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Abstract: Diffuse large B-cell lymphoma (DLBCL) is a common and aggressive subtype of lymphoma,
and accurate survival prediction is crucial for treatment decisions. This study aims to develop a
robust survival prediction strategy to integrate various risk factors effectively, including clinical risk
factors and Deauville scores in positron-emission tomography/computed tomography at different
treatment stages using a deep-learning-based approach. We conduct a multi-institutional study on
604 DLBCL patients’ clinical data and validate the model on 220 patients from an independent
institution. We propose a survival prediction model using transformer architecture and a categorical-
feature-embedding technique that can handle high-dimensional and categorical data. Comparison
with deep-learning survival models such as DeepSurv, CoxTime, and CoxCC based on the concor-
dance index (C-index) and the mean absolute error (MAE) demonstrates that the categorical features
obtained using transformers improved the MAE and the C-index. The proposed model outperforms
the best-performing existing method by approximately 185 days in terms of the MAE for survival
time estimation on the testing set. Using the Deauville score obtained during treatment resulted
in a 0.02 improvement in the C-index and a 53.71-day improvement in the MAE, highlighting its
prognostic importance. Our deep-learning model could improve survival prediction accuracy and
treatment personalization for DLBCL patients.

Keywords: diffuse large B-cell lymphoma; prognosis; survival time prediction; deep learning; transformers

1. Introduction

Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of lymphoma,
where tumors develop from lymphocytes, and comprises approximately one-third of non-
Hodgkin’s lymphomas, which account for 90% of all lymphomas [1]. In addition, DLBCL
is more likely to be diagnosed at an advanced stage and in older individuals compared to
Hodgkin’s lymphomas [2]. Accurate prognosis prediction remains challenging regardless of
the advances in treatment, with patients exhibiting diverse outcomes even within the same
risk group. Despite standard therapy, 30–40% of DLBCL patients eventually relapse or are
refractory to the initial immunochemotherapy [3]. Recently, novel therapeutic agents such
as chimeric antigen receptor T cells and bispecific antibodies have been actively investigated
for more effective and safer treatments in non-Hodgkin’s lymphoma patients [4].

Accurate prediction of prognosis and treatment outcomes can guide treatment deci-
sions and enhance clinical trial designs [5]. Traditional survival analysis aims to identify
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the key covariates contributing to event occurrences such as death or relapse. The inter-
national prognostic index (IPI) is a well-established prognostic tool developed in 1993 [6]
using pretreatment clinical risk factors including age, stage, lactate dehydrogenase (LDH),
performance status, and extranodal involvement. However, individual patient’s treatment
outcomes and prognoses have been revealed to be heterogeneous even in the same IPI risk
group [7].

The Deauville score (DS) is a strong prognostic factor that is used to interpret F-18
fluorodeoxyglucose (FDG) positron-emission tomography (PET)/computed tomography
(CT) imaging. Staging FDG PET can play a critical role in staging and risk stratification as it
can identify the disease’s extent and location, including the involvement of extranodal sites
and bone marrow. In addition, FDG PET/CT has played a crucial role in the prognostication
of DLBCL patients. Interim FDG PET scans performed during treatment are used to assess
chemosensitivity and predict prognoses [8], and the DS has been revealed to be predictive
of patient outcomes [7–10].

Artificial intelligence has recently emerged as a promising tool to improve prognostic
accuracy by leveraging large-scale clinical data and incorporating complex interactions
among clinical, molecular, and imaging features. In medicine, the Cox proportional hazard
(CPH) model [11], which is a semiparametric approach for calculating the hazard risk of
the occurrence of an event, is the traditional standard method for survival analysis [11–13].
The CPH model assumes linearity among covariates, and several learning-based methods
have been proposed to find non-linear relationships between various features. Machine
learning methods such as random survival forests (RSF) [14], oblique random survival
forests (ORSF) [15], and hazard boosting [16] have been successfully implemented in sur-
vival analysis. Researchers have employed Bayesian networks with the CPH model to
improve its prediction performance and interpretability [17,18]. Faraggi et al. [19] extended
the CPH model to include non-linearity using a multi-layer perceptron (MLP); however,
although a non-linear approach was employed, this model failed to outperform the CPH
model [20,21]. Artificial intelligence has allowed deep neural networks to efficiently learn
key features from clinical data for survival prediction. Recent deep-learning approaches
such as DeepSurv [22], CoxTime [23], and CoxCC [23] could replace the linear predictor
with deep feed-forward neural networks to enable rich feature representation. Deep-
Surv demonstrated better performance than CPH on the concordance index (C-index) to
model the interactions among covariates for treatment recommendation. The CoxTime
model lifted the proportionality constraint by allowing time-dependent effects. Similarly,
CoxCC is a proportional version of the CoxTime model. Introducing non-linearity en-
ables the handling of more complex relationships between the clinical covariates and the
survival times.

