main resilience–vulnerability factor for each participant and each imputed
data set using the standard method. The reliability of the estimated factor scores was
reasonably high (ranging between 0.91 and 0.95 for each of the seven timepoints averaged
over multiple imputations). As mentioned previously, the residual adaptive coping factor
was specified in the measurement model but not used for further analyses due to the focus
of the paper on classic aspects of the resilience–vulnerability construct. Moreover, the
factor score reliability of the residual factor was considered too low for using these factor
scores for further analyses (ranging between 0.20 and 0.30 for each of the seven timepoints
averaged over multiple imputations).

2.4.3. Growth Mixture Modeling

Growth mixture modeling was accomplished in two steps. First, to examine the
general trajectory of resilience–vulnerability over time, the seven extracted factors were
modeled using latent change score (LCS) and growth curve modeling techniques in Mplus
for each imputation, respectively. Changes in resilience–vulnerability from T1 to T2 (acute
lockdown effect) and from T2 to T3 (effect of re-opening) were assessed by modeling the
differences between the respective timepoints as latent variables, referred to as LCS1 (T1
to T2) and LCS2 (T2 to T3) in the following. The average amount of change is reflected in
the mean of each change score; the variance informs about the extent of inter-individual
differences in the amount of change. This latent change score analysis approach has been
previously applied by Silveira et al. [11] to T1–T3 data. Furthermore, we freely estimated
the covariance between LCS1 and resilience–vulnerability at T1, as well as between LCS2
and resilience–vulnerability at T1, to account for the assumed correlation between change
scores and baseline state factor. To capture the expected increase in mental burdens due
to the increasingly intensified lockdown restrictions in Germany, a linear growth function
was specified for T4 to T7. The latent slope factor was defined by factor loadings of 0 at T4,
1 at T5, 2 at T6, and 4 at T7 since the time elapsed between measurements was one month
between T4, T5, and T6 and two months between T6 and T7. Thus, the latent intercept
factor was positioned at T4.

In the second step, a mixture analysis was applied to the growth model to examine
whether there are different latent classes of resilience–vulnerability time courses. The
method of growth mixture modeling is used to identify unobserved subpopulations with
different mean growth trajectories [57]. This is realized as a latent categorical variable
on which the growth parameters (in our case, latent change scores and intercept and
slope of the growth curve) are regressed. All parameters, including means and (residual)
variances of growth parameters and latent factors, were allowed to vary freely between
classes. To identify the optimal number of classes, we iteratively increased the number of
classes in the model, and compared model fit in terms of Akaike’s Information Criterion
(AIC) and Bayesian Information Criterion (BIC). A lower AIC and BIC represent a better
fit. Furthermore, we considered the entropy (i.e., classification accuracy) of the different
models and evaluated whether an additional class led to a superior solution in terms of
theoretical plausibility (e.g., mean trajectories, number of assignments per class).

2.4.4. Multinomial Logistic Regression

To identify trait and demographic factors that predict class membership, we followed
the Three-Step Approach of Vermunt [58] to include (auxiliary) predictor variables in a
mixture model [59]. According to that, after the specification of the mixture model without
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including predictors (step 1, already described in the previous section), the participants
were assigned to the latent classes based on their posterior class membership probabilities
(step 2), and these class assignments were used as dependent variables in a multinomial
regression (step 3). We implemented this by using the R3STEP method in Mplus.

We introduced the following predictors into the multinomial regression model: trait
resilience-vulnerability, trait adaptive capacities, trait social belonging, trait social capacities,
age, (female) sex, psychiatric diagnosis, civil status (being married, cohabiting or in a
partnership), household income (lower than Berlin monthly average net income €2175 [60]),
full-time employment, years of education, and migration background. The first four trait
predictors mentioned above refer to latent trait factors, which were developed in an earlier
study of the CovSocial project [51]. These latent trait factors comprise trait indicators, such
as neuroticism and pessimism. For further details on questionnaires and measures that the
trait factors comprise, see Silveira et al. [51]. For each of the four trait factors, we estimated
factor scores for every participant applying the standard method, and these factor scores
were used in our analysis. The reliability of the estimated factor scores ranged between
0.93 and 0.51 for the four trait factor scores.

