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Abstract: Objective: To examine whether and how sex and age modify the association between
accelerometer-based physical activity (PA) and metabolic syndrome (MetS) among American (US)
adults. Method: Adults aged ≥20 years old who participated in the mobile center examination during
2003–2006 in the National Health and Nutrition Examination Survey were included for analysis. The
total minutes per day of moderate-to-vigorous PA (MVPA) was estimated using ActiGraph. Multi-
variable logistic regression was used to estimate the odds ratio (OR) of having MetS at an increasing
MVPA time. The modification effects of gender and age on the association between MetS and MVPA
time were examined by testing for two-way and three-way interaction terms of MVPA time, sex, and
age in the model after adjusting for relevant covariates. Results: The prevalence of MetS generally
decreased with the MVPA time and was lower in females than in males, although the sex difference
varied across age groups. After adjusting for demographic and lifestyle covariates, there was a signif-
icant sex difference in how an increased MVPA time lowered the odds of MetS. This interactive effect
also varied with age. MVPA benefitted young and middle-age populations up until about 65 years old
for both sexes, and the protective effect weakened with age. Although the effect of MVPA was stronger
for males than females at young ages, the rate at which it attenuated was quicker in males. The OR of
MetS between males and females per unit change of MVPA time was 0.73 (95% CI: [0.57, 0.93]) at
age = 25 years, compared to OR = 1.00 (95% CI: [0.88, 1.16]) at age = 60 years. Before the age of 50,
the gender difference in the protective effect on MetS was larger at low MVPA levels and became
smaller at higher MVPA levels. The male advantage was quite stable with an increasing MVPA
time for ages 50–60, and no longer significant at older ages. Conclusions: Young and middle-age
populations benefitted from MVPA, lowering the risk of MetS for both sexes. A longer MVPA time
was associated with a greater decrease in the risk of MetS in young men than in women, but the sex
difference reduced with age and was no longer apparent in older populations.

Keywords: metabolic syndrome; physical activity; sex; age

1. Introduction

Metabolic syndrome (MetS), a pathologic state of abnormal clustering of various
metabolic components, is a general term for clinical symptoms that include central and
abdominal obesity, systemic hypertension, insulin resistance (or type 2 diabetes), and
atherosclerotic dyslipidemia [1–4]. MetS is also associated with diabetes, cardiovascular
and cerebrovascular diseases, and all-cause mortality [5]. The prevalence of MetS varies
worldwide, partly because of the different criteria used in its definition. Nonetheless, the
incidence of MetS among adults has increased along with that of obesity and of type 2
diabetes. Among American (US) adults, the prevalence of MetS was over 30% in recent
years and increased significantly from 2011 to 2016 in young adults aged between 20 and
39 years [6,7].

The treatment of MetS revolves around controlling various risk factors, as well as
lifestyle interventions [1,8]. Weight loss is one of the major methods, which often requires
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the regulation of total energy intake from diet and the enhancement of physical exercise
simultaneously [9,10]. Even though the normalization of metabolic disorders might not
have been the ultimate purpose of physical activity interventions to improve body fitness,
several experimental and observational studies have shown that the improvement in fitness
or increased PA helped to regulate the biomarkers of MetS to a healthier level [11–14]. In
particular, a large number of research has focused on moderate-and-above-intensity PA to
assess how an individual’s activity level might control the risk factors [15–17]. For example,
the WHO 2020 guideline recommended at least 150 min/week of moderate-to-vigorous
physical activity (MVPA) for health benefits [18].

Sex is an important factor when discussing metabolic-related topics. An array of
research conducted worldwide has documented differences between adult males and
females in the prevalence of MetS, as well as in the components of MetS including waist
circumference, triglycerides, high-density lipoprotein (HDL) cholesterol, blood pressure,
and fasting glucose [19–25]. Some of these reports displayed the association between PA
and MetS by sex separately, but did not report or study the interactive effect between sex
and PA on MetS. In addition, as one’s basal metabolic rate and PA levels change with age,
the relationship between PA and MetS may also vary with age [26–28]. To address these
two issues, we investigated whether and how sex and age modify the association between
PA and MetS in the US population using the Nutrition Examination Survey (NHANES)
data from 2003–2006 as PA was measured using an accelerometer during this period and
would provide a more accurate estimation of the subjects’ activity state.

