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Abstract: Internalizing disorders in adolescence have been associated with disturbances in autonomic
and endocrine functioning. Because the prefrontal cortex and the limbic system play a central role in
regulating both the autonomic and the endocrine systems, their joint functioning is hypothesized
to provide information about the potential development of internalizing symptoms throughout
adolescence, notably in the preclinical stage. This hypothesis was tested in a sample of 198 adolescents
from the general population. Heart rate variability (HRV) and skin conductance levels (SCLs) were
measured before, during, and after a public speaking task. These autonomic parameters were
associated with cortisol response to the task in the complete sample as well as in low- and high-
anxiety adolescents separately. Self-reported social anxiety, low HRV, and high SCL recovery values
were predictive of cortisol response. Importantly, in low-anxiety adolescents, only HRV during the
task predicted the cortisol response, whereas, in their highly anxious peers, both HRV and SCL were
strongly associated with this response. In the latter finding, age was a prominent factor. Additional
analyses supported the idea that the interaction of autonomic and endocrine reactivity is subject to
natural development. These findings provide evidence that adolescence might be a period of highly
interactive emotional–neurobiological development, particularly with respect to the development of
stress management skills.

Keywords: mental health; stress; social anxiety; internalizing symptoms; public speaking task;
adolescence; heart rate variability; cortisol; autonomic nerve system; HPA axis

1. Introduction

Disturbances in the functioning of both the autonomic nervous system (ANS) and the
hypothalamic–pituitary–adrenal (HPA) axis have been associated with adverse emotional
development in youth [1–6]. Only recently, interest in the interaction between the two
systems has increased [7,8], although logically, the reactivity of these systems is at least
reciprocal to some extent [9,10]. On the functional level, the locus coeruleus, activating
the ANS, and the paraventricular nucleus of the hypothalamus are both innervated by
corticotrophin and noradrenalin [11–13]. On the structural level, both systems are linked to
the central autonomic network (CAN), including the prefrontal cortex and limbic structures
(including, among other structures, the amygdala, the hypothalamus, and the hippocampus;
see Figure 1) [14–16]. Considering the centrally coordinated reciprocity of the ANS and
the HPA axis, the ability to adequately respond to a stressor might, consequently, not
only be mirrored in typical singular responses within the autonomic or endocrine systems
(e.g., increased heart rate, reduced heart rate variability, or increased cortisol production)
but also in response patterns of the ANS and the HPA axis [9]. Following, though yet
hypothetically, such response patterns might be indicative of the perceived severity of the
encountered stressor and/or of the sensitivity of a given individual. Ambiguities reported in
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earlier studies that investigated the interaction between ANS and HPA axis responses [17–19]
might very well be explained by these individual differences (see Figure 1).
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During adolescence, brain development is characterized by functional changes in
the limbic system and structural changes in the prefrontal cortex [20,21], going hand in
hand with social reorientation and increased sensitivity to stress [22–24]. During this sensi-
tive developmental period, stress systems (and their interactions) might consequently be
particularly vulnerable to disturbances (i.e., excessive psychophysiological and/or neu-
roendocrinological responses reinforcing feelings of distress), potentially leading to adverse
emotional development (reflected, for example, in feelings of anxiety or in avoidance
behaviors) [23,25]. While maturating, it is even hypothesized that the HPA axis recalibrates
during adolescence in response to social stress [26], making gradually developing deficien-
cies in HPA axis functioning a prominent risk factor for the development of, for example,
anxiety disorders over time [27,28]. In short, adolescence is a vulnerable period for the
development of stress regulation with potentially lifelong consequences for health and
well-being [29,30]. In the current study, the development in adolescence of the relationship
between autonomic and endocrine reactivity to a social stressor is studied, with particular
interest in the potentially modulating roles of age and self-reported levels of social anxiety.