3. Results

The growth trajectory model had a very good pooled model fit (CFI = 0.99, TLI = 0.98,
RMSEA = 0.065), indicating that this model is a good representation of the resilience–
vulnerability time course of the entire sample. A depiction of the modeled trajectory can
be seen in Figure 2B. Results show that there is a significant mean increase in resilience–
vulnerability from T1 to T2 (acute stressor effect) of 0.68 (p < 0.001) and a significant mean
decrease in resilience–vulnerability from T2 to T3 (reopening effect) of −0.51 (p < 0.001)
in the general population. Further, an estimated growth curve slope of 0.057 (p < 0.001)
indicates that there is a steady linear increase in resilience–vulnerability during the second
lockdown. Descriptively, one can see that the mean value at T7 (0.847) even exceeds the
peak of the acute lockdown effect in T2 (0.680). The intercept of the growth curve part,
representing the mean value at T4, is significant with a value of 0.60 (p < 0.001). Likewise,
the variances of the latent change factors and the latent linear growth factor are significant
(Var(LCS1) = 0.937, p < 0.001; Var(LCS2) = 0.493, p < 0.001; Var(slope) = 0.009, p < 0.001).
As such, we observe an acute stressor effect from T1 to T2 and a recovery effect from T2 to
T3. Meanwhile, from T4 to T7, a pandemic fatigue effect is observed, and descriptively the
levels of vulnerability from 2020 to 2021 seem to have worsened.

In the next step, we examined whether the differences between individuals could be
due to different latent classes. Mixture analyses with different numbers of classes revealed
that model fit improved up to a 5-class solution (see Table 2). A 6-class solution could not
be estimated due to convergence issues. The additional gain in fit from the 4-class to the
5-class solution was, however, rather small (0.48% in AIC, 0.14% in BIC). Moreover, the
smallest class in the 5-class solution had only 5.5% of the sample, which is on the verge
of the recommended sample size [61], and class distribution of the 5-class solution was
not theoretically more plausible and more informative because the growth patterns of
classes 2 and 3 were very similar and close to each other. In contrast, the 4-class solution
represented the most plausible solution based on class distribution, plotting of trajectory
patterns, and theoretical assumptions and was, thus, retained as the final solution. The
entropy of this model was 0.64, which is below the often-suggested threshold of 0.80 [62].
However, the average latent class posterior probabilities, representing another index of
model classification accuracy, were above or close to the common threshold of 0.80 (see
Table 3; [62]). Therefore, the obtained classes were assumed as well-separable, serving as a
good basis for further analyses.
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Table 2. Comparison of model fit, classification accuracy, and class distributions of the 1- to 5-class
models. Class 1 always refers to the class with the highest level of vulnerability. AIC = Akaike’s
Information Criterion, and BIC = Bayesian Information Criterion.

Number
of

Classes
AIC BIC

Sample
Size-Adjusted

BIC

Log
Likelihood Entropy Class 1

(N)
Class 2

(N)
Class 3

(N)
Class 4

(N)
Class 5

(N)

1 40,033.87 40,181.87 40,105.61 −19,802.49 100%
2 36,392.66 36,657.84 36,521.20 −18,153.33 0.69 44.5% 55.5%
3 35,832.02 36,214.36 36,017.35 −17,854.01 0.61 44.6% 35.5% 19.9%
4 35,476.18 35,975.69 35,718.31 −17,657.09 0.644 13.0% 15.93% 46.11% 24.96%
5 35,307.75 35,924.43 35,606.68 −17,553.87 0.66 10.2% 14.7% 42.9% 5.5% 25.6%

Table 3. The average posterior latent class probabilities of the 4-class mixture model. In the diagonal:
the average probability of a participant being assigned to a class. In the off-diagonal: the average
probability of being assigned to another class. Class 1 always refers to the class with the highest level
of vulnerability.

Most Likely Latent Class

1 2 3 4

Latent Class

1 0.830 0.088 0.000 0.001
2 0.166 0.771 0.115 0.101
3 0.000 0.055 0.777 0.059
4 0.003 0.086 0.107 0.839

In the 4-class model, descriptively, all classes showed a similar growth pattern com-
parable to the time course of the overall population but at different levels (see Figure 3).
Importantly, in change scores, it can be seen descriptively that in classes 1 and 2, recovery
after the first lockdown was not to levels prior to the lockdown, while in classes 3 and 4,
recovery to baseline levels could be observed. Along these lines, a descriptive comparison
of the slope from T4 to T7 shows the steepest increase in vulnerability in class 2 and the
least in class 4. Therefore, in the following, we refer to class 1 as the most vulnerable class,
class 2 as more vulnerable, class 3 as more resilient, and class 4 as the most resilient. All
means and variances of the estimated parameters were significantly different from zero,
indicating a significant mean increase from T1 to T2, a significant mean decrease from T2 to
T3, as well as a significant mean linear increase from T4 to T7 in each class, and significant
between-person variation in these effects. All parameter estimates can be seen in Table 4.