2. Materials and Methods
2.1. Study Design

The Centers for Disease Control and Prevention (CDC) designed the National Health
and Nutrition Examination Survey (NHANES) to collect health- and nutrition-related
information from the non-institutionalized civilian resident population of the United
States (US). From 1999, the NHANES adopted a complex, multistage probability sampling
design to select approximately 5000 individuals that were representative of the entire US
population to participate in the study every year. The data were released in two-year cycles
to the public. The NHANES consisted of three primary components: a household interview,
examinations and interviews at mobile examination centers (MECs), and post-MEC data
collection. For this study, demographic and lifestyle characteristics including age, sex,
race/ethnicity, smoking, and drinking status were obtained at the household interview. At
the onsite MEC examinations, the participants’ anthropometry (including height, weight,
and waist circumference) and blood pressure were measured as components of a physical
examination, and blood specimens were collected to test their triglycerides, HDL, and
blood glucose. The physical activities of the selected participants were assessed using
an accelerometer during the post-MEC period. In addition, a 24 h dietary recall at the
MECs was conducted to estimate the daily total energy intake. More details about the
NHANES protocol and study procedures are available online (https://wwwn.cdc.gov/
nchs/nhanes/) (accessed on 30 December 2020).

2.2. Sample

This study included the NHANES 2003–2004 and 2005–2006 cycles, where the physical
activity monitor (PAM) module was available. Among the 9515 individuals aged ≥20 year
who participated in the MEC module, 4372 could not be clearly determined as having
met the criteria of MetS, predominantly due to missing triglycerides and fasting blood
glucose, and 1852 failed to meet the minimum wear time standards of the PAM. The final
sample consisted of 4533 participants, after excluding another 115 participants with either
extreme/implausible values (e.g., body mass index >100 kg/m2, daily intake <500 kcal or
>6000 kcal) or who did not complete the 24 h dietary recall.

https://wwwn.cdc.gov/nchs/nhanes/
https://wwwn.cdc.gov/nchs/nhanes/
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2.3. Accelerometer-Based Physical Activity

Physical activities were measured using an ActiGraph accelerometer (model 7164;
ActiGraph, LLC, Fort Walton Beach, FL, USA). The ActiGraph counted acceleration in the
vertical direction as physical activity counts and collected the records in a 1 min epoch. The
participants were asked to wear the device on the hip for 7 consecutive days and to remove
it only when swimming or bathing; thus, for each participant, the PAM data consisted of
1440 × 7 PA counts from the first minute of the first calendar day to the last minute of the
seventh calendar day. The ActiGraph data were screened to identify non-wear periods,
defined as ≥60 consecutive minutes of zero acceleration, with the allowance of up to 2 min
of non-zero counts. After removing the non-wear time, subjects with at least 1 valid day,
i.e., a minimum accelerometer wear time of 10 h per day, were included in this study. To
classify the time spent in different activity intensities, we used cutoff methods that have
been broadly accepted in previous NHANES research [12,29,30]. Specifically, MVPA was
defined as ≥2020 counts per minute of activities, and for each participant, the time of
MVPA was calculated as the mean of the daily total MVPA minutes across all valid days.

2.4. Metabolic Syndrome

The harmonized definition of MetS published in 2009 was used in this study, which
incorporated medical treatments into the National Cholesterol Education Program’s Adult
Treatment Panel III report (NECP/ATP III) clinical criteria [3,4]. Subjects were diagnosed as
having MetS if they met three or more of the following: (1) high waist circumference: waist
circumference > 102 cm in men or >88 cm in women; (2) triglycerides ≥ 150 mg/dL or treat-
ment for elevated triglycerides; (3) HDL cholesterol < 40 mg/dL in men or <50 mg/dL in
women or treatment for reduced HDL cholesterol; (4) systolic blood pressure ≥ 130 mm Hg
or diastolic blood pressure ≥ 85 mm Hg or both, or treatment for hypertension; (5) fasting
glucose ≥ 100 mg/dL or drug treatment for elevated glucose. The blood pressure of the
participants could be measured multiple times (up to 4) at MEC, and the mean of all the
available blood pressure measurements was used as the subject’s final blood pressure.
The MetS status could be ascertained with a minimum of three available data of the five
components (e.g., if one did not undertake an examination of triglycerides and fasting
glucose but the measurements of waist circumference, HDL, and blood pressure satisfied
criteria 1, 3, and 4, then the participant can still be determined to have MetS).

