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Abstract: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which caused coro-
navirus diseases (COVID-19) in late 2019 in China created a devastating economical loss and loss
of human lives. To date, 11 variants have been identified with minimum to maximum severity of
infection and surges in cases. Bacterial co-infection/secondary infection is identified during viral
respiratory infection, which is a vital reason for morbidity and mortality. The occurrence of secondary
infections is an additional burden to the healthcare system; therefore, the quick diagnosis of both
COVID-19 and secondary infections will reduce work pressure on healthcare workers. Therefore,
well-established support from Artificial Intelligence (AI) could reduce the stress in healthcare and
even help in creating novel products to defend against the coronavirus. AI is one of the rapidly
growing fields with numerous applications for the healthcare sector. The present review aims to
access the recent literature on the role of AI and how its subfamily machine learning (ML) and
deep learning (DL) are used to curb the pandemic’s effects. We discuss the role of AI in COVID-19
infections, the detection of secondary infections, technology-assisted protection from COVID-19,
global laws and regulations on AI, and the impact of the pandemic on public life.

Keywords: artificial intelligence; COVID-19; nanofiber mask; face mask; coronavirus; AI law

1. Introduction

The pandemic emerged from Wuhan city, Hubei province in China. It was colloquially
known as coronavirus and later named SARS-CoV-2, which caused the disease COVID-19,
reported by the World Health Organization (WHO) at the end of 2019 [1]. Since the first
case was reported in Thailand, away from mainland China on 13 January 2020, in a short
time COVID-19 cases reached various countries and made governments helpless against an
invisible enemy. The WHO estimated that 4291 people’s lives were lost with an alarming
level of spreading and severity of positive cases of up to 118,000 in 114 counties until 11
March 2020, when with a deep assessment, the WHO declared COVID-19 as a pandemic [2].
As of 14 November 2022, 631 million positive cases have been identified with 6.58 million
deaths recorded to date, along with 12.8 billion doses of vaccines administered globally [3].
COVID-19 management has become a key factor in various countries, such as the United
States of America, China, the United Kingdom, Italy, France, Germany, Russia, India, Brazil,
etc. COVID-19 infected enormous numbers of people in the United States of America,
France, Germany, India, Turkey, Italy, Spain, and the United Kingdom. A global heat map
image exhibits the cumulative cases globally to date and cases recorded in the past seven
days (Figure 1).
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Figure 1. (A) Global heat map of total confirmed cases of coronavirus as of 17 January 2023. (B) A 
global heat map of confirmed cases of coronavirus from the past 7 days (11 January 2023 to 17 Jan-
uary 2023). Note: The map was created in Microsoft Excel using the Geographic Heat Map add-in 
application (Keyur Patel). 
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the bubonic plague in the 14th century, which killed nearly 50 million and lasted up to 5 
years [4]; the Spanish flu outbreak in World War I, which killed 50–100 million [5]; and so 
on. However, the recent pandemics of SARS, MERS, and COVID-19 in 2003, 2012, and 
2019 were caused by viruses belonging to the coronavirus family, and have more similar-
ities in their modes of infection. The uniqueness of COVID-19 is its rapid spreading, which 
is human-to-human transmission, and nearly 20% of infected people are symptomless and 

Figure 1. (A) Global heat map of total confirmed cases of coronavirus as of 17 January 2023.
(B) A global heat map of confirmed cases of coronavirus from the past 7 days (11 January 2023
to 17 January 2023). Note: The map was created in Microsoft Excel using the Geographic Heat Map
add-in application (Keyur Patel).

Hence, it is worth thinking about what brought on the pandemic. Humans have
experienced much from the previous outbreaks that occurred in the past century, such
as the bubonic plague in the 14th century, which killed nearly 50 million and lasted up
to 5 years [4]; the Spanish flu outbreak in World War I, which killed 50–100 million [5];
and so on. However, the recent pandemics of SARS, MERS, and COVID-19 in 2003,
2012, and 2019 were caused by viruses belonging to the coronavirus family, and have
more similarities in their modes of infection. The uniqueness of COVID-19 is its rapid
spreading, which is human-to-human transmission, and nearly 20% of infected people
are symptomless and spread the infection as carriers known as “super-spreaders” [6,7].
According to recent findings, immunocompromised people, elderly people, patients with
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cancer, diabetes mellitus, heart diseases, and HIV/AIDS patients are much more susceptible
to COVID-19 [8].

The outbreak and global transmission of SARS-CoV-2 was due to the lack of accurate
information at an early stage as well as knowledge of future transmission prediction. There-
fore, before the governments realized and initiated the containment measures, COVID-19
spread to various countries where people did not have self-protection awareness measures
such as wearing masks, social distancing, etc. Countries with a limited healthcare infras-
tructure suffered more due to a lack of vaccines, systematic treatment, and elevated hospital
bills that were not affordable [9]. Still, there is no effective antiviral drug; patients are treated
with general treatment methods such as bed rest, ventilators, and conventional antibiotics.
Moreover, few antiviral drugs such as remdesivir, nirmatrelvir, bebtelovimab, molnupiravir,
and convalescent plasma therapy are approved by the Food and Drug Administration
(FDA) in the USA for emergency use for COVID-19 [10].

Secondary infections occurring during COVID-19 treatment are not new to healthcare,
as secondary infections occurred during previous pandemics. Serological evidence from
SARS patients indicated the presence of Chlamydophila pneumoniae and Mycoplasma pneumoniae
co-infections [11]. MERS-CoV-infected patients were reported to have influenza, tubercu-
losis, and bacteria and viral co-infections [12]. Similarly, COVID-19 has brought about a
variety of secondary infections and co-infections in patients. Many reports exhibited that
secondary infections such as mucormycosis [13–15], blood coagulation [16,17], blood stream
infections [18,19], urinary track infections (UTI) [20–22], and antibiotic resistance [23–26]
were reported in COVID-19 patients during hospitalization or occurred post-infection. The
coronavirus infection initially affects the lungs and disrupts the epithelial cell, leading
to organ failure. Viral and drug-triggered immunosuppression elevated the secondary
infections, which brought morbidity and mortality in serious cases [27]. To combat the
current situation, advanced computational methods are mandatory to confront the effects
of the pandemic.

Recently, Artificial Intelligence (AI) has received more attention due to its ability to
observe, make decisions about, and interpret a huge volume of data in different fields [9],
which include computer science, healthcare, drug discovery, engineering, infectious dis-
eases, and government management, especially in this pandemic. Modern medicine and
improvements in the healthcare sector have brought a huge amount of patient data related
to medications. Over the last three decades, researchers have developed and proposed
various support systems for the diagnosis and medical treatment of diseases to reduce
the burden on healthcare workers [28]. The recent advancement and implementation of
mathematical tools in disease diagnostics, treatment, drug targeting, and epidemic predic-
tion with available data aid in disease outbreak control. Various analytical tools have been
proposed in recent times, and Artificial Intelligence (AI)-based models are highly valued
and promising [29]. In the recent past, AI-based tools have been successfully implemented
in various arbovirus-related epidemic diseases such as Dengue, Chikungunya, and Zika,
which affect a large population in the South American continent [30], as well as the Middle
East respiratory syndrome (MERS) [31], and Ebola [32] which affect the Middle East and
African continent.

Machine learning (ML) is a subset of applied AI that automatically assimilates patterns
and assists in decision-making without much human intervention. In ML, machines learn
from a particular set of data or patterns and accomplish tasks based on the learned model
with limited human intervention, rather than normal computer programs generated based
on human capability and knowledge [33,34]. Deep learning (DL), a subset of ML algorithms
consisting of different layers of neural networks, has seen tremendous success in the last
decade, driven by large datasets (Figure 2). DL shows a rapid advancement in data
processing and learning from text, speech, and images [35,36]. ML and DL are highly
useful in medical image analysis [37], cardiology [38], brain stimulation [39], and cancer
treatment [40]. In the fight against the COVID-19 pandemic, AI is widely accepted in many
sectors of our society, including hospitals, face mask detection technology, nanofiber mask
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design, robotics, utility services, and so on (Figure 3). In this review, we aim to address
the multidisciplinary role of AI and its subfamily involvement in healthcare to curb the
pandemic effect and current challenges. Every section discusses the current scenario, the
AI tools implemented in recent times, and their applications. Section 2 details the Materials
and Methods section. Section 3 discusses the Omicron variant and its effect via AI tools;
secondary infections such as (i) mucormycosis, (ii) blood coagulation, (iii) blood stream
infection and urinary tract infection (UTI), and (iv) antibiotic resistance; AI in X-ray and CT
scan image analysis; a face mask detection system by AI; and AI- and ML-based nanofiber
mask and respirator designs. Section 4 discusses the use of AI-programmed robotics in
healthcare, the COVID-19 pandemic’s impact on public life, AI-based decision-making,
telemonitoring of patients, and AI laws and regulations in various countries.
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2. Materials and Methods
2.1. Search Strategy

This review followed the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) for article selection. We performed a search of articles with the
keywords “artificial intelligence”, “corona virus”, “nanofiber materials used in healthcare”,
“facemask detection”, and “Omicron”-related work in Google Scholar, Web of Science,
PubMed, and Science Direct libraries with the duration between 2018 and 2022. All
searches were completed in October 2022. We included original research papers and
reviews published in the past 5 years until 2023 that focused on our objective. The selected
servers generated a large volume of article information, such as Google Scholar (8500),
PubMed (5054), Web of Science (2830), and Science Direct (790). The results were sorted
carefully based on our objectives [41]. Additional studies were identified through manual
searching of specific websites and bibliographic citation searching. Two reviewers (A.B. and
V.M.) independently assessed the eligibility of all identified titles and abstracts of extracted
articles using a set of inclusion and exclusion criteria. The doubtful study materials
were chosen, and their authors were contacted for additional information to clarify their
suitability before being finally included in the study. All findings were compared in research
meetings with the research team to avoid discrepancies, and if any did exist, the research
team resolved them (B.K., R.M., and R.S.).