To examine how the growth patterns differed between classes and which growth
parameters were most important to distinguish classes beyond the resilience–vulnerability
level at baseline (i.e., T1), we tested change scores, intercept, and slope of each class for
significance using a Wald test. First, a joint test of equality of the respective parameter
for all classes was conducted. Second, we tested post-hoc paired comparisons to give a
more detailed picture of which classes’ parameters differ significantly, with a Bonferroni
corrected α of 0.0083 (due to 6 comparisons for each parameter). A Wald test of parameter
constraints revealed that, overall, both latent change scores, as well as the slope differed
significantly between classes. Post-hoc tests, however, showed that the LCS1 mean of the
most resilient class significantly differed from the estimates of all other classes, and the
LCS1 mean of the more resilient class differed significantly from the estimate of the most
vulnerable class. Moreover, the LCS2 mean of the most resilient class significantly differed
from the LCS2 mean of all other classes. For growth curve slopes, only the comparison
of slopes of the more vulnerable and the most resilient class was significant. The result
statistics of these post-hoc tests can be seen in Table 5.



Healthcare 2023, 11, 1305 11 of 22

Healthcare 2023, 11, x FOR PEER REVIEW  12  of  25 
 

 

        Res‐Vul T1 1.455 (< 0.001) 0.922 (< 0.001) 0.530 (< 0.001) 0.281 (< 0.001) 

        LCS1 1.653 (< 0.001) 1.387 (< 0.001) 0.633 (< 0.001) 0.174 (< 0.001) 

        LCS2 0.862 (0.001) 1.026 (< 0.001) 0.338 (< 0.001) 0.079 (< 0.001) 

        Intercept 0.525 (< 0.001) 0.820 (< 0.001) 0.582 (< 0.001) 0.477 (< 0.001) 

        Slope 0.001 (0.558) 0.029 (< 0.001) 0.005 (< 0.001) 0.003 (< 0.001) 

Covariances         

        LCS1 with Res‐Vul T1 −1.157 (< 0.001) −0.597 (0.042) −0.263 (< 0.001)   0.030 (< 0.001) 

        LCS1 with LCS2 −0.396 (0.004) −0.600 (< 0.001) −0.269 (< 0.001) −0.070 (< 0.001) 

        LCS2 with Res‐Vul T1   0.058 (0.428)   0.050 (0.372)   0.062 (0.001) −0.009 (0.263) 

      Slope with Intercept −0.001 (0.826) −0.042 (0.010) −0.007 (0.022)   0.001 (0.697) 

 

 

Figure 3. The observed  resilience–vulnerability  time courses of  the  four classes. Using a growth 

mixture analysis, final class counts and proportions for the latent classes based on their most likely 

latent class membership were as follows: “Most Vulnerable” class 1 = 450, “More Vulnerable” class 

2 = 587, “More Resilient” class 3 = 1622, “Most Resilient” class 4 = 863. 

To examine how the growth patterns differed between classes and which growth pa‐

rameters were most important to distinguish classes beyond the resilience–vulnerability 

level at baseline (i.e., T1), we tested change scores, intercept, and slope of each class for 

significance using a Wald test. First, a joint test of equality of the respective parameter for 

all classes was conducted. Second, we tested post‐hoc paired comparisons to give a more 

detailed picture of which classes’ parameters differ significantly, with a Bonferroni cor‐

rected α of 0.0083 (due to 6 comparisons for each parameter). A Wald test of parameter 

constraints revealed that, overall, both latent change scores, as well as the slope differed 

significantly between classes. Post‐hoc tests, however, showed that the LCS1 mean of the 

most resilient class significantly differed from the estimates of all other classes, and the 

LCS1 mean of the more resilient class differed significantly from the estimate of the most 

vulnerable class. Moreover, the LCS2 mean of the most resilient class significantly differed 

from the LCS2 mean of all other classes. For growth curve slopes, only the comparison of 

slopes of the more vulnerable and the most resilient class was significant. The result sta‐

tistics of these post‐hoc tests can be seen in Table 5. 

Figure 3. The observed resilience–vulnerability time courses of the four classes. Using a growth
mixture analysis, final class counts and proportions for the latent classes based on their most likely
latent class membership were as follows: “Most Vulnerable” class 1 = 450, “More Vulnerable”
class 2 = 587, “More Resilient” class 3 = 1622, “Most Resilient” class 4 = 863.

Table 4. Parameter estimates from the Growth Mixture Model per class. p-values in brackets.
Significant estimates (p < 0.05) are in bold. Res-Vul T1 = State Resilience–vulnerability at time point 1,
LCS = Latent change score. Intercept and slope refer to the linear growth curve from T4 to T7.