2.5. Statistical Analysis

Many participants did not contribute triglycerides and fasting blood glucose data or
failed to meet the protocol requirements of the PAM, resulting in large amounts of missing
MetS responses and/or PA data. Non-parametric random forest missing value imputation
based on the demographic and lifestyle information, as well as self-reported physical
activity habits and history of diabetes, was therefore performed to impute the missing
data and account for possible selection bias [31]. The descriptive and regression analyses
used the appropriate 4 year NHANES examination sample weights for the combined
data to account for the complex study design and to provide nationally representative
estimates. The prevalence of MetS was estimated for each weighted MVPA time tertile (1st,
<10.6 min/d; 2nd, 10.6–26.7 min/d; 3rd, >26.7 min/d) and weighted age quintile (1st,
20–29 years; 2nd, 30–39 years; 3rd, 40–49 years; 4th, 50–64 years; 5th, 65–85 years) of the
sampled population. Differences in the means and percentages were examined using a
weighted t test and weighted chi-square test, respectively. Multivariable logistic regression
was used to estimate the odds ratios (ORs) of having MetS per unit change in the log-
transformed MVPA time. The modification effects of sex and age on the association
between MVPA time and MetS were examined by including and testing the two-way and
three-way interaction terms of MVPA time, sex, and age in the model after adjusting for
race/ethnicity, BMI, smoking status, drinking status, and total daily energy intake. All of
the analyses were conducted using R version 4.2.2.
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3. Results

The population prevalence of MetS was 35.1%, with males being higher (37.6%) than
females (32.7%). Descriptive summaries of the sample and population are shown in Table 1.
The demographic and lifestyle characteristics differed significantly (all p < 0.001) between
the populations with and without MetS. In particular, shorter mean daily MVPA times
were observed in the MetS (16.5 min/d) versus the non-MetS population (26.3 min/d).
According to Figure 1, among those diagnosed with MetS, the most common combination
of MetS components was high blood pressure, high triglycerides, high waist circumference,
and high fasting glucose. Both high waist circumference and high fasting glucose appeared
in the top five most frequent combinations and were also the top two most prevalent single
components. The prevalence of MetS was generally lower in women than in men across
all age groups, although the sex difference varied across age groups (Figure 2). When the
MVPA tertile levels were low (1st tertile) or medium (2nd tertile), the prevalence of MetS
among men increased by age and reached a maximum around 40–50 yrs before decreasing.
At high MVPA levels (3rd tertile), however, the prevalence of MetS among men increased
from the youngest to the oldest age group. This pattern of an increasing prevalence with
age was also evident among women, regardless of their MVPA level.

Table 1. Descriptive characteristics, NHANES 2003–2006.

Total Non-MetS MetS

Sample 1

(n = 9515)
Population 2

(N = 207,718,631)
Sample

(n = 6018)
Population

(N = 134,893,945)
Sample

(n = 3497)
Population

(N = 72,824,686)

Age (year) 49.3 + 19.3 46.4 + 17.0 44.7 + 18.9 42.7 + 16.4 57.4 + 17.3 53.3 + 16.1