There is increasing evidence for the potentially interactive nature of the ANS and
the HPA axis in response to stress in adults. This interaction seems to change before,
during, and after exposure to stress. In stressful moments in a group of nurses, cortisol
levels were positively associated with heart rate (as a measure of sympathetic activity
of the ANS) and negatively associated with heart rate variability (HRV; as a measure of
parasympathetic activity of the ANS [31–33]). Interestingly, these relations were absent in
low stress periods [34]. In reaction to a standardized mental stress task, low baseline HRV
in healthy men appeared to be associated with impaired poststress recovery of cortisol
levels [35]. In contrast, higher baseline HRV has been associated with an increased cortisol
response to the Trier Social Stress Test in young adults [36].

In younger children, previously reported associations between peripheral stress re-
sponses are generally nonsignificant. In toddlers (3 to 5 years), fearful temperament has
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been associated with an increased cortisol response and marginally lowered HRV changes
in response to social stress [3]. Importantly, only nonsignificant relationships were reported
between ANS parameters and the cortisol response, suggesting independent response
profiles for the ANS and the HPA axis, at least in toddlers. This finding is confirmed
by other studies suggesting a typical pattern of specifically parasympathetic reactivity in
relation to endocrine responses to stress in youth [37]. However, in this somewhat older
age group, there is some evidence linking patterns of sympathetic reactivity and HPA axis
responses with inadequate coping and internalizing symptoms, such as distress, avoidance
behavior, and/or lack of self-confidence in children [1]. This hypothesis is supported by an
earlier study reporting a significant correlation between skin conductance level (SCL, as a
measure of sympathetic arousal of the ANS) and cortisol levels in children, which appeared
to be associated with (parent-reported) chronic internalizing problems (i.e., depression,
anxiety, fear, worry, and psychosomatic symptoms) [38]. Interestingly, when examining
baseline levels of HRV and cortisol, children with the highest levels on both measures were
found to have the lowest levels of depression and anxiety symptoms [18].

Taken together, the nature of the interaction between the two stress systems might differ
between immediate and chronic or repeated stress. Under immediate stress, as elicited by a
public speaking task, reciprocal support of the ANS and the HPA axis may help to effectively
deal with the challenge. However, a prolonged, exaggerated correlation between autonomic
and endocrine responses may be indicative of rigidity in central coordination, e.g., by limbic
structures such as the amygdala and/or hypothalamus (see Figure 1). This is a condition that
has previously been associated with heightened feelings of stress and/or anxiety [35,39,40],
as is the case with children and adolescents with social anxiety. Consequently, adequate
coping might be reflected in independent or only moderately related reactivity of the ANS
and the HPA axis in response to immediate stressors [14,41–43].

The aforementioned studies lead to three assumptions: (1) The autonomic response to
a standardized stressor (an increase in SCL and a decrease in HRV) might be associated
with the endocrine response (an increase in cortisol). (2) This association might be stronger
in adolescents with higher self-reported levels of social anxiety. (3) The association may
become more distinct with age. To investigate this, we used the data from the Social Anxiety
and Normal Development study (SAND) to investigate SCL, HRV, and cortisol reactivity to
a public speaking task in a sample of adolescents. We predict that (1) cortisol reactivity is
negatively related to HRV and positively related to SCL reactivity; (2) this relationship is
stronger in adolescents reporting higher levels of social anxiety; and (3) this relationship
alters with increasing age.

2. Materials and Methods
2.1. Participants and Procedure

For the present analyses, previously collected data were used from the Social Anxiety
and Normal Development (SAND) program of the Faculty of Social Sciences of Leiden
University [44]. Participants for this study were recruited through high schools based on
a normal distribution of age, gender, and school level, excluding individuals suffering
from severe mental or medical conditions. Approximately 82% of the participants lived
with both of their (biological) parents, and 11% lived with either a single mother or their
mother and a new partner. Forty-nine percent of participants’ mothers completed tertiary
education, indicating a normative SES distribution within the study [45].