2.2. Study Selection

The search strategy applied in various databases yielded 17,174 articles. Duplicates
were screened and removed; a total of 16,272 titles and abstracts were screened, with
276 selected for inclusion. Of those, 164 articles were excluded for the reasons mentioned
below: no intervention (n = 49), not original research (n = 35), not published in a peer
review (n = 35), no health intervention (n = 23), and item excluded for not addressing the
issue (n = 18). Finally, 102 articles were included in this review that fall under its scope.
The above selection process is outlined in Figure 4.
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3. Omicron

Since the outbreak of the pandemic, various strains of the coronavirus have been
reported around the world. However, the recent findings of variant B.1.1.529 reported it
as a Variant of Concern (VOC), labeled as Omicron, from Africa in November 2021. It has
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reached several countries. A high number of mutations were observed in the spike protein,
which was more highly transmissible among populations than the previous known variants
of coronavirus [42,43]. On 11 November 2021, Botswana reported a novel SARS-CoV-2
strain, B.1.1.529, known as Omicron, a variant of the concern strain, followed by South
Africa on 14 November 2021 [43–45]. At the beginning of January 2022, a new variant,
BA.2, a subvariant of Omicron B.1.1.529, instigated a new wave of COVID-19 cases in
various countries [46]. A Danish study found that BA.2 re-infects recovered patients and
the vaccinated population in a shorter time frame with increased hospitalization [47]. Later,
on 19 January 2022, the UK Health Security Agency identified the subvariant XE, which
is a recombinant of BA.1 and BA.2 Omicron. A warning was raised by the WHO against
XE, which could be more transmissible than other variants [48]. The identification of BA.4
and BA.5 variants from South Africa saw a surge in cases up to 50% in the beginning
of April 2022 [49]. The recent rise of Omicron cases in various parts of the world raises
concern, as this variant is identified as being highly transmissible and infectious in vac-
cinated populations. This demonstrates the variant evading the immunity generated by
nature in the body as well as the vaccine administered recently [45,50]. The SARS-CoV-2
virus spike glycoproteins infect humans by interacting with the angiotensin-converting
enzyme 2 (ACE2) receptor for connection and infection. Therefore, the vast majority of
the emergency-approved vaccines and medicines are targeting the interaction of the virus
spike protein and ACE2. Thus, understanding the Omicron interaction hotspot is crucial
in developing successful therapeutics and vaccine upgrades [51]. The Omicron variant
consists of 15 mutations in the receptor-binding domain (RDB), with 30 amino acid replace-
ments in the spike glycoprotein, including 3 deletions and 1 small insertion [50]. AI plays a
vital role in combating coronavirus infections: a well-trained AI model in various SARS-
CoV-2 datasets has predicted that Omicron is 10 times more transmissible than the original
Wuhan coronavirus and a couple of times more infectious than the Delta variant. Current
therapeutics target the spike (S) protein receptor-binding domain (RBD) of coronavirus and
angiotensin-converting enzyme 2(ACE2) of human interaction. This S-ACE2 binds together
to transform the virus into the host cell and initiate infection. In this case, antibodies that
strongly bind to RBD will defeat the virus. In various studies, the binding free energy (BFE)
between S-RBD and ACE2 is directly related to virus infection rates [52,53]. To obtain an
accurate prediction using a machine learning model, two datasets were used in this study:
SKEMPI 2.0 and SARS-CoV-2. Along with this, 132 antibody–RBD complexes 3D structure
were used in this study to validate the output. The BFE changes caused by mutations were
predicted by the DL model in two steps: the 3D structure of protein–protein interaction
(PPI) complexes and a deep learning algorithm using artificial neural networks (ANNs)
built for scanning the mutations available in the TopNetmAb model. The findings state
that 15 RBD mutations can play a vital role in infection, vaccine evasion, and antibody
resistance. The DL model used in this study was tested with thousands of datum, so this
gives a valid report as Omicron is 10 times more infectious and transmissible compared
to the original coronavirus and evades vaccination with RBD mutations [54]. The overall
mutations identified in the Omicron strain from South Africa are 62, but the mutations
identified in the strain isolated from Australia consist of 67 mutations in all proteins. The
S protein in this Australian variant has 37 mutations out of a total of 67 mutations, with
15 of the 37 mutations occurring in the RBD region [55]. This shows the Omicron variant
constantly changing its structure to battle against the immune system and vaccines. A
careful observation of the Omicron variant spreading across countries needs to be carried
out to combat any future variants. In the meantime, COVID-19 patients acquired virus-
and drug-induced immunosuppression during treatment, which created several cases of
high-risk secondary infections through bacterial and fungal infections [56].

3.1. Secondary Infections

Secondary infections in patients are not new to healthcare, and bacterial pathogens are
present in the respiratory tract of influenza virus-infected patients and are a major source
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of infection that causes severe illness and even death; timely diagnosis and medication
are mandatory in this condition [57,58]. It was reported that 20–30% of the bacterial co-
infections were associated with SARS-CoV1 and MERS-CoV coronaviruses in previous
pandemics. Hospital admissions are also complicated with these co-infection patients
because of the increased possibility of acquiring hospital-associated infections, which make
patients more vulnerable to treatment and contribute to the surge in antibiotic intake [59].
The co-infection was considered under three distinct scenarios: (i) bacterial infection
or colonization followed by SARS-CoV-2, (ii) virus- and bacteria-combined pneumonia,
and (iii) secondary bacterial superinfections [60]. A detail study of possible secondary
and co-infections was assessed by Lai et al. and showed bacterial infections such as
Klebsiella pneumoniae, Streptococcus pneumoniae, Acinetobacter baumannii, Staphylococcus aureus,
Legionella pneumophila, Chlamydia pneumonia, and Mycoplasma pneumoniae, and viruses
such as influenza, metapneumovirus, coronavirus, rhinovirus/enterovirus, influenza B
virus, HIV virus parainfluenza, and candida species and Aspergillus flavus [56]. Apart
from microbial infections, we specifically propose to utilize the AI-based methods in
four selected cases to minimize the pressure on healthcare workers in critical conditions:
(i) mucormycosis infection, (ii) blood clotting, (iii) bacterial infections in the blood stream
and urinary tract (UTI) in COVID-19 patients, and (iv) antimicrobial resistance.

3.2. Mucormycosis

The mucormycosis fungus infections in post-COVID-19 or secondary infections have
become life-threatening invasive species; since they were associated with COVID-19, they
are represented as CAM. They belong to the order Mucorales with different genera such
as Saksenaea, Mucor, Rhizopus, Lichtheimia, Cunninghamella, and Rhizomucor. They are
opportunistic fungus species that are prevalent in immunocompetent patients, accounting
for up to 19% of all COVID-19 cases [61]. Recent findings show CAM have most of their
cases in India, nearly 71% of global cases, and 140 cases per million [62]. The prevalence of
CAM is due to the huge number of diabetic cases in India. Unfortunately, CAM primarily
infects diabetic, diabetic ketoacidosis, and diabetic mellitus patients, accounting for 50%,
18%, and 57%, respectively. As shown in Figure 5, clinical diagnosis reports that CAM
proliferates in the rhinocerebral, disseminated, pulmonary, gastrointestinal, cutaneous, and
ocular regions. [63]. An earlier diagnosis of CAM opens earlier treatment possibilities and
prevents numerous deaths. Currently, CT scans, MRI scans, and cell biopsy tests are used
to identify CAM; however, all these analyses are expensive for middle- and lower-class
people. In this context, an advanced AI model was developed to predict mucormycosis in
the discharging patients of a hospital in India. The scikit-learn library was used for logistic
regression, decision tree, and random forest, and an eXtreme gradient boosting algorithm
from XGBoost library was utilized to analyze 1229 COVID-19-discharged patients and
214 inpatients who tested positive with mucormycosis infection. In total, 35 variables
were used for the prediction model with a 5-fold cross-validation method to produce
a reliable output. A competent performance was observed between logistic regression:
95.0, XGBoost: 94.0, and random forest: 94.0. The model XGBoost exhibited accuracy
and precision of 0.91 ± 0.026 and 0.67 ± 0.0526 tailed by logistic regression. The AUROC
value of 0.95 ± 0.023 was achieved by logistic regression, nearing a score of 1, which is a
precise value. The study used five variables such as obesity, nasal discharge, myalgia, de
novo diabetes, and anosima to show the possibility of mucormycosis infection [64]. Recent
studies showed uncontrolled diabetes favored mucormycosis infection in post-COVID-19
patients [13,15]. Similarly, an AI-based modified deep learning algorithm strategy known
as tha “hydrid learning-based neural network classifier” (HLNNC) was used to identify
the CAM, with the help of popular techniques such as the convolutional neural network
(CNN) and support vector machine (SVM). Real-time image records were used with
image processing procedures such as (i) image acquisition, (ii) pre-processing, (iii) feature
extraction, and (iv) classification, in dataset training. The HLNNC analysis produced an
excellent accuracy rate of 99.5%, which was implemented through Python. Cross-validation
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was completed using CNN and SVM, showing 95.5 and 85.0% accuracy. Every model will
have some practical cons or demerits; this model should be improved with time-constraint
algorithms to obtain a better and faster output during rush hours in hospitals [65]. A
detailed schematic representation of deep learning and its functions is given in Figure 6.
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Limitations