Sex

Female 4956 (52.1) 52.0 3224 (53.6) 53.9 1732 (49.5) 48.5

Male 4559 (47.9) 48.0 2794 (46.4) 46.1 1765 (50.5) 51.5

Race/Ethnicity

White 4894 (51.4) 71.9 3025 (50.3) 70.5 1869 (53.4) 75.1

Mexican American 1910 (20.1) 7.9 1158 (19.2) 8.1 752 (21.5) 7.3

Other Hispanic 291 (3.1) 3.5 200 (3.3) 3.7 91 (2.6) 3.1

Black 2024 (21.3) 11.4 1360 (22.6) 12.1 664 (19.0) 9.8

Other 396 (4.2) 5.4 275 (4.6) 5.7 121 (3.5) 4.7

Drinking status

Non-Drinker 3430 (36.1) 28.9 1912 (31.8) 24.6 1518 (43.4) 36.8

Moderate Drinker 5492 (57.7) 63.4 3696 (61.4) 66.9 1796 (51.4) 56.9

Heavy Drinker 593 (6.2) 7.7 410 (6.8) 8.5 183 (5.2) 6.3

Smoking status

Never 4909 (51.6) 50.3 3224 (53.6) 51.5 1685 (48.2) 48.0

Former 2494 (26.2) 25.0 1389 (23.1) 22.5 1105 (31.6) 29.8

Current 2112 (22.2) 24.7 1405 (23.3) 26.0 707 (20.2) 22.3

BMI (kg/m2) 28.6 + 6.4 28.4 + 6.4 26.6 + 5.6 26.3 + 5.4 32.0 + 6.2 32.3 + 6.3

MVPA (min/d) 20.6 + 21.5 22.8 + 21.0 24.0 + 22.7 26.3 + 21.8 14.6 + 17.6 16.4 + 17.8

Energy intake (kcal/d) 2147.0 + 861.9 2225.3 + 885.1 2223.4 + 867.3 2272.3 + 886.6 2015.5 + 836.6 2138.1 + 875.7

Waist circumference (cm) 98.3 + 15.3 97.6 + 15.7 92.7 + 13.5 91.5 + 13.3 108.0 + 13.3 108.8 + 13.6

Triglycerides (mg/dL) 149.5 + 92.1 147.7 + 92.9 116.3 + 58.3 114.0 + 58.4 206.8 + 109.7 210.0 + 111.0

HDL cholesterol (mg/dL) 55.1 + 16.2 54.5 + 15.9 59.7 + 15.7 59.0 + 15.2 47.1 + 13.9 46.2 + 13.7

Diastolic blood pressure (mm Hg) 69.0 + 13.5 70.4 + 12.6 67.3 + 12.1 68.5 + 11.1 72.1 + 15.3 74.1 + 14.4

Systolic blood pressure (mm Hg) 125.1 + 20.3 122.9 + 18.2 118.5 + 17.0 117.1 + 14.9 136.5 + 20.4 133.6 + 18.7

Fasting glucose (mg/dL) 105.1 + 28.1 102.7 + 23.9 96.7 + 19.3 95.8 + 17.2 119.6 + 34.3 115.6 + 28.9
1 n is the size of collected sample. Values in Sample column are sample mean ± SE for continuous variables and
number of subjects (percentage) for categorical variables. 2 N is the size of population represented by the sample.
Values in the Population column are sample weight adjusted population mean ± SE for continuous variables and
sample weight adjusted population percentage for categorical variables.
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bar above. Horizontal bars at bottom left indicate the frequencies of each individual MetS component.