This study aims to develop a robust survival prediction strategy to integrate various
risk factors effectively, including clinical risk factors and the DS, at different treatment
stages. We conducted the experiments separately for the covariates obtained before and
during treatment. Clinical information such as age can be treated as a continuous value,
whereas variables such as stage and the DS are categorical. Despite being categorical,
these classes cannot be considered purely independent because their order indicates the
disease severity. For example, cancer stages (I, II, III, and IV) are assigned based on
severity. Similarly, a DS of 1, 2, or 3 is less severe than a score of 4 or 5. As these values
are neither continuous nor purely categorical, we consider them categorical variables
and use transformer-based neural networks to capture the inter-class relationship within
the categories.

Herein, motivated by the success of transformers in capturing critical features in
various areas including natural language processing [24] and vision-related tasks [25], we
design a transformer-based time-dependent survival model (TTSurv) for predicting the
overall survival time. We follow the time-dependent approach of CoxTime and enhance
the survival prediction using robust features learned through transformers. We compare
the effectiveness of various clinical features obtained at two stages in the treatment process
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using various survival analysis methods. Based on the features’ time of availability, we
divide them into before- and during-treatment groups. We then conduct experiments
with the features in each group and evaluate the survival models using the C-index and
the mean absolute error (MAE); the key contributions of this work can be summarized
as follows:

• We design a systematic analysis of the clinical covariates based on their occurrence
during various stages of the treatment.

• We propose a deep-learning-based method for predicting survival time in patients
with lymphoma that leverages categorical embedding to represent the disease severity
information in categorical data.

This paper is organized as follows. Section 2 describes the proposed method for
survival prediction and Section 3 details the dataset, experiment design, and evaluation
criteria used in this study. Section 4 provides the survival analysis results and a comparison
with existing survival prediction methods. Section 5 presents the observations and discusses
the further directions and challenges in survival analysis research. Finally, Section 6
concludes this paper.

2. Proposed Method

The MLP-based survival models typically use a shallow architecture with a few layers,
which limits their ability to learn contextual information. Clinical features,
X = {Xcat, Xcont}, comprise both continuous and categorical features. Categorical features
in medical data usually contain information related to severity; thus, we aim to learn the
relationship between various classes in the categorical data by using transformers. To learn
the categorical context, we designed TTSurv—a transformer-based time-dependent model
with robust categorical representation (as illustrated in Figure 1). The dual-input model
consists of two input branches: one for continuous features and one for categorical features.
The proposed model’s main components are discussed below.
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Figure 1. Architecture of the proposed model.

2.1. Categorical Embedding

Tabular data do not have a sequential context; hence, we replace positional encoding
by following the column embedding method in Huang et al. [26] where each categorical
feature xn in Xcat = {x1, x2, . . . .xN} for n ∈ {1, 2, . . . .N} is embedded into a learned
embedding E∅(xn) with dimension d. The embedding for xn with c number of classes is
generated by adding t special tokens such that the number of embeddings is n × c + t,
which allows the model to distinguish between classes among various categorical features.
The embeddings are passed through a series of transformer layers to extract important
contextual features from the categorical data.
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2.2. Transformer Encoders

Transformers [24] consist of multi-head self-attention layers, a multi-layer perceptron
layer (MLP), layer normalization, and residual connections. A self-attention layer consists
of the query (Q), key (K), and value (V) matrices defined as Q ∈ Rm×k, K ∈ Rm×k, and
V ∈ Rm×v, respectively, where m is the number of embeddings passed to the trans-
former and K and V are the dimensions of the key and value vectors, respectively. The
attention head is computed by A(Q, K, V) = so f tmax

((
QKT)/√K

)
.V. The multi-head

self-attention operation is followed by layer normalization and the MLP layer, and the
multi-head self-attention helps learn context-aware features in a transformer.