In general, the models mentioned above have some limitations for hospitals. Adding
more variables will help achieve more prominent results. Nealy one thousand discharged
patient data sheets were used for the identification of mucormycosis, but the data used in
this study were from only one hospital. Since India has a huge population and nearly half
a million hospitals across the country, utilizing a minimum of 10% of the mucormycosis-
related data from these hospitals will improve the program’s accuracy in detection. Apart
from this, granular, diabetic ketoacidosis, tumors, and neutropenia details were lacking
in the used model. Further, a longer time span and a larger dataset are important to
achieve accurate results. This could be taken into account when determining how soon
after discharge a patient might develop mucormycosis.

3.3. Blood Coagulation

Blood coagulation or clotting occurs during cellular/tissue injury externally to protect
against loss of body fluids. Coagulation disorders are frequent in COVID-19 patients,
which exhibit the severity of the disease. The inflamatory response that occurred post-
infection displayed a discrepancy in coagulant and anticoagulant mechanisms mediated
by endothelial dysfunction [66]. Reports illustrated severe COVID-19-infected patients
expressed reduced antithrombin levels and elevated fibrin degradation products, fibrin and
D-dimer. COVID-19 patients admitted in the ICU were administered with low molecular
heparin (LMWH) to avert the progress of thrombosis which may result in thromboembolism
or stroke [67]. Patients with COVID-19 and coagulation factors had higher mortality
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than normal patients [68]. The major types of reported coagulation complications are
(i) arterial thromboembolism, (ii) deep vein thrombosis, (iii) disseminated intravascular
coagulation, (iv) pulmonary embolism, and (v) venous thromboembolism [69–72] (Figure 7).
Patients cannot be diagnosed with venous thromboembolism symptoms; it is found mostly
with a sudden pulmonary embolism. Observations made in a Chinese hospital with
81 patients showed an elevated level of venous thromboembolism, which was directly
proportional to an increase in the d-dimer level, and this level was reduced when the
patient was treated with anticoagulant therapies; moreover, COVID-19 patients who have
gone through a ventilator are more prone to venous thromboembolism complications [73].
Deep vein thrombosis is reported more often in COVID-19 patients, where the clotting
occurs deep inside the veins. Similarly, as with venous thromboembolism, d-dimer was
highly associated with deep vein thrombosis and can be used as a diagnostic marker, which
was observed from the data of 1783 patients directly related to their ICU duration [74].
Arterial thromboembolism is the blockage of an artery that can reach distant organs in
COVID-19 patients. This event can even cause limb loss and death under certain conditions.
It happens due to the extensive use of thromboprophylaxis, but when patients aged under
60 are treated properly, the mortality can be reduced [69,75]. Pulmonary embolism occurs
in numerous COVID-19 patients, with a high mortality risk. D-dimer can be used as an
effective marker to identify pulmonary embolism, since the level is higher in patients
with pulmonary embolism [76]. Coagulation of blood occurs in COVID-19 patients even
after several weeks of recovery, since with a huge number of new cases, regular follow-
up is not possible with patients, so it is considered as prognostic factor [77]. In critical
situations, patients’ conditions are carefully monitored through coagulation indicators such
as fibrogen degradation products, d-dimer, lymphocytes, and accumulated platelets, which
are more helpful in doctors’ decision-making [78]. Specific laboratory analyses such as
thrombin time (TT), prothrombin time (PT), fibrinogen (Fbg), D-dimer (DD), and activated
partial thromboplastin time (aPTT) are analyzed to predict the coagulation condition in
patients [78]. To reduce the burden on laboratory analysis, ML algorithms are more useful
to predict, identify, and differentiate results. The authors Fang et al. developed ML
algorithms to identify the clots in samples from laboratory test results. A training dataset
was formed with 192 clot-identified samples and 2889 non-clot-identified samples retrieved
from the laboratory information system. This dataset was trained with a backpropagation
neural network (BPNN), which has the ability to “learn” itself from the given data and
adjust the parameters by itself, and it was barely trained with the five-fold cross-validation
method. The output consisted of five values, inclusive of a PTT, PT, Fbg, TT, and D-
dimer. The D-dimer level was also concentrated due to its high presence in clots. The
area under the ROC curve accuracy was 0.906, and the classification accuracy was 0.829
after analysis. Since BPNN was trained with five different variables, it could easily detect
clots in samples by analyzing the coagulation results from the laboratory database and
making the decision-making process easy for the technician. The advantage of BPNN
is that it can be embedded directly in an instrument program and used without much
difficulty [79]. Similarly, Kremers et al. have developed an ML-based neural network to
predict thrombosis in COVID-19 patients. Two sets of patient data were used for this study:
set 1 consisted of 133 COVID-19 patients admitted under suspicion of infection, and set
2 consisted of 16 severe patients admitted to the ICU. The neural network model predicted
the thrombosis by analyzing the patient’s data during admission along with the laboratory
results. A higher thrombin generation (TG) level was observed in COVID-19 patients who
suffered from thrombosis, which was taken into account. Around 33 variables were used to
train the neural network model that predicted thrombosis. A 98% prediction success rate
was observed in general admission, and a 100% successful prediction in ICU admission
was successfully obtained [16].
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Figure 6. Deep learning-based imaging and detection of mucormycosis infection from images and
data. Affected and standard images of rhinocerebral, ocular, cutaneous, pulmonary, and around
30 different parameters are used as input. Deep learning software is designed based on a human
brain-like model, which consists of artificial neurons (nodes) organized next to each other in three
different layers. (i) The input layer is provided with input data; (ii) the hidden layer executes different
types of calculations, predictions, and operations; (iii) the output layer provides output data. Different
knowledge from the health worker, such as diagnosis and medication; entered features such as sex,
place, duration of diseases, COVID-19 symptoms, CAM symptoms; and numerical features such as
age can be used by the deep learning model. Image classification, detection, and segmentation are
the most common applications of deep learning model. Image classification determines whether an
image is infected or not. Segmentation is a partition analysis to find infected and uninfected images.
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Figure 7. Different types of blood coagulation during the COVID-19 infection.

Limitations

This neural network method has the ability to analyze limited samples, and different
parameters or variables are not immediately available from regular clinical laboratories.
The accuracy rate was reduced if we did not include thrombin generation and thrombin
dynamics parameters.
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3.4. Bacterial Infections in the Blood Stream and Urinary Samples of COVID-19 Patients
3.4.1. Blood Stream