Class

Most Vulnerable More Vulnerable More Resilient Most Resilient

Means
Res-Vul T1 1.017 (<0.001) 0.173 (0.233) 0.013 (0.861) −0.720 (<0.001)

LCS1 1.346 (<0.001) 0.898 (<0.001) 0.618 (<0.001) 0.248 (<0.001)
LCS2 −0.640 (<0.001) −0.585 (<0.001) −0.545 (<0.001) −0.324 (<0.001)

Intercept 2.188 (<0.001) 1.065 (<0.001) 0.517 (<0.001) −0.474 (<0.001)
Slope 0.044 (<0.001) 0.073 (<0.001) 0.061 (<0.001) 0.040 (<0.001)

Variances
Res-Vul T1 1.455 (<0.001) 0.922 (<0.001) 0.530 (<0.001) 0.281 (<0.001)

LCS1 1.653 (<0.001) 1.387 (<0.001) 0.633 (<0.001) 0.174 (<0.001)
LCS2 0.862 (0.001) 1.026 (<0.001) 0.338 (<0.001) 0.079 (<0.001)

Intercept 0.525 (<0.001) 0.820 (<0.001) 0.582 (<0.001) 0.477 (<0.001)
Slope 0.001 (0.558) 0.029 (<0.001) 0.005 (<0.001) 0.003 (<0.001)

Covariances
LCS1 with Res-Vul T1 −1.157 (<0.001) −0.597 (0.042) −0.263 (<0.001) 0.030 (<0.001)

LCS1 with LCS2 −0.396 (0.004) −0.600 (<0.001) −0.269 (<0.001) −0.070 (<0.001)
LCS2 with Res-Vul T1 0.058 (0.428) 0.050 (0.372) 0.062 (0.001) −0.009 (0.263)
Slope with Intercept −0.001 (0.826) −0.042 (0.010) −0.007 (0.022) 0.001 (0.697)
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Table 5. The results of post-hoc comparisons with Wald’s t-test. p-values in brackets. Significant
comparisons (p < 0.0083) in bold. LCS = latent change score.

LCS1 Comparison LCS2 Comparison Slope Comparison

Class 1—Class 2 2.245 (0.134) 0.165 (0.685) 0.129 (0.720)
Class 1—Class 3 15.420 (<0.001) 1.029 (0.310) 2.817 (0.093)
Class 1—Class 4 27.565 (<0.001) 11.471 (<0.001) 0.129 (0.720)
Class 2—Class 3 3.833 (0.050) 0.309 (0.579) 1.045 (0.307)
Class 2—Class 4 34.214 (<0.001) 17.087 (<0.001) 8.815 (0.003)
Class 3—Class 4 48.338 (<0.001) 52.515 (<0.001) 6.404 (0.011)

In the final step, we assessed the importance of various trait and demographic predic-
tors in explaining class membership using a multinomial regression procedure. Odds ratios
for the included predictors were calculated in comparison to a reference class. We set the
most resilient class as the reference group, which means that the reported odds ratios reflect
the chance of being in a specific other latent class as opposed to the most resilient group (see
Table 6). Amongst trait predictors, trait resilience–vulnerability emerged as the most robust
predictor of all classes, such that there were greater odds of individuals with higher levels
of trait vulnerability being in the most vulnerable class, followed by the more vulnerable
and then the more resilient class (see Figure 4). In a similar vein, there were greater odds of
individuals with lower levels of trait social belonging being in a more vulnerable class. On
the other hand, we observed greater odds of being in the more vulnerable class with higher
levels of trait adaptive capacities followed by the more resilient class. Trait social capacities
did not emerge as a significant predictor for class assignments.

Table 6. Results (odds ratios) from the multinomial regression analysis with predictors for the
resilience–vulnerability trajectory classes, with the most resilient class as the reference group.
CI = confidence interval; reference group = most resilient trajectory (n = 863); most vulnerable
trajectory (n = 450); more vulnerable trajectory (n = 587); more resilient trajectory (n = 1622). * p < 0.05.
** p < 0.01. *** p < 0.001.

Predictor
Most Vulnerable

Multinomial Odds Ratio
(95% CI)

More Vulnerable
Multinomial Odds Ratio

(95% CI)

More Resilient
Multinomial Odds Ratio

(95% CI)

Trait Resilience-Vulnerability 884.19 (323.11, 2419.55) *** 23.29 (15.30, 35.44) *** 18.71 (13.18, 26.58) ***
Trait Adaptive Capacities 1.27 (0.65, 2.51) 2.37 (1.63, 3.45) ** 1.62 (1.19, 2.20) *

Trait Social Belonging 0.83 (0.49, 1.39) 0.66 (0.51, 0.87) * 0.97 (0.76, 1.23)
Trait Social Capacities 1.11 (0.61, 2.01) 0.95 (0.67, 1.32) 0.83 (0.63, 1.08)

Age 0.96 (0.93, 0.99) * 0.98 (0.96, 1.001) 0.98 (0.96, 0.99) *
Female Sex 3.26 (1.22, 8.75) *** 3.97 (2.45, 6.43) *** 2.79 (1.96, 3.99) ***

History of Psychiatric
Diagnosis 2.12 (0.79, 5.62) 2.14 (1.21, 3.79) ** 1.43 (0.84, 2.44)

