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Abstract: Background: Wound treatment in emergency care requires the rapid assessment of wound
size by medical staff. Limited medical resources and the empirical assessment of wounds can
delay the treatment of patients, and manual contact measurement methods are often inaccurate and
susceptible to wound infection. This study aimed to prepare an Automatic Wound Segmentation
Assessment (AWSA) framework for real-time wound segmentation and automatic wound region
estimation. Methods: This method comprised a short-term dense concatenate classification network
(STDC-Net) as the backbone, realizing a segmentation accuracy–prediction speed trade-off. A
coordinated attention mechanism was introduced to further improve the network segmentation
performance. A functional relationship model between prior graphics pixels and shooting heights
was constructed to achieve wound area measurement. Finally, extensive experiments on two types of
wound datasets were conducted. Results: The experimental results showed that real-time AWSA
outperformed state-of-the-art methods such as mAP, mIoU, recall, and dice score. The AUC value,
which reflected the comprehensive segmentation ability, also reached the highest level of about
99.5%. The FPS values of our proposed segmentation method in the two datasets were 100.08
and 102.11, respectively, which were about 42% higher than those of the second-ranked method,
reflecting better real-time performance. Moreover, real-time AWSA could automatically estimate
the wound area in square centimeters with a relative error of only about 3.1%. Conclusion: The
real-time AWSA method used the STDC-Net classification network as its backbone and improved
the network processing speed while accurately segmenting the wound, realizing a segmentation
accuracy–prediction speed trade-off.

Keywords: convolutional neural networks; coordinate attention; wound segmentation; area assessment

1. Introduction

Wound treatment in modern emergency environments, such as battlefields, fire dis-
asters, and earthquakes, has distinct characteristics: more wounded but fewer medical
personnel, fewer medical resources, and difficult medical evacuation. These factors make
large-scale wound care extremely difficult in emergency situations [1]. Meanwhile, body
surface wounds, such as scratches and burns, can lead to infection and poor blood circu-
lation if not treated in time or amputation in severe cases [2–4]. Generally, the area and
depth of the wound are manually estimated by medical staff [5]. Another method is to
use a regular video camera to photograph the wound with a reference scale (such as a
tape or a ruler) and upload it. Medical experts can judge the boundary and area of the
wound and decide on its treatment. However, the manual segmentation of the wound area
is complex and time-consuming, which delays the treatment of many wounded patients,
and the contact wound measurement method is prone to wound infection. Therefore, a
real-time and accurate tool is needed to assist in emergency medical care. The sequelae
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caused by the wound can be minimized by judging the state of the wound, transmitting
wound information in time, and taking targeted treatment measures.

As technological advances in smartphones, computing storage devices, and clinical de-
vices have improved the quality of image information [6,7], the computer-aided automatic
segmentation and measurement of wound size have become new methods for accurate
wound assessment. In particular, artificial intelligence technology has proved its efficiency
and high performance in automatic image classification via machine learning methods.
Artificial intelligence effectively removes a large amount of redundant information, ana-
lyzes and judges the state of the wound according to the wound image data, and assists
telemedicine experts in preparing the best treatment plan so as not to miss the “golden
30 min” of emergency treatment. Deep learning (DL) is an extension of machine learning
that mainly focuses on the automatic extraction and classification of image features and has
achieved great success in many applications, especially in healthcare [8,9]. The introduction
of DL techniques has motivated several researchers to use convolutional neural networks
(CNNs) in the medical domain [10]. CNNs are a powerful tool for image processing ow-
ing to their good feature representation capability [11–14]. Photographic images have
been used to recognize melanomas by segmenting [15–17] or classifying them; they have
also been used for foot ulcer segmentation [18–20] and pressure ulcer segmentation and
classification [21]. However, few studies have dealt with wound segmentation using DL
techniques. Such studies do not provide the real-time segmentation of wound images and
non-contact wound measurement without the help of gauges, but the proposed real-time
Automatic Wound Segmentation Assessment (AWSA) framework addresses these concerns.

In this study, we performed the real-time automatic assessment of body surface
wounds, which could help to rapidly assess wounds in many patients under emergency
medical care and provide targeted treatment during the first 30 min of admission. This
task mainly involved two steps: automatic wound segmentation and the assessment of the
wound area. Wound image segmentation was conducted to locate the boundary between
the wound and the surrounding skin [22]. The measurement of the wound area is usually
performed manually, which is time-consuming and inaccurate and causes discomfort to
patients [23–25]. Accurate and automatic wound measurement mostly relies on well-
segmented wound regions. Previous studies lacked the required accurate segmentation, as
they focused more on the retrieval and classification tasks.