The bacterial co-infection occurs mostly during the seasonal viral respiratory track
infection, which is directly related, and increases the risk of patient health conditions. Previ-
ous influenza pandemics revealed that mortality increased due to bacterial co-infections. Re-
cent research suggests that Acinetobacter baumannii co-infection exists in COVID-19 patients
admitted to the ICU [80]. In the earlier months of the 2020 year, a confirmed bacterial co-
infection with laboratory output was found to be 7%. Further, patients admitted to the ICU
showed a higher prevalence than normal patients, which was obtained by screening various
databases and datasets [80]. Various bacteria were identified as co-infectants, but some
were remarkable in increasing the severity of patients, such as Streptococcus pneumoniae,
Acinotobacter baumannii, Legionella pneumophila, and Klebsiella pneumoniae [81,82]. The bio-
logical question of whether a failure of antibiotics or antibiotic resistance occurred in the
co-infection bacterial community needs to be considered. Bloodstream infections (BSI)
are an emerging cause of death and illness in COVID-19-infected patients; it is difficult to
identify secondary bacterial infections during hospitalization, which should be predicted
earlier to begin antibiotics and save severe COVID-19 patients. Secondary bloodstream bac-
terial infections were reported more frequently in recent times, from 14.3 to 67.7% of acute
COVID-19 patients admitted to the ICU [83,84]. This may lead to prolonged hospitaliza-
tion and mortality in certain cases of bacterial superinfections [85]. Martinez-Guerra et al.
from Mexico studied 69 patients with COVID-19 for healthcare-related pneumonia in
hospitalized patients, with Enterobacteriaceae accounting for 69.6%, non-fermenting Bacilli
for 26.1%, and Staphylococcus for 40% of the bloodstream [86]. Contou and collaborators
conducted a study with 92 patients admitted to the ICU with acute respiratory failure.
During ICU admission, 26 (28%) of them were co-infected with a pathogenic bacterium,
and 32 bacterial pathogens were identified through laboratory procedures. Of the 32 bacte-
ria: (31%) methicillin-sensitive Staphylococcus aureus, (22%) Haemophilus influenzae, (19%)
Streptococcus pneumoniae, (16%) Enterobacteriaceae, (6%) Enterobacteriaceae, (3%) Moraxella
catarrhalis, and (3%) Acinetobacter baumannii. Further analysis revealed that seven bacte-
rial isolates were resistant to third-generation cephalosporins and amoxicillin-clavulanate
combinations [87]. According to a recent study, critically ill COVID-19 patients from west
India were found to be infected with BSI. Among 750 patients admitted to the COVID-19
ICU, 64 (8.5%) developed BSI and became critically ill. Of those, 53 (82.8%) patients were
infected with a Gram-negative pathogen. Acinetobacter baumannii was found to be preva-
lent, along with Klebsiella pneumonia. Furthermore, multidrug-resistant organisms were
found in approximately 57.8% of K. pneumoniae and Enterococcus members; interestingly,
carbapenem-resistant Gram-negative bacteria were found in approximately 47.2 percent
of cases. Among these was Acinetobacter baumannii: an opportunistic pathogen that can
affect immunocompromised patients and was possibly acquired from the ICU. The overall
impact of BSI encouraged multiple disease conditions with increased leukocyte, mechanical
ventilation, and multiple organ failure, which should alert the clinicians for BSI [18]. The
ICU-acquired BSI was high in patients who stayed for a longer duration. The diagnosis of
BSI is difficult in patients treated with tocilizumab because it is immunosuppressive, so the
identification of BSI symptoms such as fever cannot be detected [84]. Another study was
conducted by Pourajam et al. in an academic medical center in Isfahan, located in central
Iran. COVID-19 patients admitted in two ICUs were taken into account for BSI identifica-
tion, and an antimicrobial susceptibility test was conducted to identify bacterial infections
among 553 patients admitted for COVID-19 and severe pneumonia in the ICU. There were
65 (11.9%) patients with secondary bacterial infections, with a median age of 69.4 years
(ranging from 21 to 95). Particularly, n = 65 (100%) patients treated with antibiotics re-
ported positive results for bacterial culture, with meropenem for 12 days and levofloxacin
for 2–24 days. Klebsiella pneumoniae and Acinetobacter baumannii were reported to be the
most prevalent secondary bacterial infections in (n = 44) and (n = 33) persons present in
blood samples. The secondary bacterial infection in patients showed a broad range of
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drug resistance and increased mortality up to 83% against a total mortality of 38.1% in the
overall admitted population of 553. The prevalence of Gram-negative bacilli resistance to
carbapenem was observed in ICU patients with high proportions of K. pneumoniae and A.
baumannii [88]. Palanisamy et al.’s previous study discussed the presence of carbapenem-
resistant bacteria from India. The identification of BSI through ML is more interesting and
is a great help in clinical diagnostics. Pai et al. developed a prediction model to identify
the BSI in patients. A total of 4275 patients’ records were accessed to identify BSI at a
general hospital in Taiwan from 2015 to 2019. A total of 12,090 blood culture reports were
taken and scrutinized, totaling 5075, with 1478 BSI infections and 3597 non-BSI. Five ML
models were included: support vector machine (SVM), XGBoost, logistic regression (LR),
random forest (RF), and multilayer perceptron (MLP). Nearly 30 different variables were
used to analyze the BSI presence. The threshold of 0.5 was fixed to determine the presence
of BSI, and if the model exceeded the value, it was determined the sample was infected
with BSI. At 0.724 and 0.706, XGBoost had the highest sensitivity when validating the
datasets. Further, SVM (0.578 and 0.566), RF (0.565 and 0.577), and MLP (0.494 and 0.406)
models exhibited lower sensitivity. The validation was conducted with the important risk
factors associated with BSI, such as prothrombin time (PT), platelets (PLT), and albumin
(ALB), which are key factors [89]. Similarly, Zoabi et al., developed a patient outcome
of BSI model to identify BSI patient risk based on the electronic medical records (EMR)
of only bacteria-based positive blood culture results, with the goal of identifying risky
patients, initiating a planned treatment with appropriate antibiotics, and transferring them
to the ICU. The poor outcomes of hospitalized patients were concentrated to minimize the
mortality rate. An area under receiver operating characteristics curve (AUROC) of 0.82
was achieved for the inclusive prediction model, and 0.81 was achieved for the compact
model with 25 limited features. The poor outcome of the patient was predicted by the
influences of low albumin, high creatinine, and high red cell distribution width. Albumin
and high red cell distribution width are associated with patient mortality and used as
prognostic markers in various studies. The main objective of this model was to identify the
poor outcomes of patients receiving hospital treatment for the first time. This model was
developed based on the data collected from EMR between 2014 and 2020 [90]. Numerous
studies were conducted to identify patients related to sepsis-like infections, but BSI-based
research models are very limited, and this is a research gap that needs to be considered
to develop more models that could be directly helpful for healthcare during pandemic
situations, since BSI is directly connected to COVID-19 patients.

Limitations

The above-mentioned model has its own demerits. Since this model is based on EMR
data, patient influence on the EMR or partiality could reflect on the patient’s treatment.
This model could be used for confirmed BSI-positive cases but cannot be used for general
identification of BSI since this model was developed to alert healthcare professionals about
the risk condition of BSI patients. Earlier blood culture results are used to identify the
BSI patient, but final microbiological results should be added to determine the complete
treatment conditions.

3.4.2. Urinary Samples

Urinary tract infections (UTI) are very common bacterial infections, infecting 150 million
people every year. UTIs refer to bacterial or pathogenic infections that occur in the urinary
system and include urethritis, renal abscess, pyelonephritis, prostatitis, and cystitis. UTI in-
fections occur most commonly with Gram-negative and Gram-positive bacteria, along with
rare fungal infections. Uropathogenic Escherichia coli (UPEC) has been linked to both com-
mon and severe illnesses in patients [91]. Apart from UPEC infection, various bacteria result
in UTIs, including Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, Enterococ-
cus faecalis, Enterobacter cloacae, Streptococcus bovis, and the fungus Candida albicans [92,93].
During the pandemic, to avoid hospitalization and prevent COVID-19 infections, patients
were treated with broad spectrum antibiotics for UTI-related infections. It was reported
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that overall antibiotic usage was higher in COVID-19 patients, but the bacterial co-infection
percentage was very low [94]. The majority of co-infection studies concentrated on pul-
monary and related co-infections, but UTI co-infections in COVID-19 patients have been
reviewed very little. A recent study stated that, among 140 patients admitted in the ICU,
only 8% reported to have UTIs, and mostly catheter-associated UTIs [95]. Similarly, 3% of
patients were identified with UTIs of a total of 1016 patients admitted to five hospitals in the
USA [96]. Díaz Pollán et al. made a study of the UTI and catheter-associated urinary tract
infections (CAUTIs) superinfection group, with a total of 87 COVID-19 patients admitted to
the ICU from 2281 patients in a hospital in Spain. Of that, 10.3% were community-acquired
UTIs and 89.6% were hospital-acquired UTIs known as superinfections. The recovery of UTI
patients was greater than the superinfection group’s patients in the ICU, and the mortality
of superinfection was recorded as 26.4%. A prolonged stay in the ICU for up to 27 days led
to hospital-acquired bacterial infections, which turned into superinfection in patients. A
bacterial analysis of urine culture revealed 95 isolates, the most common of which was E.coli,
followed by Enterococci (E. faecalis and E. faecium), and Pseudomonas aeruginosa. These bacte-
ria expressed resistance against quinolones and B-lactams; further, Gram-negative bacilli
producing carbapenemase were prevalently found in UTI superinfection patients, and a
higher leukocyte count was noted in these patients [22]. It was previously reported that
Enterococci play a crucial role in UTI infections [95]. An increased level of BSI incidents was
noted with patients infected with an elevated level of Enterococcus [97]. When dealing with
large datasets in the thousands, UTI record analysis and diagnosis are difficult. Taylor et al.
analyzed five AI algorithms to find the best model that can be useful in handling huge
volumes of files with the highest specificity and sensitivity in UTI diagnostics. In total,
80,387 files of urine culture results from the emergency departments of four hospitals,
which maintained a centralized data storage system, were used to identify the best model.
Six models were developed with the ML algorithm for UTI prediction: random forest,
adaptive boosting, SVM, extreme gradient boosting, elastic net, and neural network. Two
sets of models were developed, with 211 variables used for the full set under eight headings
(urinalysis, physical findings, demographics/arrival information, vitals, labs, past medical
history, and outpatient medications) and 10 variables used for the reduced set (age, gender,
UA leukocytes, UA nitrites, UA bacteria, UA blood, history of UTI, dysuria, UA WBC, and
UA epithelial cells). UTI predictions were compared between six models, and XGBoost was
found to give the most accurate report based on an area under the curve (AUC) of 0.904
for full models and AUC of 0.877 for the reduced model. Therefore, XGBoost expressed
higher sensitivity with the UTI diagnosis in a huge volume of HER datasets in diagnosing
urine culture results than the previously reported studies [98]. Similarly, handling a huge
volume of laboratory analysis is a complicated situation that creates a state of exhaustion
in laboratory technicians. A classification of samples completed before the analysis will
reduce a huge work burden and save the economy during the pandemic situation. Most of
the analyses in the laboratory were conducted due to suspected infections in UTIs, where
two-thirds of the urine culture results were negative. Screening criteria are much more
helpful to detect and use the most accurate bacterially infected samples for analysis. Data
of urine samples prior to culture were analyzed from a microbiology laboratory connect-
ing three hospitals from the United Kingdom. Reports of urine microscopy, culture, and
sensitivity reports were used to compare two classification models: (i) the heuristic model
with the grouping of white blood cell count and bacteria count, and the (ii) ML approach,
to test algorithms of random forest, neural network, and extreme gradient boosting with
different variables. A total of 2,12,554 patient urine reports were analyzed: the ML algo-
rithm outperformed the heuristic model and exhibited an improved output to reduce the
workload in the laboratory sample processing up to 95% sensitivity. The sample analysis
of pregnant women and children under 11 years was highly important. Since then, an
independent XGBoost algorithm was trained separately for this purpose and achieved 41%
reduction in the workload of urine culturing and 95% sensitivity in detecting UTI-positive
samples among each group of pregnant patients, children under 11 years, and general