Married/Cohabiting/Partnership 1.15 (0.85, 1.54) 1.12 (0.93, 1.34) 1.10 (0.95, 1.28)
Lower than average
household income 0.98 (0.91, 1.05) 0.95 (0.92, 0.99) * 0.96 (0.93, 0.99) *

No full-time employment 0.97 (0.88, 1.08) 0.96 (0.91, 1.01) 0.96 (0.92, 1.01)
Years of Education 0.99 (0.86, 1.14) 1.05 (0.99, 1.11) 1.00 (0.96, 1.04)

Migration background 3.23 (0.85, 12.28) 1.61 (0.85, 3.06) 1.47 (0.82, 2.64)

Of the demographic predictors, the female sex robustly predicted membership to all
three classes, such that there were greater odds of individuals with the female sex being
in the most vulnerable class, followed by more vulnerable and then more resilient classes.
Age also significantly predicted class membership, such that we observed greater odds of
younger people being in the most vulnerable class, followed by the more resilient class,
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compared to the most resilient class. Furthermore, there were greater odds of individuals
with lower-than-average levels of income being in more vulnerable and more resilient
classes as compared to the most resilient class. Lastly, we also observed greater odds of
individuals with a lifetime prevalence of psychiatric disorders being in a more vulnerable
class compared to the most resilient. Meanwhile, civil status, employment status, years of
education, and migration background were not significant predictors for class assignment.
For an overview of the demographic characterization of the four classes, see Figure 5.
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Figure 4. Probability of individual membership in a certain class as a function of the level of the
latent trait predictors. The latent trait predictors used in the multinomial regression model were trait
resilience-vulnerability, adaptive trait capacities, trait social belonging, and trait social capacities. The
dots represent the predicted probabilities, and the lines depict the smoothed curves.
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4. Discussion

The present study, embedded in the first phase of the CovSocial project [44], aimed to
examine how mental health evolved over the course of the COVID-19 pandemic in Germany
in 2020 and 2021, using a bi-polar resilience–vulnerability latent factor comprising multiple
state self-report indicators, including both classic resilience and vulnerability aspects, such
as stress, anxiety, depression, life satisfaction, optimism, but also more pandemic-specific
fears and burdens. We had three main objectives. First, we aimed to chart out the general
time course of resilience–vulnerability over seven timepoints during the pandemic in
Germany, including two lockdowns, and additionally to understand the broader evolution
of this trajectory in terms of acute stressor, recovery and pandemic fatigue effects. Second,
we aimed to investigate whether there was heterogeneity in mental health responses
concerning the various phases of the pandemic by examining the presence of different
latent class trajectories of resilience-vulnerability. Lastly, we set out to understand whether
inter-individual differences in trait characteristics, such as neuroticism and optimism, and
demographic factors, such as sex and age, predicted mental health profiles during the
pandemic to identify risk and protective factors.

Using data from the longitudinal CovSocial project, we found that resilience–vulnerability
over the course of the pandemic, in a sample of 3522 Berliners, was indeed affected
significantly by the dynamic evolution of the disease and the corresponding shifts in
public health policy and related restrictions in 2020 and 2021. Importantly, we found
evidence for the existence of three unique features of the dynamic resilience–vulnerability
trajectories expanding over two main lockdowns in Germany. First, we observed an
acute stressor effect as a result of the first lockdown following the declaration of the
pandemic, which resulted in increased psychological vulnerability in March and April 2020
compared to the pre-pandemic time. This finding is in line with previous studies from
across the globe that have shown an acute increase in mental health difficulties following the
imposition of first social distancing and confinement measures [7,9,11]. Second, a recovery
effect was noticed as the first lockdown was lifted in Germany, such that vulnerability
decreased at the measurement occasion of June 2020, and individuals tended towards
more resilient responses. This finding also corresponds with other studies that examined
mental health trajectories during deconfinement periods, including from Germany, that
found that individuals were overall showing more resilient responses during this period of
time [11,13–15].

However, thirdly, a worrying “pandemic fatigue effect” was detected during the
phase of highly dynamic public health policy changes in Germany from November 2020 to
May 2021, which was characterized by worsening mental health and linearly increasing
vulnerability with every passing month until peak vulnerability in March-April 2021. This
finding provides evidence for a cumulative risk approach to the COVID-19 pandemic [30],
such that increases in the degree of cumulative exposure to the pandemic-related restric-
tions led to further aggravation of psychological vulnerability. The finding also directly
corroborates the conceptualization of a pandemic fatigue effect in the With:Resilience
model [31]. Thus, while cross-sectional studies have linked decreased adherence to public
health regulations to poor mental health during the pandemic [34,35], our present finding
may provide direct empirical evidence of this mental health fatigue longitudinally. It is
also in line with the few published studies that have shown magnified psychopathological
symptoms in the long run as a result of extended lockdown measures [26,27]. Importantly,
given that we measure resilience–vulnerability responses in the same time period (mid-
March to mid-April) in the same sample, a direct descriptive comparison between the levels
of vulnerability during 2020 and 2021 revealed that mental health became worse off from
the first lockdown in 2020 to the next much longer lockdown a year later. These findings
crucially extend prior work conducted in Germany that showed increasing improvements
in mental health in the first few weeks of the pandemic [13] and found no changes in
mental health difficulties in German students from the deconfinement period (July 2020)
to the beginning of the second lockdown (November 2020) [63]. This suggests that when
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considering longer assessment periods under protracted stressors, such as the extended
second lockdown in Germany, mental health declines palpably.