We prepared the real-time AWSA framework to address the shortcomings of the
presently used methods. Real-time AWSA uses CNNs and automatically detected and
segmented wound areas delineated in images. It automatically calculates the area of the
unknown wound by building a functional model between the prior graphics pixels and
the graphics shooting heights. This method could help medical experts quickly obtain
patients’ wound information without touching the wound or using measuring tools (such as
measurement rulers or tapes). We used a novel and efficient short-term dense concatenate
(STDC) network structure that removed structural redundancy to address these problems.
Specifically, the basic module of the STDC network was formed by gradually reducing
the dimensionality of feature maps and using their aggregation for image representation.
In the decoder, we proposed a detail aggregation module by integrating the learning of
spatial information into low-level layers in a single-stream manner. The low-level and deep
features were fused to predict the final segmentation results. Finally, STDC-Net was used
as the backbone to achieve a state-of-the-art speed–accuracy trade-off in real-time semantic
segmentation by adding a coordinated attention mechanism.

The contributions of real-time AWSA are two-fold:

1. The improved STDC-Net architecture with the pretrained weight model as the encoder
layer achieved a trade-off between wound segmentation accuracy and prediction
speed.

2. The coordinated attention mechanism was proposed to better obtain the global re-
ceptive field and encode the accurate location information so that the network could
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locate the target of interest more accurately and further improve the performance of
the proposed network.

3. The wound area estimation without contact and without measurement tools was
realized by constructing a functional relationship model between prior graphic pixels
and image shooting heights.

This study involved an extensive experimental analysis comparing the proposed
method with the currently used state-of-the-art segmentation methods, demonstrating
the highly accurate real-time performance of real-time AWSA. Regarding wound area
measurement, we compared the results obtained using the real-time AWSA method with
manual segmentations based on methods used in previous studies, revealing the high-level
accuracy of real-time AWSA.

Paper outline: The challenges facing surface wound area estimation and the basic
concepts used in this study are discussed in Section 1. Section 2 discusses related studies.
Section 3 details the real-time AWSA framework. Section 4 presents the materials and meth-
ods used in this study. Section 5 presents the experimental results and the corresponding
discussion. Section 6 summarizes this study.

2. Related Works

To date, several studies have been conducted on wound segmentation and wound
area estimation. For example, Chino et al. proposed Automatic Skin Ulcer Region Assess-
ment (ASURA), a segmentation method for ulcer wounds based on U-Net [26]. However,
some defects were found. First, the simple skip-connection between the encoder and the
decoder did not account for the importance of different channels, which may have reduced
the accuracy. Second, as the network became deeper and wider, the redundancy of the
network structure made the segmentation task more time-consuming and difficult to opti-
mize.Moreover, the ASURA system proposed by Chino et al. was used for the segmentation
and measurement of wound area in real-world units (cm2) [27].

The SegNet decodes the feature map by upscaling and using a series of convolu-
tions [28,29]. However, these networks require thousands of annotated training samples.
Ronneberger et al. made a breakthrough in medical image segmentation using U-Net based
on FCN to overcome this problem [30]. In U-Net, the decoder receives a copy of the output
of the activation layers and concatenates it with the upscaling tensor. In this manner, U-Net
can pass on the spatial information lost in the encoder step to the corresponding decoder
layers, improving the segmentation output.

Many U-Net-based variants have emerged in recent years [31,32]. ASURA used
U-Net as the network backbone to perform image segmentation and achieved decent
accuracy. Meanwhile, ASURA automatically measured the wound size and adjusted the
measurements manually through the app. However, this method was time-consuming for
segmentation tasks due to redundant network structures and did not provide real-time
performance when a large number of wound images needed to be processed in emergency
medical care. Furthermore, measurement tools (measurement rulers/tapes) were required
to estimate the wound area in the wound measurement task.

Dorileo et al. proposed an image segmentation method based on the analysis of the
RGB channels of the image [33]. As all images had a blue background, they discarded the
blue channel and used the intensity channel of the hue, saturation, and intensity (HSI) color
space. For each channel, Dorileo et al.’s method helped automatically find thresholds and
process the discovered regions by focusing on blobs near the center of the image. The main
issue with this method was the need for a controlled environment.