2.3. Survival Prediction

The categorical features obtained from the transformer layers are concatenated with
the numerical features and the combined feature, concat

(
X′embed + Ccont

)
, which is an input

residual dense block for the survival prediction task. We follow the time-dependent
approach in [23], where the time-dependent relative risk function is given as follows:

h(t|x) = h0(t).exp[g(t, x)]. (1)

We use the time-dependent version of the Cox partial likelihood function to optimize
the model given by

LNLL = − 1
n ∑n

i=1(di ∗ log[ f (ti|xi)] + (1− di) ∗ log[S(ti|xi)]), (2)

where xi, di, and ti are the input feature, event indicator, and observed time, respectively,
for patient i; and f (ti|xi) and S(ti|xi) are the density and survival functions at time ti for
input xi. We can find the cumulative hazard function from the predicted risk (1) using the
Breslow estimator [27] to estimate the required survival function.

3. Experiments
3.1. Datasets

We conducted experiments on two clinical datasets collected at Chonnam National
University and Hwasun Hospital (CNUHH, n = 604) and Jeonbuk National University
Hospital (JBUH, n = 220) in 2011–2018. This study was approved by the Institutional Review
Boards of CNUHH (CNUHH-2022-095) and JBUH (CUH 2022-11-013). The log-rank test
of the patient covariates in the datasets was statistically significant (p < 0.005), suggesting
the importance of the individual features. Figure 2 depicts the Kaplan–Meier plots of
patient properties.

The CNUHH and JBUH datasets have similar percentages of censored cases (70.86%
and 73.18%, respectively). The clinical data consist of clinical information including pa-
tient age, sex, performance score, lactose dehydrogenase (LDH) level, stage, number of
extranodal sites, presence of B-symptoms, and the IPI score. Additionally, for on-treatment
evaluation, we included the DS calculated by experienced nuclear medicine physicians at
CNUHH and JBUH through observations of interim PET scans.

The IPI prognostic tool was developed in 1993 using five significant risk factors (age,
stage, LDH, performance status, and extranodal involvement). Table 1 shows the dataset’s
characteristics before and during treatment. Only age and LDH (IU/L) in the dataset were
used as continuous variables; all other covariates were considered categorical. The age
distribution of the patients included in this study exhibits notable variance between the
CNUHH and JBUH datasets. The former is composed of individuals aged 36–81 years,
while the latter encompasses a wider age range of 15–87 years. This discrepancy can be
attributed to the distinct patient populations treated at each institution during the period
under investigation. Table 1 presents the age, sex, LDH, performance score, number of
extranodal sites involved, bone marrow involvement, B symptom, Ann Arbor stage, the IPI
score, and the DS before and during treatment.
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Table 1. Patient characteristics at different treatment stages.

Time of
Evaluation Characteristics CNUHH (n = 604) JBUH (n = 220)

Pretreatment
evaluation

Age (years) 36–81 15–87

Sex
Female 250 88

Male 354 132

LDH (IU/L) 144–8402 244–3797

LDH (normal vs. elevated)
Elevated 314 132

Normal 290 88

ECOG performance status

1 323 190

2 201 16

3 66 11

4 14 3

Number of extranodal
involvement sites

0 166 73

1 291 93

2 120 30

3 20 11

4 3 7

5 3 4

6 1 2

Bone marrow involvement Yes 48 46

No 556 174

B symptoms
Yes 99 58

No 505 162

Ann Arbor stage

I 118 23

II 196 73

III 137 37

IV 153 87

IPI score

0 81 29

1 152 39

2 135 58

3 131 43

4 77 33

5 28 18

On-treatment
evaluation Deauville score

1 290 67

2 108 65

3 87 39

4 75 36

5 44 13

ECOG: Eastern Cooperative Oncology Group, IPI: international prognostic index, and LDH: lactate dehydrogenase.

3.2. Experiment Design

We conducted survival analysis experiments separately for pretreatment and on-
treatment analysis based on the clinical information available before and during treatment.
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Only the DS was included as an additional feature for on-treatment analysis, which allowed
us to compare the impact of the DS on survival prediction. We conducted experiments
using the proposed method and compared it with existing state-of-the-art deep-learning
survival models: DeepSurv, CoxCC, and CoxTime.

We evaluated the proposed model with five-fold cross-validation. To evaluate using
cross-institutional data, we used clinical data from CNUHH and JBUH. First, the CNUHH
dataset was split into training and validation sets using stratified k-fold sampling. The
same set of training and validation data was used for different models to ensure a fair
comparison. After the models were trained on the CNUHH dataset, we evaluated the
trained models on the JBUH dataset, which was kept separate from the training process.
The best weights saved at each fold were used for inference with the testing set and the
average of each fold was reported. We implemented the proposed model in Python using
PyTorch, and we used the implementation from the pycox library available on GitHub as
the baseline model. The models were trained using an Nvidia GeForce RTX 3080Ti GPU
with 12 GB of memory.