Moreover, we also observed heterogeneity in terms of resilience–vulnerability time
course in our sample, i.e., the course of the pandemic affected different people differently.
Accordingly, we detected four distinct latent classes of resilience–vulnerability trajectories in
our sample: most vulnerable, more vulnerable, more resilient, and most resilient. This cor-
responds with prevalent models of resilience that postulate the emergence of heterogeneous
trajectories of psychological well-being, coping, and resilience in response to stress [36,37].
However, the trajectories depicted by the four classes in the present data do not align with
the hypothesized trajectories in the With:Resilience conceptual framework [31]. Specifically,
we do not observe in our data the two rather flat resilience–vulnerability trajectories hypoth-
esized in the With:Resilience framework (chronic vulnerability and non-reactive resilience),
wherein individuals do not respond to the various phases of the pandemic. Instead, at
first glance, all four classes seemed to be characterized by fairly similar temporal patterns
of resilience–vulnerability during the course of the pandemic, all showing acute stressor
and pandemic fatigue effects. This finding is a departure from prevailing resilience models
focusing on the effects of stressors, such as individual challenging life events, traumatic
events, or natural disasters [28,36,37,64]; it seems that the COVID-19 pandemic, and the
related lockdowns, present a unique global stressor that left its mark on the psychological
well-being of all segments of the population.

While nearly two-thirds of the participants in our sample fell into the more resilient
classes (~70%) in line with other studies examining mental health response heterogeneity
during the pandemic [65], we also identified two vulnerable groups that comprise nearly
30% of the sample. When looking at the descriptive trajectories found in our data, what
becomes immediately evident is the relevance of pre-existing differences in resilience–
vulnerability responses across classes. Since the classes differ in their baseline levels, it
implies that the onset and evolution of the pandemic only served to exacerbate the pre-
existing differences in mental health vulnerability depicted by different groups. Upon
closer look at the four trajectories, the distinct responses of these classes to the various pan-
demic phases are also revealed. Those in the most and more vulnerable classes seemingly
showed a more pronounced acute response to the first lockdown and less of a recovery in
psychological well-being after the first lockdown, compared to the most and more resilient
classes who seemed to show a return to pre-pandemic levels of resilience–vulnerability
in June 2020. Moreover, the steepest rise in vulnerability during the second lockdown
was depicted by the more vulnerable class, further supporting the idea of exacerbation of
pre-existing mental vulnerability. As such, the latent class trajectory analysis hinted at the
complex and specific nature of the impact that the pandemic had on different individuals.

In the next step focusing on the identification of risk and protective factors, the logistic
regression revealed that, indeed, different trait and demographic aspects predicted which
trajectory of resilience–vulnerability was exhibited by an individual. In line with diathesis-
stress models and the With:Resilience model [31,66] and previous studies conducted during
the pandemic [7,13,15,38,39], we found that trait psychological aspects, such as latent
trait factors of resilience-vulnerability, adaptive coping capacities, and social belonging
predicted class membership. Higher levels of trait vulnerability, comprising aspects such as
chronic stress, neuroticism, and pessimism [51], were one of the strongest trait predictors
of who fell into the most and more vulnerable classes. Higher levels of trait loneliness
and lower levels of social support, as reflected in the trait social belonging factor, were
also associated with individuals exhibiting the more vulnerable trajectory. This is an
especially important finding given the socially isolating nature of the pandemic, and
related lockdowns led to reports of significant increases in loneliness, especially amongst
the young [63,67–69]. Interestingly, we found that higher levels of trait adaptive capacities
factor, which includes the use of adaptive coping strategies, optimism, and self-compassion,
predicted membership to the two middle classes in comparison to the most resilient class.
Higher levels of adaptive capacities being predictors of more vulnerable and less resilient
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classes during the pandemic could be a function of the stressor itself. Given the confinement
and social isolation restrictions, it is possible that people who could not implement their
trait adaptive capacities to counter the stressful effects of the pandemic, such as using
trait adaptive coping and regulation strategies like behavioral activation, ended up then
showing a vulnerable response because they could not successfully cope with the stressors
using the resources they normally would. Similarly, it has been argued that in the context
of the COVID-19 pandemic, social factors that facilitate coping and adaptation may lead
to both traumatic stress and posttraumatic growth [70]. This view aligns with prevalent
psychopathology perspectives that posit implementation failure and not only access to a
limited repertoire of adaptive coping capacities as one of the key mechanisms for heightened
mental health problems [71,72]. As such, while these individuals might have the repertoire
of adaptive capacities at hand to be able to cope well in other socially non-isolating contexts,
their failure to implement these capacities in the pandemic context potentially led these
individuals to fall into a more vulnerable or less resilient category. However, in comparison
to the most vulnerable class, the more vulnerable and more resilient classes showed stronger
recovery in June 2020, perhaps indicating a role of higher trait adaptive capacities.