Blanco et al. proposed QTDU, a deep-learning-based approach to analyze derma-
tological wounds using superpixels [34]. QTDU used CNNs for wound segmentation
and relied on superpixel approaches to divide images into regions. However, QTDU did
not segment the rules/tapes present in the images, and the estimation of the wound area
involved counting the number of pixels inside the segmented area of each identified tissue
and checking this value proportionally with the number of pixels of the entire image.
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Seixas et al. employed off-the-shelf classifiers to segment wound images. They
extracted pixel-wise color features, the mean value of the neighborhood of the pixel, and
the difference in the pixel value and the mean beforehand. They segmented a training set
of images to isolate the wound region.

Pereyra et al. proposed a segmentation process based on a multivariate Gaussian
mixture model. The clusters were manually selected in a graphical user interface (GUI)
to output the segmentation mask. Blanco et al. proposed the Counting-Labels Similarity
Measure (CL-Measure), which focused on retrieving skin wound images based on visual
similarity. Chino et al. proposed Imaging Content Analysis for the Retrieval of Ulcer
Signatures (ICARUS), which was based on superpixels combined with Bags of Visual
Signatures. It focused on the content-based retrieval of ulcer images and presented higher-
quality results than CL-Measure.

Dastjerdi et al. proposed another method for semi-automatic wound segmentation
and area measurement. It used both 2D and 3D representations, processing a single photo
or a video, respectively. The 2D photo could be taken using a digital camera or smartphone,
with a flexible paper ruler placed near the wound for size measurement. The segmentation
started by roughly outlining the region of interest around the ulcer. Then, a trained random
forest model calculated a probability map of each pixel belonging to the wound or healthy
skin. A binary mask containing the wound area was created over the probability map by
employing Otsu’s threshold. The ruler was segmented to calculate the ratio between pixels
and centimeters. However, this segmentation method lacked real-time applications, and
wound area estimation required the aid of a ruler.

CNNs are mainly used for image recognition tasks. They consist of a series of con-
volution operations that encode an image into a feature map and can be used to perform
image segmentation. The fully convolutional network (FCN) is a pioneering work of CNN
in image segmentation.

DeepLab is another DL model for image segmentation. It employs dilated atrous
convolutions to upscale the low-level features and enlarges the field of view of filters using
a simple architecture. DeepLabv3+ is its latest version, which has an effective decoder
to refine the segmentation, replacing the maximum pooling operations with depth-wise
separable convolutions. The DeepLabv3+ decoder concatenates the encoded features,
which are upscaled by a factor of four, with the corresponding features.

A comparison of our method with current state-of-the-art wound segmentation meth-
ods is presented in Table 1. Almost all methods could segment the wound. Some methods
used superpixels in semantic segmentation to reduce the complexity of the image, which
might impact the effect of wound segmentation. Real-time AWSA uses a novel and efficient
STDC-Net classification network as a backbone to achieve high-precision wound segmen-
tation with a high FPS while adding a coordinated attention mechanism to achieve the
optimal speed–accuracy trade-off. However, none of the aforementioned methods realized
the estimation of wound area without external measurement tools. This study measured
unknown and irregular wounds by constructing the relationship model framework be-
tween prior graphics pixels and shooting heights, which could not only measure the wound
area in real-world units but also realize the estimation of wound area without contact and
without measurement tools.
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Table 1. Summary of different methods to segment wounds.

Wound Segmentation Real-Time
Segmentation Detect Measurement Tool Area Assessment without

Measuring Tools

Dorlieo
√

Seixas
√

Pereyra
√

CL-Measure
√

ICARUS
√

Dastjerdi
√

ASURA (U-Net)
√ √

Real-Time
AWSA

√ √ √ √

3. Real-Time AWSA

We prepared a real-time wound segmentation and wound area estimation framework,
real-time AWSA, that automatically measures wound area in images. Real-time AWSA
uses deep CNNs to segment wounds. The functional relationship model between prior
graphics pixels and image shooting heights was constructed to automatically measure the
segmented wound area, which not only realized the estimation of wound area in real-world
units but also avoided the use of measurement tools. Real-time AWSA works based on the
following two main steps: (1) an automatic segmentation of surface wounds and (2) the
construction of a functional relationship model between prior graphics pixels and graphics
shooting heights to automatically estimate the wound area. Figure 1 shows the real-time
AWSA framework. Real-time AWSA also offers an interactive GUI in which the user can
obtain the predicted segmentation mask for the wound and interact with the GUI to obtain
the estimated wound area.
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3.1. Real-Time Wound Segmentation

In the segmentation task, real-time AWSA received RGB images of the surface wound
and output segmentation masks with the wounds. The wound segmentation process was
based on a convolutional deep neural network developed for image segmentation. Due to
the limited training dataset and considering the tradeoff between segmentation accuracy
and speed, real-time AWSA used the STDC-Net architecture, which could address the
issues of the possible trade-off between segmentation accuracy and speed [35].