3.3. Evaluation Metrics

We evaluated the survival models using two performance metrics, namely the C-index
and the MAE.

3.3.1. The C-Index

The C-index is the most common evaluation method for survival analysis and is a
measure of ranking for the predicted time. It estimates the probability that the predicted
times for individuals and their true survival times have the same order, and is calculated
as follows:

C− index =
Σi,j 1Tj<Ti . 1ηj>ηi .δj

Σi,j 1Tj<Ti .δj
, (3)

where ηi represents the risk score of a unit. In addition, 1Tj<Ti is 1 when Tj < Ti and 0
otherwise, and 1ηj>ηi is 1 when ηj > ηi and 0 otherwise. A C-index of 1.0 indicates perfect
concordance and 0.5 represents poor prediction.

3.3.2. The MAE

Although the C-index measures the accuracy of ranking the survival times, it may
not provide a fair assessment of a model’s overall performance. For example, the C-index
does not consider the magnitude of the difference between predicted and actual survival
times. We address this limitation by using the MAE as an additional evaluation metric for
survival time prediction models. The MAE involves converting predicted hazards into
survival functions and calculating the average difference between the predicted residual
life and the true survival time. However, it cannot be used for all samples due to the
presence of censored data. We evaluated the MAE for patients with observed events based
on each patient’s median life. The MAE, as a complementary metric, provides additional
comparison criteria when true survival times are known, and is calculated as follows:

MAE =
1

NE=1
∑n

i=0 NE=1 × |yi − ŷi|, (4)

where NE=1 represents the number of samples that observed the event and yi and ŷi
represent the true and predicted survival times, respectively, for the ith sample.

4. Results

We compared the performance of the proposed model with DeepSurv, CoxTime, and
CoxCC; similar performance was observed for all models. Tables 2 and 3 present the
experimental results on the CNUHH and JBUH datasets. The CNUHH column lists the
average values of five-fold cross-validation. The model saved at each fold was used to
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evaluate the unseen data from the JBUH dataset. The proposed model outperformed the
existing best-performing model on the CNUHH dataset while achieving a comparable
C-index with existing survival analysis methods on the JBUH dataset. We evaluated the
models using the C-index and the MAE.

Table 2. Concordance index for overall survival prediction.

CNUHH JBUH

Before During Before During

CoxPH [11] 0.7134 0.7440 0.7858 0.7990
DeepSurv [22] 0.7213 0.7428 0.7403 0.7546

CoxCC [23] 0.6925 0.7055 0.7407 0.7501
CoxTime [23] 0.6929 0.7358 0.7384 0.7782

TTSurv 0.7245 0.7457 0.7756 0.7950
The results for the best performing models are denoted in bold font.

Table 3. Mean absolute error for overall survival prediction.

CNUHH JBUH

Before During Before During

CoxPH [11] 1092.8914 969.0686 822.1458 662.0441
DeepSurv [22] 1117.5200 1006.5200 911.6237 873.2576

CoxCC [23] 1047.7943 1023.1200 798.5797 783.5695
CoxTime [23] 1195.6286 1011.7200 915.0136 774.6542

TTSurv 995.3200 958.0857 613.5119 559.8000
The results for the best performing models are denoted in bold font.

The proposed model was found to outperform existing models in terms of the MAE.
Moreover, it performed better on unseen data, which suggests that the transformer ar-
chitecture used in this model was effective at extracting robust features and enabling
generalizability. Additionally, we observed that the models exhibited even higher perfor-
mance when an additional feature obtained during treatment was included. This finding
highlights the high prognostic importance of the DS in patients with DLBCL. Figure 3
presents the survival curves of the test set as obtained using various survival models. The
estimated survival function was similar for various methods.
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Figure 4 provides the estimated survival plots for five patients with survival times
in the range of 321–2127 days; Table 4 lists corresponding survival time predictions. The
results revealed that the model could estimate the survival times with little error in terms
of days. However, Patient JBUH_DLB106 had a low predicted survival time despite their
actual survival time being similar to JBUH_DLB029. This outcome could be a special case
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where the patient lived longer despite having severe symptoms. Patient JBUH_DLB106
was at stage III with a low LDH of 756 and a Deauville score of 3.
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Table 4. Example predictions for patients with survival times in the range of 527–2421 days.