Focusing on key demographic variables, we also found the female sex to be one of the
strongest demographic predictors of being in the most and more vulnerable class. Similarly,
age also turned out to be a significant predictor, with younger individuals having greater
odds of depicting the most vulnerable trajectory. Both individuals with lower socioeco-
nomic status (earning less than the Berlin net monthly average income) and individuals
with a lifetime prevalence of psychiatric disorders had greater odds of exhibiting a more
vulnerable trajectory. These findings indicate that mental health disparities that existed
prior to the pandemic have perhaps been exaggerated in the pandemic context as the
most and more vulnerable groups depicted stronger acute stressor and pandemic fatigue
effects and showed muted recovery. Females, younger cohorts, and individuals in lower-
income groups have consistently been shown to be at risk for developing mental health
problems [73–75], and studies conducted during the pandemic have also shown similar
patterns [39,76–78]. While we do not investigate the mechanisms that might underlie these
disparities, they could potentially be a reflection of aspects such as increased childcare
burden for women, decreased social contact with peers for younger people, or decreased job
or financial security for individuals in lower income groups, that have been documented by
other studies [78,79]. As such, it can be understood that mental health disparities in terms
of sex, age, history of mental illnesses, and socioeconomic status increased as the lockdown
measures became prolonged. This also implies that while the pandemic might have been
theorized as a collective stressor, conceptually speaking, socially disadvantaged groups
were affected by it differently. The findings from the current study accordingly present a
nuanced and specified view of pandemic-related mental health impacts and extend related
findings on collective stressors and existing social inequalities [80,81].

5. Strengths and Limitations

The present study is one of the rare studies to examine mental health trajectories
during the multiple lockdowns in Germany in 2020 and 2021, tracking different resilience–
vulnerability trajectories in a fairly large community sample (n = 3522) for a relatively long
period of time (measurement occasions covering >12 months). Moreover, our assessment
of resilience–vulnerability was not limited to specific aspects of mental health using only a
single measure, but we endeavored to examine a wide range of vulnerability and resilience
domains to provide a more comprehensive picture of mental health during the pandemic.
Using latent modeling approaches to our advantage, we were able to uniquely assess very
pandemic-specific vulnerability aspects, such as loneliness or pandemic-related burdens
(e.g., burdens of care and finances), in addition to common mental health difficulties, such
as depressive and anxious symptoms. We adopted a similar holistic approach to predictors
of mental health trajectories, including not only classic trait aspects, such as neuroticism or
pessimism, but also social trait capacities, such as empathy and trust.
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Regarding representativeness, our sample was representative of the Berlin population
in terms of average age (43 years in both our sample and the Berlin population [60]). While
we had an overrepresentation of females in the sample (65.1%) in comparison to the Berlin
population (50.5%), this is similar to other online psychology studies conducted during the
pandemic both in Germany and globally [7,13,26,63,82]. Moreover, our sample was highly
comparable to the German population in terms of the lifetime prevalence of psychiatric
disorders. In our sample, 24.9% of individuals indicated a history of psychiatric disorders,
and in the German population, this is 27.7% [83]. Similarly, the sample was comparable to
the Berlin population in terms of married or registered partnerships cohabiting, which in
our sample was 37%, and in the Berlin population, this was 34.2%.

Despite the strengths of this work, there are also crucial limitations that must be
addressed. A key limitation of the current study is related to the retrospective assessment
of the first three timepoints, which may have led to a recall bias. Given the unpredictable
nature of the pandemic, retrospective study designs have been applied in prior work inves-
tigating longitudinal mental health trajectories during the pandemic [84–86]. The retrospec-
tive timepoints in the present study (January 2020, March–April 2020, and June 2020) were
assessed after the easing of the first lockdown measures in Germany (11 September 2020
until October 2020). However, to ensure a more vivid recall of the feelings and behaviors in
specific time periods, participants underwent a short perspective-taking exercise before
answering questions for each of the three timepoints. In the perspective-taking exercise,
participants were presented with a brief text that reminded them of the main national and
international current events of political and societal importance taking place and being
reported in local and national news at that time (see Supplement File S1). Participants were
also periodically presented with this text prompt at several points in between the survey.
Participants were asked to answer all questions taking the perspective of timepoint and
events described in the text prompts. Additionally, participants also completed an addi-
tional question that assessed perspective-taking, indicating that it was not very difficult to
recall specific periods retrospectively (mean = 2.92 ± 1.72, range = 0–8, higher scores repre-
sent more difficulties, missing n = 1049). Importantly, average values of pandemic-specific
indicators, such as pandemic-related burdens and fears, showed very low values at the first
assessment timepoint, as reported in a previous study from the CovSocial project [11]. Both
these aspects more concretely attest that participants could indeed distinguish between the
specific time periods when answering the questionnaires of the first three timepoints.