Figure 2 shows the improved network architecture in this study. The network consisted
of an encoder and a decoder. First, real-time AWSA received, as input, an RGB image with
an arbitrary resolution. As the input layer of the network was a tensor of size 512 × 512 × 3,
the image was resized to a 512 × 512 resolution. The network architecture consisted of
six stages, in addition to an input layer and prediction layer. Generally, stages 1–5 down-
sampled the spatial resolution of the input with a stride of two, and stage 6 output the
prediction logits by one ConvX, one global average pooling layer, and two fully connected
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layers. Each ConvX consisted of one convolutional layer, one batch normalization layer,
and one ReLU activation layer. Stages 1 and 2 are usually regarded as low-level layers for
appearance feature extraction. We used only one convolutional block each in stages 1 and
2, which proved to be effective. The number of STDC modules in stages 3 to 5 was carefully
tuned in our network. The first STDC module in each of these three stages down-sampled
the spatial resolution with a stride of two. The following STDC modules in each stage
kept the spatial resolution unchanged. We used the attention refine module to refine the
combination features of stages 3 to 5. We adopted the feature fusion module in BiSeNet for
the final semantic segmentation prediction [28] to fuse the 1/8 down-sampled feature from
stage 3 in the encoder and the counterpart from the decoder. We set the output channel
number as 1024 and carefully tuned the channel number of the remaining stages until
reaching a good trade-off between accuracy and efficiency. Further, a coordinated attention
module was added before and after the feature fusion module, which further improved the
network prediction ability. Finally, the output tensor was resized to the resolution of the
input image.
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3.2. Wound Area Estimation

After wound segmentation, real-time AWSA estimated the wound area in real-world
units by constructing a functional relationship model between prior graphic pixels and the
shooting heights of the image. Figure 3 shows the steps of real-time AWSA for estimating
the wound area Sw. Algorithm 1 shows how real-time AWSA estimated the wound area Sw.
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Algorithm 1 Wound area estimation.

Initialization: Spi = area of prior graphics
Require: I: input image, Mask: segmentation mask
Output: Sw = the area of the wound
Begin
1. λi: obtained prior graphics pixels (I,Mask)
2. λ1, λ2, . . . , λn: pixels of different shooting heights h1, h2, . . . , hn
3. λ = f (h): polynomial fitting of shooting height and prior graphics pixels
4. if (hi < h1) or (hi > hn):

return none
5. elif h1 < hi < hn:
6. Sw = ϕ
7. for hi in range(h1, hn) do
8. λw = wound image pixels obtained
9. calculate the wound area Sw = (Spi × λw)/λi
10. end for
11. end if
12. return Sw
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Prior graphics took regular shapes such as triangles or squares with known areas.
A smartphone was used to carry a laser ranging sensor to photograph prior graphics
whose area Spi was known. The shooting height varied from the minimum height h1 to
the maximum height hn, and the distance was equally divided, as shown in Figure 3. The
images were taken using the same smartphone with the same resolution. The number of
pixels occupied by the prior graphics in the image changed with the shooting height, and
each shooting height h corresponded to a pixel number λ. Next, the discrete relationship
between the image shooting heights h1, h2, h3, . . . , hn and the number of pixels occupied by
the 2D prior graphics λ1, λ2, λ3, . . . , λi was constructed using a polynomial fitting method,
i.e., λ = f (h). From this function, we could determine the number of pixels λi of the image
corresponding to hi at any point in the range h1 to hn. Last, we took a wound image with
an unknown area Sw at a height greater than h1 and lower than hn, and then the wound
area Sw could be obtained as follows:

Sw =
Spi

λi
× λw (1)
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where λw is the number of pixels in the image occupied by the wound at the shooting
height hi.