Data from the 201 adolescents who participated in a public speaking task were used
for the present study. Informed consent was obtained from the participants and their
parent(s), and monetary rewards were provided after the session. The entire procedure
was approved by the medical ethical committee of the Leiden University Medical Center
and carried out in accordance with the Declaration of Helsinki.

The procedure entailed two laboratory sessions at the faculty: a presession and a public
speaking session. In the presession, the participants filled out a series of questionnaires,
among which was the Dutch version of the Social Anxiety Scale for Adolescents (SAS-
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A) [46]. The public speaking session was scheduled exactly one week after the presession.
This gave all participants the opportunity to prepare their speech in advance about different
kinds of movies. Participants were tested individually in separate rooms, each supervised
by a trained assistant. The sessions commenced at 2:15 pm for all participants in order to
minimize circadian rhythm effects on physiological data.

The public speaking session consisted of five consecutive phases: baseline, during
which the participants watched an ocean wildlife DVD (first 25 min seated, then 5 min
standing); anticipation, during which detailed instructions about the upcoming speech
were given by the assistant through the intercom (3 min); preparation, during which the
participants were instructed to prepare and/or rehearse their speech in silence (5 min);
speech, during which they spoke in front of a prerecorded audience (5 min); and recovery,
again seated watching an ocean wildlife DVD (10 min, starting approximately 10 min after
the end of their speech). Detailed information regarding the recruitment and test procedure
can be found elsewhere [44].

2.2. Assessments

Social anxiety: The Dutch version of the SAS-A contains 18 self-descriptive statements
and 4 filler items. Each item is rated on a 5-point Likert scale. For each participant, an overall
sum score of the 18 self-descriptive statements was calculated. The internal consistency of
this scale is reported to be satisfactory [46,47]. In the present sample, Cronbach’s alpha was
0.94 (excellent).

Physiological parameters: A Bio-Pac ambulatory measuring system (MP150: Biopac
Systems Inc., Goleta, CA, USA) was used to continuously measure heart rate and SCL. Heart
rate was monitored using a precordial lead. Signals were amplified 1000 times and high
pass filtered (0.5 Hz). SCL was measured by means of two Ag/AgCl electrodes positioned
on the middle phalanxes of the forefinger and the middle finger of the nondominant
hand. To avoid initial disturbances or potential movement artifacts, minutes 2 to 4 were
selected from the last 5 minutes from the seated baseline period (baseline), the standing
baseline period (baseline standing), the preparation period (preparation), the speech period
(speech), and from the last 5 minutes of the recovery period (recovery). Based on beat-to-
beat variations in heart rate, rMSSD (root mean square of successive differences between
heartbeats) is widely used as parameter of HRV and, as such, accepted as indirect estimate
of parasympathetic activity [48–50]. Because the rMSSD data were not normally distributed,
we used the natural logarithm of rMSSD in the statistical analyses.

Endocrine parameters: During the procedure, eight saliva samples of at least 0.5 mL
were collected to assess cortisol concentrations. This was performed just after arrival (t = 0),
just after baseline (t = 30 min), just after the speech (t = 45), 10 min after the speech (t = 55),
and then in four consecutive samples at 5 min intervals (t = 60, 65, 70, 75). Saliva samples
were collected by passively drooling saliva into a plastic tube using a short plastic straw.
Immediately after the procedure, the saliva samples were stored at −20 ◦C, and maximum
one week later, the samples were stored at −80 ◦C. The determination of saliva cortisol
concentrations was performed with a competitive electrochemiluminescence immunoassay
ECLIA using a Modular Analytics E170 immunoassay analyzer from Roche Diagnostics
(Mannheim, Germany). The lower detection limit was 0.5 nmol/L, and the coefficient of
variation in the measuring range (4–80 nmol/L) was less than 10%. After determination
of cortisol concentrations, three outliers were excluded based on their deviation (>3 sd),
indicating possible contamination (most likely by blood). The area under the curve with
respect to the ground (cortisolAUC) was calculated as parameter of endocrine reactivity [51].