Healthcare 2023, 11, 854 14 of 35

patients [99]. A clinical analysis of urinary infection-based biomarkers is very important in
identifying UTIs: these biomarkers are key variables in validating the ML-based algorithms,
so choosing the right variables will be helpful in obtaining a more precise value. CAUTI
and UTI become high risk factors when associated with hospital-acquired infections, and
if untreated early, they lead to mortality in COVID-19 patients [21]. AI and ML models
are highly helpful during this COVID-19 pandemic situation to minimize the workload of
healthcare workers. To reduce the workload, similar algorithms are recommended for use
in hospital and laboratory settings.

3.5. Antibiotic Resistance: Improving Diagnosis Using ML

The forceful management methods carried out during the COVID-19 pandemic
brought down many seasonal infections such as influenza, pneumococcal diseases, and
tuberculosis compared to previous years, as an added benefit [100]. Many healthcare insti-
tutions and public communities used antibiotics as a therapy/self-medication to prevent
COVID-19 infections without proper exposure to their effects, which increased antibi-
otic resistance (AR) [23,24]. Getahun et al. stated that 72% of COVID-19 patients were
treated with antibiotics, whereas only 8% of the patients were infected with bacterial
and fungal co-infections [23]. Easy access to antibiotics without a proper prescription in
lower- and middle-income countries, frequent intake, and uncontrolled distribution are
the primary reasons for AR. Reports stated that 69% of COVID-19 patients took antibiotics
during treament, namely, ceftriaxone, azithromycin, moxifloxacin [101]. The Carbapenem-
Resistant Enterobacteriacea was identified in the ICU of a hospital in Italy during the period
of 2019–2020, where the ICU was allotted for COVID-19 patients. It was reported that
patients were infected with hospital-acquisition infection and colonization of this bacteria,
and acquisition went from 6.7% in 2019 to 50% in 2020 [102]. Among 102 hospitalized
patients in Wuhan, China, 159 bacterial strains were isolated: Acinetobacter baumannii was
the predominant strain found in patients (n = 57), followed by Klebsiella pneumoniae (n = 49)
and Stenotrophomonas maltophilia (n = 10). Carbapenem resistance was found to be 91.2%
and 75.5% in this study [25]. Another finding from a hospital in Italy stated that the
co-infection of bacteria in patients admitted to the COVID-19 ward was identified with
Mycobacterium tuberculosis, S. aureus, Klebsiella spp., Mycoplasma pneumonia, Haemophilus
spp., S. pneumoniae, and Legionella pneumophila. Co-infection was reported to be higher
in the patients admitted to the ICU with AR, than in the general ward. In this situation,
patients’ regular use of broad-spectrum antibiotics must be reconsidered, and the Antimi-
crobial Stewardship Program guidelines must be followed [103]. AI-based applications
are more helpful in combating the AR conditions. The ML was used as a clinical decision
support tool in various studies for the prediction of antimicrobial resistance (AMR) and
AR in healthcare [104–106]. An automated ML was used to identify the antibiotic suscep-
tibility using an antimicrobial susceptibility dataset of 11,496 acquired from 499 patients
admitted to a public hospital in Greece. A stack ensemble algorithm present by default
in Microsoft Azure AutoML was used for the analysis, along with the VoltingEnsemble,
MaxAbsScaler, LightGBM, SparseNormalizer, and XGBoostClassifier algorithms, which
were used together for a better tuning process for the antibiotic susceptibility prediction.
Various attributes were used from the dataset, such as sex, age, sample type, Gram stain,
44 antimicrobial substances, and past antibiotic susceptibility reports. The stack ensemble
algorithm was found to be best fitted with an area under the curve weighted (AUCW)
value of 0.822 and 0.850. This Microsoft Azure was used in two medicine departments as a
decision-making tool by physicians [107]. Usually, this type of analysis will take around
24 h, but enhanced ML algorithms are more precise in making decisions under critical
circumstances. Similarly, Feretzakis et al. analyzed a method to help in predicting the
AMR of Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa, mostly
reported from the ICU and wards of hospitals. As mentioned above, it will take about
24 h for the results of general antibiotic tests. However, in this study, five ML models
(JRip, RandomForst, MLP, Class.Regr, REPTree) were used to predict the AMR, with the
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data of hospitalized ICU patients received from the microbiology laboratory of a Greek
public hospital. The dataset included various attributes such as age, sex, gender, bacterial
species, and samples from blood, urine, pus, and tissue were collected. The classification
via regression model produced an ROC area of (0.933 and 0.918), and the training was
given based on the antibiotic susceptibility pattern for Gram-negative bacteria with the
highest resistance rate, which were most prevalent in the ICU [105]. There was a simi-
lar study undertaken by Wang et al. to identify the antimicrobial phenotype resistance
from the genome data of Staphylococcus aureus using ML. The whole genome data were
used to identify the minimum inhibitory concentration of 466 S. aureus isolates using the
k-mer algorithm, along with three combined ML algorithms: random forest, SVM, and
XGBoost. For the MIC analysis, nearly 10 antibiotics were chosen, including clindamycin,
cefoxitin, oxacillin, levofloxacin, trimethoprim-sulfamethoxazole, vancomycin, linezolid,
erythromycin, daptomycin, and gentamicin. The k-mer algorithm sucessfully predicted the
cefoxitin resistance, concluding that the model can identify methicillin-resistant S. aureus
with accuracy >91% to 93% [108]. The sequence data of nearly 500 isolates were used
in this study; training under large datasets will improve the algorithm to have greater
accuracy. Patients are prescribed antibiotics based on the susceptibility results, but this
algorithm can be used in the healthcare setup where there are limited resources to obtain
antimicrobial susceptibility tests rapidly. There are limited studies available related to
ML-based screening; some are mentioned in Table 1 below.

Limitations

There are very limited research outputs in the ML-related screening of antibiotic resis-
tance and antibiotic susceptibility in hospital-based datasets, since many large healthcare
setups have a huge dataset that can be used to screen for a lot of antibiotic resistance
bacteria. However, receiving those datasets for research purposes is not an easy task, which
is a major setback.
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Table 1. Summary of studies using machine language for prediction of antibiotic resistance for clinical decision-making.

Task Input Data Primary Models Used in
the Study

Comparisons Models
Used/Tested Peformance/Accuracy Comments/Limitations References

Antibiotic resistance prediction
in patients

11,496 antimicrobial
susceptability datasets from

laboratory information system,
internal medical ward, public

hospital, Greece

stack ensemble (Microsoft
Azure AutoML)

VotingEnsemble,
MaxAbsScaler, LightGBM,

Sparse Normalizer,
XGBoost Classifier

AUCW is 0.822 and 0.850 Accuracy
rate is 0.770

Study uses 499 patients’ data. Data
scientist is needed at this stage for
pre-processing, feature selection,

and final analysis. More data
training needed to obtain more

accurate results.

[107]

Prediction of antimicrobial
resistance in Acinetobacter
baumannii, Mycobacterium

tuberculosis, and
Streptococcus pneumoniae

K-mer representation of
bacterial genomic data random forest Adaboost, logistic regression,

deep learning 80–92%

Lower data give less accuracy and
higher number of data give elevated

accuracy. Not possible to use by
laboratories and hospitals having

small datasets.