3.3. Graphical User Interface (GUI)

The real-time AWSA framework contains an interactive GUI that allows users to view
the original wound image, the ground truth of the wound, and the predicted MASK of
the wound after image segmentation. The interactive interface also allows the user to
obtain the segmented wound area in real time after obtaining the predicted mask of the
wound. Figure 4 shows the GUI of the real-time AWSA framework. The input wound
image is below the Original Image heading. The ground truth of the wound is under the
Label Image heading, while the prediction mask after wound segmentation is under the
Prediction Image heading. The function selection of the interactive interface is on the left
side of the GUI. Users can select any wound image and load the model to complete the
semantic segmentation of the wound region. Real-time AWSA enables automatic wound
area estimation. The user enters the height at which the wound image was taken, and
real-time AWSA measures the area of the segmented wound in real-world units.
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4. Materials and Methods

The performance of real-time AWSA was evaluated to verify its rapid wound area
estimation. Two sets of experiments were conducted for performance evaluation: real-time
wound segmentation and wound area estimation. All experiments were conducted using
a 4.20-GHz Intel Core i7-12700F CPU, 32 GB RAM, and 12 GB NVIDIA GTX 3060Ti GPU.
Further, we implemented real-time AWSA in Python based on the PyTorch1.8.1 framework,
and the development software used was Pycharm 3.7.

4.1. Datasets and Pre-Processing

Real-time AWSA was evaluated on the self-built wound dataset WOUND. It consisted
of 661 images of different wound types, including scratches, cuts, and bruises, mainly on
the arms, legs, and upper body. Among them, 535 images were used as the training set, and
126 images were used as the test set. In the images, the wounds were located all over the
body, and some patients had multiple wounds. The image dataset WOUND was obtained
from the National Trauma Database and Chengde County Hospital. All images in the
dataset were captured by digital cameras. For the dataset WOUND, the experts manually
segmented the wound area to create the ground truth mask. Figure 5 shows several wound
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images and their respective ground truth masks, where the gray area is the wound. We
augmented the dataset and compared our method with currently used state-of-the-art
wound image segmentation methods to evaluate the performance of real-time AWSA.
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DL models require a large amount of data for training to improve [10]. As WOUND
was a small dataset, a data augmentation technique was used to improve the robustness of
real-time AWSA. A series of methods, such as random flipping, random cropping, Gaussian
noise, and adjusting brightness, were applied to enhance the number of images and masks.
The flip angle of the image was randomly selected between 0◦ and 360◦, and the image was
randomly cropped to one third of the height or width. Figure 6 shows the results of image
data augmentation; each transformed image had its corresponding mask. Table 2 depicts
the quantitative comparison of original and enhanced images.
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Table 2. Number of images in each dataset.

Training Dataset Size Size after Augmentation

WOUND-1 274 1826
WOUND-2 261 1722

4.2. Wound Area Estimation

In this section, we detail the ability of real-time AWSA to estimate wound area in
real-world units. Real-time AWSA was also evaluated in regard to its ability to estimate
wound area in real-world units using the scale relationship between prior graphics with a
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known area and a wound with an unknown area, without considering pixel density. The
number of pixels in the image was calculated using a computer, and the prior graphics
were taken using the same smartphone as for the wound, with no resolution difference.
The wound area in real-world units was calculated using Equation (1):

• Real area (SwReal): the area of the ground truth mask.
• Estimated area (SwEst): the estimated area of the wound region.
• MBR area (SwMbr): wound area determined using a manual measurement method.

To evaluate the ability of real-time AWSA to estimate the wound area, we used
Equation (2) to calculate the percentage error E for evaluating the ability of real-time AWSA
to estimate wound area, where s is the true area and ŝ is the estimated area.

E =
|s− ŝ|

S
× 100% (2)

4.3. Experimental Details

A gradient descent decay operation was used to find the learning rate during the
training. The initial learning rate was set to 0.01, and the batch size during training was set
to 8. Furthermore, we employed model training using pretrained weights and compared
it with training from scratch, as shown in Figure 7. In terms of validation loss, training
with pretrained weights converged to 0.015 after around 20 epochs, while training from
scratch fluctuated around 0.04 even at the end of training. From epoch 3, the validation dice
value of the model with pretrained weights showed better performance than the training
from scratch. As depicted in the figure, the validation dice value of the pretrained weight
strategy was stable at around 0.995, while the training strategy from scratch was stable at
around 0.981.
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with training epochs. (Left): comparison of validation loss between two training strategies.
(Right): comparison of validation dice between two training strategies.
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5. Results and Discussion

The performance of real-time AWSA in terms of segmenting wound images and
estimating wound area is detailed in this section.