2.3. Statistical Analyses

The median SAS-A score (41) was determined and used as splitting point for the
formation of low- and high-anxiety groups. Chi-square statistics revealed no differences
between the high and low SAS-A groups in terms of gender and age. MANCOVAs, with
age as covariate and gender as a between-subjects factor, were applied to investigate
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associations with rMSSD and SCL in all periods. An ANCOVA was used to investigate the
potential influence of age and gender on cortisolAUC.

To test the physiological reactivity to the public speaking task, we used repeated
measures ANCOVAs including rMSSD and SCL, with SAS-A score as a between-subjects
factor and the rMSSD or SCL levels during the seated baseline period as covariate. Helmert
contrasts were used to investigate sequential changes over the experimental procedure. This
procedure was repeated for the low and high social anxiety groups separately. Following
these procedures, a t-test was applied to compare baseline cortisol levels with the highest
post-task cortisol concentration.

For SCL and rMSSD in the baseline standing, preparation, speech, and recovery, partial
correlations were used to test our first hypothesis of a relationship between autonomic
functioning and cortisolAUC. Seated baseline values of either rMSSD or SCL were included
as a covariate to correct for initial values. This procedure was repeated for the low- and
high-anxiety groups separately.

To identify the relevant ANS predictors for cortisolAUC, multilevel regression analyses
were conducted: one for the complete sample (with SAS-A score, age, rMSSD, and SCL in
all periods as independent variables and cortisolAUC as dependent variable), and one for
the low- and high-anxiety groups separately (excluding the SAS-A scores as independent
variable). Finally, we used a moving age window, each subsample containing 50 partici-
pants, with each sample increasing in age by removing the 10 youngest individuals and
adding the 10 consecutive older participants, to calculate the correlation between baseline
HRV with the cortisol response with increasing age.

3. Results
3.1. Descriptives

The eventual sample consisted of 100 boys and 98 girls (age range: 12.6–17.3 years,
M = 14.8, sd = 1.31). The Social Anxiety Scale for Adolescents (SAS-A) scores ranged
from 18 to 83 (M = 40.6, sd = 13.7). This mean value is below the mean level of normative
data [46]. In the present sample, no gender differences for age and SAS-A scores were
found. Of 194 participants, sufficient data were available to calculate cortisolAUC (M = 69.2,
sd = 35.3, range: 15.4–185.8).

Age and gender were unrelated to rMSSD or SCL in all of the selected periods. An
ANCOVA including age as a covariate and gender as a factor showed no differences in
cortisolAUC between boys and girls, although age appeared to be positively correlated with
cortisolAUC (r = 0.16).

3.2. Autonomic and Endocrine Reactivity

The first repeated measures ANCOVA (with a Greenhouse–Geisser correction and
seated baseline values included as a covariate) showed a significant rMSSD response over
the procedure: (F(2.9, 550.3) = 3.7). Helmert contrasts showed a significant decrease in
rMSSD between the standing baseline and the preparation period, and a significant increase
in rMSSD after the speech toward the recovery period, see Figure 2. No effect of SAS-A
score was found.

Changes in SCL over the procedure were found as well (Greenhouse–Geisser corrected:
F(2.2, 421.2) = 101.3), although these findings disappeared when we corrected for the
baseline (seated) levels of SCL. Only a marginally significant increase in SCL from the
preparation to the speech period remained (see Figure 3). This finding appeared to be
explained by the participants in the high SAS-A group, as they showed a marginal increase
in SCL from the preparation period to the speech period (F(1, 90) = 3.5, p = 0.06), followed
by an again marginal decrease toward the recovery period (F(1, 90) = 3.1, p = 0.08).
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Cortisol responses to the task were significant. The cortisol concentrations at the end
of the pretask baseline were lower than the highest cortisol concentration measured during
the 25 min after the speech (t197 = 7.2, average increase: 2.3 nmol/L; average percentage
increase: 143% above baseline value; see Figure 4). Importantly, no differences were found
in cortisolAUC between low and high SAS-A groups.
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The results of the partial correlations between rMSSD in every consecutive period and
cortisolAUC are presented in Table 1. It appeared that rMSSD values before and during
the public speaking task were all negatively correlated with cortisolAUC. The rMSSD
recovery value was not. However, when we investigated this further to verify our second
hypothesis, it appeared that the negative correlations between rMSSD and cortisolAUC were
very strong in the high SAS-A group, whereas in the low SAS-A group, only the decrease
in rMSSD during the speech was significantly correlated with cortisolAUC (see Table 1). No
correlations were found between SCL and cortisolAUC during any period, regardless of
the group.