The changes in the prevalence of MetS for men and women by age and MVPA levels,
displayed in Figure 2, suggest potential modifying effects of sex, together with age, on the
association between MetS and MVPA. This was confirmed by the significant likelihood
ratio test of the three-way interaction term between sex, age, and MVPA in the logistic
regression model (p = 0.018). The predicted ORs of MetS per unit increase in the log-scaled
MVPA time, shown in Figure 3, had an increasing trend from around 0.5 at age = 20 years
to 1.0 at age = 80 years, indicating that the protective effect of MVPA on MetS decreased
with age. Strong associations between prolonged MVPA times and a decreased odd of
MetS were observed in young adults (e.g., at age = 25 years OR = 0.65, 95% CI: [0.54, 0.78]
for women; OR = 0.46, 95% CI: [0.39, 0.55] for men). Moreover, the protective effect of
MVPA was stronger for young men than for young women (OR = 0.73, 95% CI: [0.57, 0.93]
comparing males vs. females at age 25 years in contrast to OR = 1.00, 95% CI: [0.88, 1.16]
at age 60 years), but the rate of change in the ORs with age was also higher in males than
in females. MVPA’s protective effect on MetS was the same for both men and women by
around age = 60 years, and its effect was no longer beneficial at ages 65 years and 70 years
for males and females, respectively. Figure 4 compares males versus females in their effect
on MetS as a function of MVPA at the medians of the five age quintiles. This figure not
only shows that males have, in general, a stronger protective effect on MetS with increasing
MVPA, but more importantly, it shows that before age = 50 years, the male advantage was
stronger at low MVPA levels than at high MVPA levels, as evidenced by the significant
negative slopes in the first row of the panel-graphs. However, with an increase in age,
the male advantage at low versus high MVPA levels attenuated. By age = 60 years, the
protective effect of MetS of men over women became much smaller and did not change
with the amount of MVPA. By age = 75 years, the effect on MetS in men versus women even
increased with the MVPA time, although the sex difference was not statistically significant.
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Figure 3. Adjusted association between MVPA time and MetS according to age. Y axis is the predicted
odds ratio of MetS per unit change in loge(MVPA + 1) time in a logistic regression model with sex, age,
loge(MVPA + 1), and their two-way and three-way interactions and adjusted for race/ethnicity (White,
Mexican American, Other Hispanic, Black, and others), BMI, smoking status (never, former, and current),
drinking status (non-drinker, moderate drinker, and heavy drinker), and total daily energy intake.
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Figure 4. Adjusted association between sex and MetS according to log-transformed MVPA time at
different age. Y axis is the predicted loge(OR) of MetS in males compared to females in a logistic
regression model with sex, age, loge(MVPA + 1), and their two-way and three-way interactions and
adjusted for race/ethnicity (White, Mexican American, Other Hispanic, Black, and others), BMI,
smoking status (never, former, and current), drinking status (non-drinker, moderate drinker, and
heavy drinker), and total daily energy intake. Each panel presents the relationship in the population
of participants at the median age of each of the age quintiles.

4. Discussion

The main purpose of this study was to examine whether and how sex and age modify
the association between accelerometer-based PA and MetS among US adults. In general,
the prevalence of MetS increased with age in both sexes, and the trend of change varied
across MVPA levels. We found that males tended to benefit more than females with the
same amount of MVPA, as MVPA lowered the odds of MetS in both sexes of young or
middle age, and that age modified the interactive effect between MVPA time and sex. This
study is novel in that the interactive effect between sex and MVPA time on MetS and how
it was modified by age has not been previously examined in a large, representative sample
of US adults using an objective measure of PA.

The age-specific prevalence of MetS by sex was consistent with previous research
focusing on the US population [32]. Regardless of MVPA level, the prevalence of MetS in
US adults aged 20–85 year increased with age, and males younger than 60 had a higher
risk of MetS compared with females of the same age, and females became more vulnerable
thereafter. A similar trend of sex differences in the prevalence of MetS was also reported in
a recent study on the Chinese population, although the reverse point was a little earlier,
at 43 years old, which might be attributed to the race and lifestyle differences between
western and eastern countries resulting in a higher prevalence of MetS in the western
population [33].