5.1. Testing Metrics

The calculation formula for wound segmentation accuracy is as follows:

mAP =
1
|QR| ∑

q∈QR

AP(q) (3)

mAP is an important indicator to measure the accuracy of segmentation, where QR
represents the number of verification datasets.

m-IoU is the average of the intersection-over-union ratio of the real label and the
predicted segmentation. The larger the ratio, the more accurate the segmentation. The
formula is as follows:

mIoU =
1

k + 1

k

∑
i=0

pii

∑k
j=0 pij + ∑k

j=0 pji + pii
(4)

where pij represents predicting category i as category j.
The recall represents the ratio of the predicted wound area to the real wound area. The

closer the ratio is to 1, the more accurate the segmentation. The formula is as follows:

Recall = TP/(TP + FN) (5)

The dice score is the harmonic mean of precision and recall and reflects the segmenta-
tion accuracy.

5.2. Segmentation Performance of Different Network Structures on Two Wound Datasets

We adopted the STDC-Net classification network as the backbone of the segmentation
model in this study. The models were divided into STDC-Net813 and STDC-Net1446 based
on the complexity of the model. Experiments were conducted on two wound datasets,
WOUND-1 and WOUND-2, to demonstrate the effectiveness of our adapted model. Consid-
ering STDC-Net as the benchmark, the models were divided into eight categories based on
whether they used pretrained weights or added a coordinated attention mechanism. Each
segmentation method was implemented on each image in each test dataset to evaluate the
effectiveness of all models. Then, we calculated six metrics: mAP, mIoU, recall, dice score,
FPS, and AUC. Table 3 presents the results obtained for all networks using WOUND-1
and WOUND-2. As depicted in the table, the model using pretrained weights had better
segmentation accuracy, and the network segmentation accuracy was further improved
using the coordinated attention mechanism. All indicators were improved, but the FPS
was reduced by about 9%. Further, the performance of STDCNet_CA813_Pretrain was
slightly lower than that of STDCNet_CA1446_Pretrain in terms of dice score and AUC.
On comparing the FPS, that of STDCNet_CA813_Pretrain was found to be 25% higher
than that of STDCNet_CA1446_Pretrain, reflecting the higher processing speed of the
network. Because of the complexity of the network, STDCNet_CA813_Pretrain was slightly
inferior to STDCNet813 in terms of processing speed, but was significantly better than
STDCNet813 in terms of segmentation accuracy. Therefore, considering all aspects, we
selected STDCNet_CA813_Pretrain as the model for real-time AWSA.
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Table 3. Evaluation of the segmentation methods for each dataset. The values marked with * are the
best results. All values are percentages.

WOUND-1

Model mAP m-IoU Recall Dice Score FPS AUC

STDCNet813 0.8981 0.8274 0.9766 0.7541 111.78 * 0.9813
STDCNet813_Pretrain 0.9321 0.8736 0.9837 0.8331 110.66 0.9932

STDCNet_CA813 0.9062 0.8444 0.9866 0.7621 100.12 0.9841
Real-Time AWSA

(STDCNet_CA813_Pretrain) 0.9481 * 0.8928 * 0.9877 * 0.8473 101.08 0.9938

STDCNet1446 0.8749 0.8011 0.9695 0.6831 84.26 0.9779
STDCNet1446_Pretrain 0.9333 0.8713 0.9824 0.8401 85.32 0.9934

STDCNet_CA1446 0.8904 0.8026 0.9672 0.7047 78.02 0.9784
STDCNet_CA1446_Pretrain 0.9462 0.8852 0.9831 0.8496 * 76.49 0.9951 *

WOUND-2

Model mAP m-IoU Recall Dice Score FPS AUC

STDCNet813 0.8935 0.8441 0.9773 0.7632 111.33 * 0.9783
STDCNet813_Pretrain 0.9377 0.8739 0.9896 0.8347 109.38 0.9938

STDCNet_CA813 0.8995 0.8427 0.9881 0.7597 101.58 0.9841
Real-Time AWSA

(STDCNet_CA813_Pretrain) 0.9477 * 0.8944 * 0.9883 * 0.8495 102.11 0.9949

STDCNet1446 0.8767 0.8019 0.9672 0.6822 82.27 0.9822
STDCNet1446_Pretrain 0.9339 0.8762 0.9864 0.8451 85.88 0.9954