Table 1. Partial correlations (r, corrected for baseline values) of the log rMSSD and cortisolAUC.

Total Sample r Low Social Anxiety r High Social Anxiety
r

Baseline standing −0.28 ** n.s. −0.36 **
Preparation −0.31 ** n.s. −0.47 **

Speech −0.33 ** −0.28 * −0.39 **
Recovery n.s. n.s. n.s.

* p < 0.05; ** p < 0.005.

3.3. Social Anxiety and the Relationship between Autonomic and Endocrine Reactivity

Following the previous analyses, we conducted three regression analyses to find the
strongest physiological predictors of cortisolAUC: one for the complete sample and two for
the low and high SAS-A groups separately (see Table 2). In the total group, a combination
of rMSSD and SCL data for multiple periods, together with age and SAS-A score, appeared
to be predictive of cortisolAUC. However, in adolescents reporting relatively low social
anxiety scores, only rMSSD during the speech remained a reliable predictor of cortisolAUC.
Meanwhile, in adolescents reporting relatively high social anxiety scores, autonomic dy-
namics (i.e., both SCL and rMSSD during multiple periods) combined (together with age)
into quite a powerful predictive model of cortisolAUC.
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Table 2. Predictors of cortisolAUC in the total sample and in the low- and high-anxiety groups.

Sample Full Model Statistics Included Independent
Variable β

Total sample F (6, 183) = 9.4 **
Explained variance = 24%

Age 2.27 *
SAS-A score −1.91 †

rMSSD preparation −1.71 †

rMSSD speech −2.77 *
SCL preparation −2.58 *

SCL recovery 2.58 *

Low social
anxiety

F (1, 94) = 14.5 **
Explained variance = 14% rMSSD speech −3.80 **

High social
anxiety

F (6, 88) = 7.3 **
Explained variance = 35%

Age 2.01 *
rMSSD preparation −3.05 **

rMSSD speech −1.93 †

rMSSD recovery 2.12 *
SCL baseline seated 1.67 †

SCL preparation −1.74 †

† p < 0.10; * p < 0.05; ** p < 0.005.

3.4. Association: Changes with Age

To visualize the contribution of age in the conducted regression analyses, correlations
between baseline HRV and cortisolAUC were calculated for every consecutive age cohort
(consisting of 50 participants each; see Figure 5). Finally, we checked potential differences
between age cohorts on this correlation using a Steiger analysis. It showed a significant
difference in the correlation of baseline rMSSD and cortisolAUC between the youngest
age cohort (average age: 13.1 years) and the age cohort with the highest correlation (av-
erage age: 15.3 years), thereby confirming a change in the association between baseline
rMSSD and cortisol response with age.
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4. Discussion

The present study set out to investigate the interaction of autonomic and endocrine
responses to a standardized laboratory stressor in adolescents using an adapted version of
the Trier Social Stress Task [44]. Our additional aim was to find out whether and to what
extent social anxiety plays a role in this interaction and whether this interaction is subject
to increasing age.