Patient ID Ground Truth (Days)
Median Life (Days)

Before Tx During Tx

JBUH_DLB004 321 324 332
JBUH_DLB005 403 600 564
JBUH_DLB007 1537 977 1531
JBUH_DLB029 2340 1571 1611
JBUH_DLB106 2127 673 677

As indicated in Figure 5, we compared features used both before and during treatment
analysis for all uncensored patients in the test set. The estimated survival times were
generally close to the ground-truth values. However, the survival times were poorly
estimated for some cases, as mentioned in Table 4. In summary, we demonstrated that
TTSurv could estimate the survival times with a relatively small MAE of approximately
559 days.
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5. Discussion

The proposed model, TTSurv, outperformed the existing state-of-the-art survival
prediction model for patients with DLBCL using transformer-based deep-learning models
regarding the C-index and the MAE in the dataset. Therefore, we have demonstrated
the potential of deep-learning models to reliably predict survival times based on clinical
features and the DS. In addition, we have illustrated the importance of the DS obtained
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during treatment, which significantly improved the model performance, indicating this
feature’s high prognostic value. We conducted survival analyses based on two stages:
before and during treatment. Although most prognostic clinical features were available
at the beginning of treatment, the DS was only available after the interim-PET scan. Our
results add to the growing body of evidence supporting the high prognostic value of
the DS [7–10].

Deep-learning models have demonstrated usefulness in interpreting clinical data and
providing better prognosis predictions with less manual feature engineering. Manual
feature selection is a traditional method of analyzing clinical data that may not capture
all pertinent information. The feature selection process requires expert knowledge and
may result in a limited view of the data, resulting in incomplete or inaccurate conclusions.
In addition, clinical data often contain categorical features that are not purely indepen-
dent classes; these features may have complex interrelationships with other variables and
their treatment as independent classes may result in the loss of valuable prognostic infor-
mation. Therefore, a more sophisticated approach is required to ensure that all relevant
information is considered and that categorical features are appropriately processed to
provide more accurate predictions. We used transformer-based categorical data encoding
on clinical datasets to address this problem and developed a deep-learning network for
survival prediction.

Moreover, clinical data features are typically grouped into numeric and categorical
data. However, the categories featured in clinical data do not have purely independent
classes. For instance, patients with cancer are usually categorized into four stages upon
diagnosis: I, II, III, and IV. As such, data are not continuous and they are often treated as
categorical even though they carry information related to the disease severity on an ordinal
scale, and this may result in a loss of valuable information. As transformers have been
widely accepted in various domains, including natural language processing and vision-
related tasks, we adopted transformers to encode categorical features using transformers.
TabTransformer has demonstrated high performance in handling tabular data. Therefore,
we adopted transformer-based categorical data encoding in clinical datasets and developed
a deep learning network for survival analysis.

Survival analysis is considered more challenging than standard regression tasks due to
the presence of data censoring. Censoring occurs when the event of interest is not observed
during the study period for various reasons, such as subjects leaving before this study is
complete or this study finishing before the event of interest occurs. For example, in survival
analysis where the event of interest is death, some patients who survive until the end of
the study duration may opt out or move to a different hospital during this study. Survival
models manage information censoring by including an event indicator, which is a binary
variable that indicates whether the event occurred during the study period. However,
data censoring has the potential to reduce model accuracy. In future research, we plan
to use larger clinical datasets that include numerous non-censored data to increase our
model’s performance.

While the proposed transformer-based survival prediction model has shown promis-
ing results in predicting patient outcomes, it is important to acknowledge its limitations
regarding its practicability in clinical contexts. One major limitation is that the model
relies solely on clinical information and the DS calculated by the experts, which may not
capture all relevant clinical information such as imaging information in PET/CT. In our
future studies, we plan to overcome this limitation by incorporating radiological images to
improve the model accuracy. Additionally, we aim to validate the model on a larger and
more diverse patient population to ensure its generalizability. Despite these limitations,
our transformer-based model represents a significant step forward in the field of predictive
analytics in healthcare and holds great potential for improving patient outcomes.
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6. Conclusions

This study reveals the potential of using a transformer-based deep-learning model
for survival prediction in patients with DLBCL. We demonstrated the importance of in-
corporating the DS obtained during treatment and the effectiveness of using categorical
embedding in handling high-dimensional and categorical clinical data. While the model
outperformed existing state-of-the-art survival models, we acknowledge the need for larger
clinical datasets and the inclusion of more prognostic modalities to increase the model’s
performance. This study suggests that deep-learning models may improve personalized
treatment and survival prediction accuracy for patients with DLBCL.
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