[109]

Predicting antibiotic resistance
in hospitalized patients

5590 instance datasets with
different variables from general

hospital laboratory, Greece

WEKA framework ML, run
under Java platform

J48 algorithm, random forest,
multinomial logistic regression,

kNN algorithm, multilayer
perceptron (MLP)

ROC area of 0.758 and accuracy
of 75.8%

Low accuracy, limited dataset, and
less clinical attributes. Increased
dataset can give accurate results.

[110]

Prediction of antibiotic
resistance in

hospitalized patients

16,000 antibiotic resistance tests
of electronic medical

record (EMR)

Ensemble of 3 models: Lasso
logistic regression, neural

networks, gradient
boosted trees

Independent algorithms:Lasso
logistic regression, neural

networks, gradient
boosted trees

Combined algorithm: 0.821,
Xgb: 0.82, Lasso: 0.82, dnn: 0.803,

auROC score was 0.8–0.88

Bacterial details can increase
AUROC score if included,

additional information needed to
improve accuracy such as

antibiotics used prior to admission,
microbiome composition, diet,

and exercise.

[111]

Prediction of antimicrobial
resistance from ICU patients in
Pseudomonas and Enterococcus,

Stenotrophomonas

Dataset of 32,997 collected from
health information system of

2630 patients, University
Hospital of Fuenlabrada, Spain

Logistic regression, K-nn,
decision trees, random forest,

multilayer perceptron

AMG: 82.2 ± 1.7,
CAR: 79.6 ± 2.1,

CF4: 74.9 ± 2.1, PAP: 77.1 ± 1.7,
POL: 68.5 ± 7.0, QUI: 88.1 ± 1.6

Accuracy differs based on various
antibiotics and bacterial species;

upgradation yet to undergo based
on mechnical ventilation, bed; sepsis
patients in ICU are to be considered.

[106]

Prediction of
Carbapenem-resistant
Klebsiella pneumoniae

46 Carbapenem-resistant
Klebsiella pneumonia (CRKP)

isolated from hospital patients
random forest

Logistic regression,
Naïve Bayes,

nearest neighbors,
support vector machine

Accuracy: 97%,
Carbapenem-resistant

identification: 93%

Small sample size and limited data
of CRKP. [112]

Prediction of antimicrobial
phenotype resistance of

Staphylococcus aureus

K-mer representation of
bacterial genomic data Random forest, SVM, XGBoost

Among 10 anitibiotics used in the
study, AUC was recorded between
82.02% for Linezolid and 96.13 for
vancomycin. Cefoxitin registers

AUC of 92.65% with sensitivity of
94% and major error 6.82%

Study uses 466 whole genome
sequencing results to predict the

antimicrobial resistance.
[108]
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3.6. AI Detection of COVID-19 and Preventive Measures with AI

AI-based approaches were widely used in the recent COVID-19 pandemic diagnoses.
The daily infection rate and the survival ability of patients in South Korea were analyzed
using machine learning and deep neural networks with logistic regression and support
vector machine (SVM) [113]. The radiographic images play an important role in distin-
guishing coronavirus infection and other respiratory lung infections such as seasonal flu,
tuberculosis, etc. The various applications of AI and machine learning are detailed in
Figure 8. The recent study by Harmon S.A et al. in developing a lung segment model for a
chest CT scan to detect the coronavirus infections, was further trained using the AH-Net
architecture. Along with this, an image classification model developed as a hybrid 3D and
full 3D model based on Densnet-121 architecture was considered to have a high accuracy
rate of up to 90.8% [114]. Recently, the lung ultrasound (LUS) imaging technique was highly
recommended in the detection of COVID-19 in lungs. When this scanning is used in the
right way, there is a chance of reducing infections among health workers and patients [115].
Born et al. proposed a POCOVID-net DL-based model that was based on the VGG16
network [116]. The author employed DL architecture such as VGG16 and VGG19 [117],
Inception V3 [118], ResNet50 [119], and Xception [120] as supporting tools in computer-
based image analyses in screening lung ultrasound (LUS). A similar study was conducted
by Zokaeinikoo et al. in analyzing the CT and X-ray with an AI model for the detection
of COVID-19 (AIDCOV), which can differentiate the infected/non-infected persons along
with other respiratory tract infections. AIDCOV was subjected to screen chest X-ray images
and identified 475 COVID-19 cases from 3949 samples belonging to various viral/bacterial
infections and 1583 normal samples from 10 balanced and unbalanced publicly available
datasets. A promising output showed a 99.8% sensitivity with 100% specificity and a 99.8%
F1 score for identifying COVID-19 in X-ray images, and a mean cross-validation accuracy
of 98.8% and a sensitivity of 99.4% were obtained by screening a dataset of CT images [121].
This dataset held samples from around the world; therefore, interpreting samples between
different people shows more promise. After facing waves of COVID-19 infections around
the world, our health system and financial sectors have started collapsing. The need of
the hour is a rapid technique that is a more cost-effective, easily accessible, and more
accurate testing tool to identify infections and control spreading. RT-PCR techniques have
some drawbacks as they detect viral RNA once the patient develops symptoms, but CT
can detect it even before symptoms occur in patients [121]. CT images prove to detect
COVID-19 patients, even when they are identified as asymptomatic with negative RT-PCR
results [122].

3.7. Face Mask Detection Systems Using AI

The pandemic forced us to develop face mask detection systems, which are a new
initiative in controlling the coronavirus spread among people in public places and closed
environments. Thanks to the recent upgrades in face detection systems, a kind of AI
technology has entered our daily lives [123,124], which has become a key platform in
designing the tools for mask detection. The challenging part of mask detection is image
processing. Due to different types of masks, camera resolutions, and pixels, various angles
of observation, different views, obstructions, detection accuracy, and real-time detection
are key functions that need to be considered. The AI consists of a subset called machine
learning, which learns from the given dataset, and develops its knowledge from the dataset.
DL models are represented in considerable recent research in face mask detection due to
their multilayer exploiting capacity and drawing inspiration from biological neurons [125].
The DL models such as convolutional neural network (CNN) [126], ResNet-50 [127], You
Only Look Once (YOLO) versions (such as YOLOv1, YOLOv2, and YOLOv3) [127–130],
and mobile network (MobileNet v1 and v2) [131], showed promising outputs in identifying
face mask detection. Sethi et al. (2021) proposed a model consisting of one-stage and
two-stage detectors to identify objects within a rapid time and high accuracy. They used
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ResNet50, MobileNet, and AlexNet, the three standard baseline models in mask detection,
along with a bounding box prediction method. In this ResNet50 model, which showed
higher accuracy up to 98.2% in face mask detection, this model was proposed to be used
for video surveillance devices [132]. Bhuiyan et al. (2020) proposed a model for identifying
masked and unmasked faces using the YOLOv3 advanced version. YOLOv3 used the CNN
algorithm for detecting faces. YOLO detected images by creating a linkage with CNN by
using hidden layers, researching them, and retrieving an algorithm. The analysis, which
was performed on 30 similar images from the dataset, yielded promising detection results.
Even with a video analysis, the model worked well with frames per second inside a live
video; that is, average fps was 17, which is highly promising [129]. A similar study was
carried out to develop an Internet of Things (IoT)-enabled smart door capable of monitoring
human body temperature and detecting face masks. In a non-contact approach, an infrared
temperature sensor was used to detect the body temperature. The face mask detection
system was created using the TensorFlow software library, which is open-source and free. A
Pi cam was used to monitor face recognition, and a detector in the door counted the number
of people inside the room, prohibited entry of excess people when a pre-defined room
limit was reached, and locked the door if a person came without a mask. The Raspberry
pi was used as a real-time DL system to detect a face mask and temperature. Further,
the model gave 97% accuracy when it was trained using various face recognitions. This
system can be used in airports, hospitals, shopping malls, offices, colleges, and so on [133].
The study by Teboulbi et al. (2021) proposed a face mask and social distancing detection
model that is an embedded vision system. The author used pre-trained models such as
MobileNet, ResNet Classifier, and VGG for this study. This model detected face mask
violations and social distancing. The output in real time is promising, as the F1-score,
sensitivity, and specificity showed 99%, along with 100% accuracy. In a real-time scenario,
the detection system will raise an alarm for violating face mask and social distancing
in public places. This can be used with the existing cameras in all public places for the
prevention of COVID-19 infections. Similar strategies using ML algorithms have started
coming to the commercial market as the coronavirus cases surge worldwide [134]. Various
tools or DL models published in recent times show a promising future in face masks or
facial detection technologies; recent findings are mentioned in Table 2.

Table 2. Artificial Intelligence-based models for detecting face masks.

AI Models Description of the Model Accuracy Image Dataset Sources Reference

Hybrid deep
transfer model

This model consists of SVM,
decision tree, and accurate

methods to detect face masks.
Achieved 99.64% on test

RMFD: real-world masked
face dataset, SMFD: stimulated
masked face dataset, random

face in crowd

[135]

Inceptionv3 CNN

This module consists of 22
layers deep from GoogleNet to
increase accuracy; this CNN

detects persons without
a mask.