Physical activities have been indicated to be negatively related to cardiometabolic risk
factors, including those comprising metabolic syndrome, by a number of studies [34–36]. In
particular, physical activity of moderate-or-higher-intensity has played a crucial role in reduc-
ing the risk of the corresponding comorbidities, such as diabetes and hypertension [37–40].
In this study, the prevalence of MetS consistently decreased with an increase in MVPA time
in both sexes and across all age groups. Nevertheless, in contrast to females, in whom the
prevalence consistently increased with age in all MVPA groups, the trend only appeared in
males with the highest level of MVPA, which postponed the age of the highest risk of MetS
compared to the low and medium levels of MVPA. A similar conclusion was drawn from a
study on the Taiwan middle-aged population, which stated that the intervention–response
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relationship between the frequency of physical exercise and MetS was linear in females
and exponential in males. Our results of the multivariable logistic regression involving
the interaction terms of MVPA time, sex, and age suggested a significantly stronger pro-
tective effect of MVPA time in young or middle-aged men than in women [41]. Females
and males were found to have different mechanism of energy expenditures by previous
studies. In general, the total daily energy expenditure of females was about 10% lower
than men, primarily because of the difference in body composition between the sexes [42].
According to Keim et al., even with similar fatness and relative aerobic capacity, the energy
expenditure per minute was higher in males. Males were also reported to consume more
energy than females involved in the same intensity of PA for the same duration, which
partly explains why PA was more effective in reducing the risk of MetS in males [43,44].
Preferences of PA may also a reason for the sex difference in the relationship between PA
and MetS. As men were surveyed to be more likely than women to prefer outdoor activities,
Chen et al. supposed that the higher vitamin D concentration and reduced systolic pressure
associated with outdoor activities would result in a higher efficiency of MetS improvement
in males [41,45]. The study by Oyibo et al. showed that, relative to females, more males
preferred strength training, such as crunches and planks, which may evade the collection
of acceleration by the accelerometer [46]. Considering that this kind of resistive activity
is more likely to be combined with dynamic exercise, the MVPA time could have been
underestimated among more active males in our study, further inducing the interactive
effect between MVPA time and sex.

The physiological differences between men and women are complicated in mecha-
nism but directly related to metabolic regulation, including body weight deposition, lipid
metabolism, and insulin action. In addition, there is evidence that men and women have
different cardiovascular responses to dynamic exercise based on their cardiac output and
vascular tone [47–49]. However, a significant sex difference in the association between
MVPA and MetS as a comprehensive index rather than a single risk factor was observed to
diminish in the older population. Although the pathogenetic mechanism of MetS remains
unknown at present, scientific studies have provided evidence that MetS is causally an
endocrine disease [50]. The metabolic effects of sex steroids have been described in multiple
studies. Specifically, estrogen plays a protective role in the development of MetS, while
testosterone inhibits the fat deposition in visceral adipose tissue [51,52]. As people age, a
trans-sexual trend appears concerning the reassignment of sex hormones, with a relative
increase in estrogen and a decrease in testosterone levels in men and in the opposite direc-
tion in women [53,54]. The fact that sex hormones are involved in the energy expenditure
mechanism via different body compositions of men and women and that PA declines with
age, it is not surprising that the sex difference in the association between MVPA time and
MetS would be different across different age groups.

Several limitations of this study should be noted. First, the cross-sectional nature of
the NHANES prevents causal inference, particularly in that having MetS may conversely
weaken the motivation for being active to different degrees in males and females. Second,
the accelerometer was unable to detect resistance training or complete inactivity; thus, the
muscle training of the subjects might be underestimated. Finally, when exploring whether
the total daily energy intake influenced the association we studied, we used a single 24 h
dietary recall at the MECs to retain as many subjects as possible, while the NHANES
2003–2006 actually had another post-MEC 24 h dietary recall over the phone. Although
a single recall cannot reflect personal day-to-day variability, a one-day dietary record is
acceptable in depicting the population-wide energy intake with validity and reliability
for studies with a big enough sample size, such as the NHANES [55,56]. There are also
strengths to this study. Limited by cost or feasibility, most prior epidemiological research
has only collected self-reported PA information, whereas we used objectively measured
PA, which is thought to provide estimates of energy expenditure with more precision
than self-reported ones [57,58]. Additionally, as over half of the subjects missed the main
response or risk factors in the original sample, random forest imputation was applied to
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reduce potential selection bias, in contrast to the majority of studies that directly excluded
subjects with missing data. Finally, to the best of our knowledge, this is the first study to
examine the interaction between sex and MVPA time on MetS and the modification effect
of age using a nationally representative sample, which allowed the generalization of our
results to US adults.

In conclusion, the prevalence of MetS in US adults decreased with age, but with
different trends in males and females, respectively, at different levels of MVPA. Both sexes
in the young and middle-aged populations benefitted from MVPA. A longer MVPA time
was associated with a greater decrease in the risk of MetS in young men than in women, but
the sex difference reduced with age and was no longer apparent in the older populations.
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