It appeared that the cortisol response was associated with HRV reactivity, SCL recovery
values, age, and self-reported social anxiety. In the low social anxiety adolescents (scoring
below the median on the Social Anxiety Scale for Adolescents), only HRV during the
task remained a predictor of the following cortisol response, albeit not a very strong
one (R2 = 0.14). Contrary to this finding, in the high social anxiety adolescents (scoring
above the median on the SAS-A), both HRV and SCL reactivity predicted cortisol response
fairly well (R2 = 0.35). These results indicate qualitative and quantitative differences
between high and low social anxiety adolescents. Finally, as age seemed to be a factor of
relevance, we investigated whether the association between baseline HRV and cortisol
response was subject to development. This appeared to be the case: in participants younger
than 14 years, this relationship was absent. The relationship became significant until
approximately 16 years and lost its interdependence again after the age of 16 years. This last
finding suggests that midadolescence (14–16 years) may possibly be a period of heightened
developmental sensitivity, especially in the reciprocal neurobiological management of stress
under socially challenging conditions.

We consider these findings to be in line with previously published neurobiological
models, such as the central autonomic network (CAN) [14] and the neurovisceral integra-
tion model [41]. These models suggest that autonomic reactivity to stress (lowered vagal
tone resulting in lower HRV and heightened sympathetic activity resulting in higher SCL)
should be directly related to the parallel-induced cortisol response. This physiological
coping mechanism might be enhanced in individuals suffering from anxiety, as they are
suggested to be less flexible in their physiological coping. This last hypothesis is based on
the assumption that anxious individuals may suffer from a more ‘rigid’ stress regulatory
network, likely caused by deficits in coordination and control on a more central level
(i.e., amygdala and prefrontal cortex).

Overall, the present findings strongly support the relationship between generally
lowered HRV and a heightened endocrine stress response in anxious adolescents in reaction
to a social stressor. These findings seem to be in accordance with earlier findings [18,37,38]
but in contrast with earlier findings in young children [3]. Exactly the age of the participant
group may be the key to these discrepancies. Moreover, in the current study, we found
associations from age 14 onwards. The associations between SCL and cortisol in the high
social anxiety group are in line with earlier research showing an association of SCL with
cortisol response in children with internalizing symptoms [38].

When interpreting the present data, some restrictions should be taken into account.
Firstly, by design, no adolescents with clinical anxiety levels were included in the present
sample. This was a logical choice, as we were primarily interested in the interaction of
autonomic and endocrine dynamics in response to stress in adolescents. Nevertheless,
extending the present findings with data from a clinical (adolescent) cohort would certainly
be of relevance.

Secondly, the present findings might trigger an investigation into the (potential) role
of the development of internalizing problems on the described neurobiological growth.
Although we might suspect that low- and high-anxiety adolescents may show differentiated
neurobiological developmental trajectories, a longitudinal study is necessary to investigate
this hypothesis. Consequently, based on the present data, no absolute conclusions can
be formulated regarding the potentially modulating role of anxiety in neurobiological
development through adolescence.

Finally, in the current study, the stress task and the questionnaire were quite specific,
aiming at inducing social stress and measuring social anxiety. This seemed to be a logical
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choice, as social anxiety appears to be the most prominent presentation of anxiety during
adolescence [52,53]. However, it might be that the reported findings are not exclusively as-
sociated with social anxiety but also with other types of anxiety or internalizing symptoms.
Consequently, a broader range of anxiety scales and stress tasks might be considered when
planning future studies.

The present findings show that, in adolescents, autonomic responses to a social stres-
sor are associated with the endocrine response. In low-anxiety adolescents, only the loss
of parasympathetic (vagal) influence during the task is predictive of subsequent cortisol
response. Interestingly, in high-anxiety adolescents, sympathetic and parasympathetic
responses combine into a reasonably predictive model of the endocrine response. Irre-
spective of self-reported anxiety, the relationship between lowered baseline HRV and
cortisol response to a social stressor appears to be subject to considerable developmental
influence. These findings are in line with previously published results, both in children
and in adults, and support prominent neurobiological theories emphasizing the recip-
rocal nature of autonomic dynamics and endocrine responses, especially in relation to
internalizing symptoms.
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