Achieved 99.9% accuracy Simulated masked face dataset
was used in this study [136]

Facemasknet model

This model uses DL model to
identify masked face, properly

masked face, and no
mask face.

This model achieved
98.6% accuracy

Datasets used in this study are
MFDD: masked face detection
dataset, RWFCD: real-world

face recognition dataset,
SMFRD: simulated masked

face recognition dataset

[137]

EfficientNet model

CNN-driven EfficientNet
architecture is applied in this
method and can be used for
real-time detection of mask.

Achieved accuracy of
97.12%

Openly available face mask
detection dataset [138]
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Table 2. Cont.

AI Models Description of the Model Accuracy Image Dataset Sources Reference

Deep learning
model vgg16

Trained with 2 datasets, it
works well with medium and

small datasets.

Accuracy of 96.50%
was achieved

Two datasets with 1484 and
7200 images are used [139]

DTLMV2 (deep transfer
learning MobileNetV2)

This model uses a lightweight
CNN which requires less

computing power and is easily
attached to computer vision

and mobile system.

This model gains accuracy
of 97.01% at validation

data and 98% accuracy on
training data

Crowd dataset with
7514 images is used [140]

Deep Masknet framework
This model uses both face

mask detection and masked
facial recognition.

Obtained 100% accuracy
on face mask detection
and 93.33% of masked

facial recognition

Mask detection and masked
facial recognition
(MDMFR) dataset

[141]
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3.8. Nanofiber Masks Using AI
3.8.1. Machine Learning in Mask Production

The face mask has become a shield in fighting the coronavirus, and the adaptation of
recent technology in upgrading the mask is highly welcomed due to the current pandemic
situation. The coronavirus family consists of SARS-CoV, MERS-CoV, and SARS-CoV-2,
which are positively charged single-strand RNA viruses. The SARS-CoV-2 virus size ranges
from 50 to 200 nm in diameter with a single-strand RNA genome [142]. The machine
learning is used to predict the fabric properties used to make masks and to monitor their
performance. The Egyptian cotton (EC) fabric was prepared with diverse thread counts
to create a three-layer stacking mask. The particle filtration efficiency (PFE) and bacterial
filtration efficiency (BFE) were analyzed to identify a better combination of EC fabric masks.
The thicknesses of EC fabrics were 0.182 mm for EC100, 0.128 mm for EC 200 mm, and



Healthcare 2023, 11, 854 20 of 35

0.120 mm for EC300. A Porometer analysis exhibited 64.9, 79.2, and 43.5 µm from EC100,
EC200, and EC300 fabrics. Different combinations of three EC fabrics in different orders
also brought remarkable filtration capacities, as 1-3-1 was found to be the best combination
in PFE and BFE with 45.4% and 98.1% filtration capacities, respectively. Machine learning
models, Lasso and XGBoost, were used to predict the best combinations of masks in ∆P,
PFE, and BFE combinations. The Lasso and XGBoost predictions were highly reliable
in BFE, which was very similar with both models and material knowledge. The models
were successful, even with limited training data, in predicting all three properties. ML
algorithms are highly desirable as they are economical and improve experiment results
in mask design [143]. The respirator burdens the wearer’s breathing ability, which leads
to a decline in physical activity. To overcome this issue, machine intelligence algorithms
(ML) were combined with a dynamic air filter (DAF), which is a stretchable elastomer fiber.
For the first time, an air quality-responsive algorithm (AQA) and a breathing demand-
responsive algorithm (BDA) were used in the filter. The AQA algorithm initiated the
super flow of air under a clear atmosphere, and the BDA algorithm observed the wearer’s
breathing demand and adjusted the flow rate for physical activity. This was achieved by
the stretching and relaxation ability of the elastomer [144]. Since this is a pioneer study in
merging elastomeric filters with ML algorithms for respirators, it can be used for growing
air pollution and minimizing the pandemic effect.

3.8.2. Electrospun Nanofiber Mask by Nanotechnology

Another major breakthrough in controlling the airborne transmission of SARS-CoV-2 is
through the advanced electrospun nanofibrous air filters adopted in the mask. Electrospun
nanofibers are not a new material to the medical field: these fibers have been used in various
medical applications for the past two decades. Abutaleb et al. (2021) have described various
biodegradable nanofiber materials from natural resources for medical applications [145].
Nanotechnology is highly reliable in developing effective, scalable, and cheaper air filters
for masks and respirators. Electrospun techniques have the capacity to produce a smaller
pore size of several micrometers when compared to commercial filters. ES fibers capture
smaller airborne particles [145,146]. In this study, a coronavirus aerosol test against an ES
mask was carried out. A polypropylene fabric was electrospun with polyvinylidene fluoride
PVDF20 and PVDF30. This layer was soaked into a polyelectrolyte poly(ethylenimine) (PEI)
and poly(vinylphosphonic acid) (PVPA), both of which were positively or negatively
charged to enhance the electrostatic attraction for virus removal. The diameter of this PVDF
nanofiber was found to be 0.2–1.3 µm, but other commercial face masks and neck gaiters
in this study showed fiber diameters of 5.7 ± 2.8 and 12.0 ± 1.0 µm. Usually, fibers with
a larger diameter and pore size are less effective as an airborne particle filter, but those
with a smaller diameter and pore size are highly effective in the filtration of aerosols. This
was achieved by increasing the ES spinning time, which exhibited the highest removal
of coronavirus aerosol up to 99.9% for PVDF30 and 99.1% for PVDF20 Figure 9 [147]. The
reuse of the face mask is an important question in this pandemic. A study was carried
out to identify the melt-blown filter used in the N95 face mask and the reusability of the
nanofiber filter face mask with 75% ethanol treatment. It showed that there was a loss
of filtering efficiency in N95 masks after ethanol treatment, but nanofiber filter masks
showed promising results of the filtering capacity up to 97–99%, irrespective of the cleaning
method [148]. Economically cheaper materials such as ES fabrics are highly recommended
for mask production during this pandemic. These ES air filters are more competitive against
other commercial filters on the market, and a portable ES apparatus can be helpful in the
rapid preparation of ES masks at home and for minor populations [145]. Recently, various
methods have been used to produce ES-based masks to combat the pandemic, and some
findings are listed below in Table 3.
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with coronavirus.

Table 3. Overview of various mask materials produced through nanofiber/material technologies to
confront the pandemic.

Type of Mask Material Used Filtering Size/Efficiency% Characteristics Reference

ML algorithm-based
respirator Elastic fiber membrane (EFM) Up to 2.5 µm

Controlled mechanical stretching
and relaxation of filter, response to

slow and fast physical activity,
cheaper material.

[144]

N95 Electrostatic non-woven
polypropylene Up to 0.3 µm

High filtering efficiency of
virus/bacteria, prevents air and
droplets penetrating the edges.

[149]

Mask with nanofiber filter Polyvinylidene
fluorid (PVDF30) and (PVDF20) ≤2.7 µm Captures up to 99.9% of

coronavirus aerosol. [147]

Nanoparticles-coated
non-woven surgical mask Copper nanoparticles (CuNPs) 99.37%

Photocatalytic and photothermal
properties, reusable, self-cleaning

ability, disposable.
[150]

Surgical mask with graphine
Melt-blown non-woven fabrics
(MNF) and graphene layer with
electric and thermal conductivity

99.8%
Removal of virus/microbes by
electrothermal method, high

removal efficiency up to 10 cycles.
[151]

Nanofiber mask Piezoelectric electrospun poly
(l-lactic acid) (PLLA) nanofibers >99%

Respiration electrifies the mask,
long stable filter is humidity
resistant, autoclavable, and
degradable around 50 days.

[152]

N95 respirator nanofiber
mask with

copper nanoparticles

Nylon polymer fiber with
copper nanoparticles - Antiviral and

antimicrobial properties. [153]

3D-printed nanofiber-based
mask

Combined silver and
copper nanoparticles 99.5% Antimicrobial, high polarity,

heat-insulating properties. [153]

Nanoporous hard mask
Flexible silica fabricated with

reactive ion etching process on
polymeric membrane

Up to 5 nm
Reusable, high filtration efficiency,

hydrophobic,
antifouling, self-cleaning.

[154]



Healthcare 2023, 11, 854 22 of 35

3.9. Robotics against COVID-19

Robotics is the most advanced research area developed to deal with conditions where
humans cannot work or concentrate. Already, several studies have brought new devel-
opments to robotics, and now the pandemic has brought new ideas for using robots to
manage various functions such as nursing [155], diagnostics and treatment [156], logistics
management [157], etc. A cost-effective robot was designed based on the S4 concept of
“sensing, smart, sustainable, and social features”. AI was adopted as one of the finest
choices for improving robot intelligence. An AI algorithm was developed to assist in mask
detection, crowd detection, and obstacle detection, along with a fuzzy logic controller that
was used to prevent crashes against objects in its path, or instant multiple obstacles that
could now be detected by humans. The most attractive objective in this Robocov robot is
the sanitization module, which can be used in hospital cleaning using a UV lamp installed
with this robot. This is far more useful for cleaning the COVID-19 patient ward in hospitals,
as it avoids infecting human workers with the coronavirus. Robocov is further used for
disinfection, identification of infected people by temperature sensors, symptom monitoring,
and package delivery [158]. Future goals include (i) high-power batteries for Robocov
for long-distance travel within cities; (ii) road signal detection systems; (iii) long-distance
Google navigation system; (iv) automatic driving system; and (v) human face detection for
package delivery.