A further limitation of the present study is that the sample is not representative of
the Berlin population in terms of average net monthly income and migration background.
While in our sample, the average net monthly income was €3227, in the Berlin population,
this number is €2175, indicating that the current sample, on average, had higher income
than the larger population. Although in our study, we already detect significant effects of
income levels on vulnerability, with lower-than-average income groups emerging to be
a risk group for mental health. However, future studies employing even more stratified
samples and further diverse socioeconomic groups could provide more precise insights
into mental health patterns under sustained stressors. Moreover, while nearly 37% of
Berliners reported having a migratory background in 2021 [60], in our sample, this number
was only about 10% which is significantly less. The primary reason for this could be the
inclusion criteria for the study requiring proficiency in the German language since the
study was conducted exclusively in the German language. For conceptual clarity, migration
background, as assessed in the Berlin micro-census, could be seen as the assessment of
ethnic identity, i.e., it includes those with foreign nationality but also first-, second-, and
even third-generation migrants to Germany. Migration background can be an important
predictor of mental health [87], and future studies should employ more representative
samples to assess the effect of interaction between pandemic stressors and migration status
on mental health trajectories. Furthermore, migration background, as conceptualized by
the Berlin census and correspondingly in this study, is treated as an umbrella factor, which
makes it a rather flawed measure of racial and ethnic diversity [88]. Such an assessment
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of migration background necessarily excludes the differing predictive effects of race and
ethnicity on mental health during the pandemic. A differentiated view, therefore, would be
necessary to develop an even sharper understanding of mental health disparities. Therefore,
future studies with more representative and fully random samples drawn from the Berlin
population would be necessary. Lastly, while the present study delineates key risk groups,
given the scope of the present study, we were unable to directly investigate the mechanisms
that might underlie these disparities. Although, as mentioned previously, some other stud-
ies have linked these disparities to increased childcare burden, decreased social interaction
with peers, and decreased job or financial security [78,79], a further detailed examination is
necessary to provide a more nuanced view of the mechanistic processes.

6. Conclusions

The present work aimed to understand how different mental health trajectories
evolved over the course of the pandemic in Germany in 2020 and 2021, including two lock-
downs, and what factors served as protective or risk factors for psychological well-being.
The strengths of the present work lie in the examination of mental health trajectories over a
long period (>12 months) using a holistic range of measures covering resilience and vulner-
ability responses comprehensively. While there was evidence for an overall trajectory of
resilience–vulnerability that was characterized by intermittent periods of acute stress after
the first lockdown, recovery during re-opening, and pandemic fatigue during the longer
second lockdown, we also observed significant heterogeneity and complexity of mental
health response. A latent class analysis enabled the identification of four different classes
of mental health trajectories that differed in the intensity of their responses to the various
phases of the pandemic. While the two more vulnerable classes showed muted recovery
after the first lockdown and more pronounced pandemic fatigue effects during the second
lockdown, the two more resilient classes seemingly recovered to baseline levels of resilience
after the first lockdown and showed a significantly milder increase in vulnerability in
the second lockdown. An examination of various predictors of mental health trajectories
revealed considerable disparities, such that females, younger people, those with a history of
psychiatric illnesses, and individuals in lower income groups emerged as key risk groups,
along with those who had high levels of trait psychological vulnerability and low levels
of social belonging. The present study has helped us understand that when considering
the longer-term view (>12 months) on mental health during the pandemic in Germany,
covering various phases of lockdowns and easing of restrictions, the average response
seems to have been characterized by increased mental health burdens and measurable
pandemic fatigue effects. Focusing further on the evolution of different mental health
trajectories also shows that the various phases of the pandemic in Germany have not been
experienced uniformly, extending previous findings [13] and in line with recent conceptual
frameworks [31]. Moreover, even in an economically developed country, females, young
cohorts, those with a history of psychiatric illnesses, and socially disadvantaged groups,
such as lower socioeconomic status individuals, remained the most vulnerable among us.
Both governmental support as well as interventional efforts, specifically ones aimed at these
vulnerable groups, will be necessary to avoid long-term pandemic-related deterioration [89]
of mental well-being.
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