STDCNet_CA1446 0.8924 0.8077 0.9692 0.7067 78.59 0.9761
STDCNet_CA1446_Pretrain 0.9471 0.8905 0.9882 0.8511 * 77.24 0.9952 *

5.3. Comparison of Real-Time AWSA with State-of-the-Art Methods

Next, we compared real-time AWSA with state-of-the-art models, mainly including
ASURA (U-Net) and DeepLabv3+. Chino et al. proved that ASURA using U-Net as its
backbone outperformed CL-Measure, superpixel-based ICARUS, and DL-based QTDU.
Therefore, we mainly used ASURA with U-Net as the backbone and the general image
semantic segmentation model DeepLabv3+ as the comparison object. As depicted in Table 4,
our model performed best on the mAP, m-IoU, recall, dice score, FPS, and AUC metrics.
Specifically, the mAP, m-IoU, recall, and dice score values of real-time AWSA on the two
wound datasets were about 0.14%, 2.7%, 0.44%, and 0.14% higher than those of the second-
ranked method, ASURA (U-Net), respectively. This confirmed that our improved model
had a better segmentation capability. Meanwhile, the FPS values of our method for the
two wound datasets were 100.08 and 102.11, which were about 42% higher than those of
the second-ranked method, Deeplabv3+, reflecting better real-time performance. Further,
the AUC best reflected the overall segmentation performance of the models. In this study,
our network achieved AUC levels of 0.9938 and 0.9949, demonstrating the robustness of
our method.

Figure 8 presents the segmentation outputs from the WOUND-1 and WOUND-2
datasets. Using both datasets, the output of real-time AWSA was extremely close to the
ground truth. Due to the relatively small size of the training datasets, Deeplabv3+ faced
issues in correctly segmenting wounds. When we compared the detailed visual results of
ASURA with U-Net as its backbone and the findings of our method, as shown in Figure 8,
we found that it achieved significant results but still lacked enough semantic information
and had obvious false-positive segmentation. These findings proved that our method was
more robust.
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Table 4. Results of different algorithms for WOUND-1 and WOUND-2 datasets. The bold values are
our proposed model, and the values marked with * are the best results. All values are percentages.

WOUND-1

Model mAP m-IoU Recall Dice
Score FPS AUC

Deeplabv3+ 0.8931 0.8293 0.9757 0.7604 58.45 0.9811
ASURA(U-Net) 0.9319 0.8690 0.9833 0.8463 55.04 0.9889

Real-Time AWSA 0.9451 * 0.8928 * 0.9877 * 0.8473 * 100.08 * 0.9938 *

WOUND-2

Model mAP m-IoU Recall Dice
Score FPS AUC

Deeplabv3+ 0.8947 0.8255 0.9713 0.7604 58.74 0.9788
ASURA(U-Net) 0.9332 0.8697 0.9839 0.8471 54.22 0.9898

Real-Time AWSA 0.9477 * 0.8944 * 0.9883 * 0.8485 * 102.11 * 0.9949 *

Healthcare 2023, 11, x  13 of 17 
 

 

Figure 8 presents the segmentation outputs from the WOUND-1 and WOUND-2 da-
tasets. Using both datasets, the output of real-time AWSA was extremely close to the 
ground truth. Due to the relatively small size of the training datasets, Deeplabv3+ faced 
issues in correctly segmenting wounds. When we compared the detailed visual results of 
ASURA with U-Net as its backbone and the findings of our method, as shown in Figure 
8, we found that it achieved significant results but still lacked enough semantic infor-
mation and had obvious false-positive segmentation. These findings proved that our 
method was more robust. 

As the AUC value, which is essentially the area under the receiver operating charac-
teristic (ROC) curve, can comprehensively reflect the segmentation capability, we com-
pared the ROC curves of the different models. Figure 9 shows that our network outper-
formed the others for both datasets. 

 
Figure 8. Wound segmentation of images from WOUND-1 and WOUND-2. 

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.02 0.04 0.06 0.08 0.10 0.12

0.85

0.90

0.95

1.00

TP
R

(T
ru

e 
Po

sit
iv

e 
R

at
e)

FPR(False Positive Rate)

 Real-time AWSA
 ASURA (U-Net)
 Deeplabv3+

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.02 0.04 0.06 0.08 0.10

0.88

0.92

0.96

1.00

TP
R

(T
ru

e 
Po

sit
iv

e 
R

at
e)

FPR(False Positive Rate)

 Real-time AWSA
 ASURA (U-Net)
 Deeplabv3+

 
Figure 9. ROC curves of different models for wound segmentation. Left: WOUND-1, right: 
WOUND-2. 

  

Figure 8. Wound segmentation of images from WOUND-1 and WOUND-2.

As the AUC value, which is essentially the area under the receiver operating character-
istic (ROC) curve, can comprehensively reflect the segmentation capability, we compared
the ROC curves of the different models. Figure 9 shows that our network outperformed
the others for both datasets.
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5.4. Wound Area Estimation

We evaluated the ability of real-time AWSA to measure wound area in real-world
units, such as cm2. We calculated the wound areas in the test dataset that had already
been measured by medical experts at the hospital, and these measured wounds served as
standards. Meanwhile, we calculated the error of the manual measurement method and
the method proposed in this study relative to the expert standard. The results presented in
this section are the average of all test images.

Figure 10 shows the automatic wound area estimation system, consisting of a height
platform, a smart phone, a ranging laser sensor, and a personal computer. First, a smart-
phone was used to carry laser ranging sensors to collect images of prior graphics at different
heights. In this study, the shooting height ranged from 100 to 500 mm, with an interval of
10 mm. According to the collected image data, the polynomial fitting method was used to
build the relationship model between prior graphics pixels and shooting heights (Figure 8).
In the next step, the wound images were captured at any height from 100 mm to 500 mm
using the same method. The same camera was used to acquire prior images and wound
images with the same number of pixels. Finally, the segmented wound area was calculated
using Equation (1).

Figure 11 shows some examples of area estimation. We measured the area of the
wound images from two test datasets using three area estimation methods and obtained
the relative error against the gold standard of human experts. As depicted in Table 5, the
relative errors of the area estimates using the MBR method for the two datasets were 30.5%
and 33.9%, respectively, and the errors using the thin-film edge labeling method were 8.1%
and 6.3%, respectively. Although the thin-film edge labeling method demonstrated very
small errors, the wound was not of a regular shape, and the wound edge might not have
covered a full square grid, reducing the accuracy of the area estimation. Moreover, the
counting of squares is time-consuming and laborious, delaying wound treatment. Notably,
the errors in wound area estimation using the method proposed in this study were 3.7%
and 3.1%, showing the best estimation results. Importantly, this method did not rely on
measurement tools and exhibited better real-time performance.
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6. Conclusions

In this study, we explored methods for evaluating large-scale wounds in emergency
situations and proposed the real-time AWSA framework to automatically segment wound
images and estimate the area of a wound. Real-time AWSA used the STDC-Net classifi-
cation network as its backbone, eliminated structural redundancy, adopted a pretrained
weight model, and improved the network processing speed while accurately segmenting
the wound, realizing a segmentation accuracy–prediction speed trade-off. A coordinated
attention mechanism was introduced to further improve the network segmentation perfor-
mance. Moreover, we constructed a functional relationship model between prior graphics
pixels and shooting heights to perform wound area measurements without contact and
measurement tools. We evaluated real-time AWSA using two wound datasets, WOUND-1
and WOUND-2, and found that the accuracy was greatly improved compared with the
current state-of-the-art methods. The experimental results showed that real-time AWSA
outperformed the state-of-the-art methods in terms of mAP, mIoU, recall, and dice score.
The AUC value, which most reflected the comprehensive segmentation capability, also
reached the highest level of about 99.5%. The FPS values of our proposed segmentation
method in the two wound datasets were 100.08 and 102.11, respectively, which were about
42% higher than those of the second-ranked method, reflecting better real-time perfor-
mance. Further, real-time AWSA could automatically estimate the wound area in square
centimeters with relative errors of only 3.7% and 3.1% in the two test datasets, respectively,
showing the best estimation results.

The method proposed in this study could quickly process a large number of collected
wound images for trauma treatment in emergency environments, areas with scarce medical
resources, or trauma patients with limited mobility. The main tasks included the automatic
segmentation of the wound area and automatic estimation. The wound information could
be uploaded and sent to telemedicine experts to achieve immediate treatment and real-time
wound care. The current disadvantage is that the method in this paper was mainly aimed at
determining the two-dimensional area of a wound, without considering the curvature factor
and depth information. In addition, the deep learning method may lose some semantic
information in areas where the color transition of the wound is not clear. In the future,
deep learning combined with 3D reconstruction could deal with more complex wounds
and solve these problems, which is our current research focus.
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