4. Impact of COVID-19 Pandemic in Public Life

The pandemic has caused a great deal of effects on many aspects of human life, the
economy, industry, etc. In numerous recent research studies, AI approaches have been used
to develop ways of managing the effects of the pandemic.

4.1. AI in Utility Services

The recent research used a machine learning model, namely the Pandemic Electricity
Consumption Scenario (PECS) model, for the prediction of energy usage in India. This
model was used to effectively analyze and measure the impact of the pandemic on electricity
consumption based on weather, econometrics, and social distancing in seven major states
in India. The machine learning model predicted a 15 to 33% drop in consumption from
March to May in 2020 during the complete lockdown period, and a 6 to 13% drop from
June to August 2020 during the unlocked period, returning to normal in September 2020.
The analysis also showed a drop in CO2 emissions of between 7 and 5% compared to
previous years. This prediction can be used in future energy policy decisions [159]. A
similar study was conducted in China using a comparative regressive and neural network
model to identify the impact of the pandemic on electricity and petroleum demand. The
model showed a downtrend in the demand for fuel consumption [160].

4.2. AI for Researchers

The search engines for the extraction of COVID-19-oriented publications from servers
are more important for researchers. A powerful language model, BERT, is used by Google
for extracting data [161]. A CORD-19 search and COVID-19 research explorer information
retrieval (IR) system were analyzed for the study. CORD-19 was subjected to a language
processing service, in Amazon Comprehend Medical (ACM), which is a natural language
processing (NLP) service for extracting clinical data from unstructured text [161].

4.3. ML in Oil and Gas

The machine learning model of the pandemic oil demand analysis (PODA) predicted
gasoline consumption in the USA. Since the oil price went negative due to the pandemic,
the predictions were made based on public travel, their trip activities, and fuel usage. Later
on, in October 2020, the prices gradually recovered, so this model predicts the demand for
oil and its impact for a shorter duration [162].
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4.4. AI-Based Decision-Making in the Hospital

Recent digital technologies were implemented in cardiology-based devices to collect
and observe data. Machine learning (ML) was used to study large datasets from hospitals
for clinical practice, and this was further used to identify complex heart problems and
treatment strategies for COVID-19 patients [38]. There are various ML algorithms used
to screen the structured data in hospitals, such as ensemble, support vector machine
(SVM), hierarchical clustering, and topological data analysis, and for unstructured data,
convolutional neural network (CNN), deep neural network (DNN), AdaBoost, and long
short-time memory (LSTM). A DL model was proposed to identify which patient may
receive more of a benefit from surgery in treating epilepsy [39]. AI assists in providing a
strategic execution picture in operating theater surgeries by lowering risk and ensuring
surgical success [163]. Cardiothoracic surgery, a fine example of AI-supported cognitive
augmentation, requires a combination of a doctor team, highly advanced equipment, and
special care [163].

4.5. Telemonitoring during COVID-19

The value of telemonitoring should be taken into account in the care and monitoring of
patients in hospitals, and even in outlying areas nowadays. Various portable devices, such as
a blood pressure cuff, glucometer, pulse oximeter, ECG + stethoscope, activity trackers, wear-
ables, thermometer, etc., are now used by patients even at home. Aysha Shabbir et al. (2022)
proposed an improved model for remotely monitoring a patient’s condition and to make
decisions based on that condition using ML and DL models. In this process, the remote mon-
itoring station’s patient monitoring device sends signals about higher and lower thresholds
via the Internet using Cloud computing and IoT servers, which are relayed to a healthcare
specialist. Later, primary/secondary care requirements are decided by specialists based on
severity. This was framed by a pattern of sensing, transmission of data, interaction with the
patient, and situational response [164]. In Italy, 23.2% of the population is 65 years of age or
older, making it difficult to treat them during the COVID-19 pandemic. Therefore, they pro-
posed a connected-care solution in the context of digital health, where the citizen or patient
was kept in a high-priority center and supported with various integrated organizational
measures. Further, in this recent organizational model, patient clinical information was
shared with different healthcare workers involved in the treatment process. For this pur-
pose, various healthcare models were combined to support patients with chronic illnesses.
A remote/home healthcare Resilia app, a simple mobile phone application, was introduced
by Italy healthcare, and guides users to identify nursing care, doctors, and other healthcare
professionals for a quick response [165]. The northwest Tuscany region of Italy consists
of local health units that have introduced territorial telemonitoring of chronic patients
(Tel.Te.C.): telemedicine mobile applications since 2017. Both the patient and the healthcare
professional receive a home monitoring kit and a professional monitoring kit, from which
vital parameters such as temperature, heart rate, oxygen saturation, blood pressure, and
weight can be measured; any parameter that is out of range raises an alarm for immediate
action. Under compulsion, this platform has been used by 40 general physicians and
180 patients since March 2020. Patients with different stages of illnesses have been enrolled
in this application, which has resulted in positive feedback from patients and doctors with
reduced hospitalization and no mortality [166].

4.6. AI-Based Law in Various Countries

Various countries understand the importance of AI-based technology and their ap-
plications in the health sector and are moving forward to bring AI under national law. A
proper legal channel is suggested by different counties to justify its safety and reliability
in the healthcare and clinical sectors. Similarly, the FDA approved 350 AI- and ML-based
equipment for use in the healthcare in the United States of America until 2021 [167]. Simi-
larly, various countries implemented AI/ML laws in the area of data protection, AI robotics,
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decision support software, diagnosis and predicting patient conditions, COVID-19 tracking
apps, etc. (see Table 4).

Table 4. Laws and regulations implemented based on AI healthcare in various countries past and
present regarding the pandemic.

Country Law/Regulation Purpose of This Law Date Effective

USA No Vaccine Passports Act [168] Relaxing the restrictions of forcing
vaccine certificate 4 August 2021

The Netherlands (Red Cross) 510 Data Responsibility Policy [169] Data protection 12 November 2018

United Kingdom
Contact-tracing app (General Data

Protection Regulation (UK GDPR) and
Data Protection Act (DPA) 2018) [170]

Data protection and digital COVID
tracking app May 2020

European Union General Data Protection Regulation [171] Data protection of public and
health records 27 April 2016

European Union Medical Devices Regulations 2017/745
(MDR) [172]

Protection of patients from medical
device, protection of produced data

using this device
5 April 2017

European Union The 2017/746 In Vitro Diagnostic Medical
Devices Regulation (IVDR) [173]

Protection of patient health and users,
quality and safety of in vitro

medical devices
25 January 2022

European Union

Regulation of the European Parliament
and of the council laying down

harmonized rules on AI (Artificial
Intelligence ACT) and amending certain

union legislative acts [174]

Facilitate and creating innovation in
AI, creating trusted AI applications 21 April 2021

European Union Civil Law Rules on Robotics [175] Implementation of AI robotics 16 February 2017

Singapore Personal Data Protection Act 2012 [176] Data protection 31 December 2021

Australia Therapeutic Goods (Medical Devices)
Regulations 2002 [177] Clinical decision support software 25 February 2021

China

Notice of the State Council Issuing the
New Generation of Artificial Intelligence

Development Plan. State Council
Document. No. 35. 2017 [178]

Healthcare and management 8 July 2017

Kingdom of Saudi Arabia Guidance on Software as a Medical
Device/SFDA MDS-G23 [179]

AI- and BigData-based medical
software to diagnose and predict

patient conditions
27 April 2021

Russia
Development of AI in healthcare up to

2030, approved on 10 October 2019,
No. 490 [180]

Software as medical device
in healthcare 10 October 2019

South Korea Medical Devices Act No. 15945,
11 December 2018 [181]

Software as medical device
in healthcare 11 December 2008

Singapore
Standalone Medical Mobile Applications

(SaMD) and Qualification of Clinical
Decision Support Software (CDSS) [182]

Clinical decision support software 19 July 2021

China Cybersecurity Law of the People’s
Republic of China [183]

To preserve cyberspace sovereignty
and national security 7 November 2016

Malaysia Medical Device Act 737-2012 [184] Medical device, software regulation in
healthcare 30 January 2012

Emirate of Abu Dhabi
Artificial Intelligence (AI) in the Healthcare

Sector of the Emirate of Abu Dhabi,
Policy/AI/0.9, Version 0.9 [185]

Health system monitors, analysis, and
public health observation 30 April 2018

Canada Digital Charter Implementation Act, 2022
(Bill C-27) [186]

Protection of personal information,
data, and health records, along with
any serious direct cause to patients

by AI

16 June 2022

Brazil LGPD–General Personal Data Protection
Law (Federal Law no. 13,709/2018) [187] AI regulation in health sector of Brazil 14 August 2018

Brazil Brazilian Artificial Intelligence Bill (Bill No.
21/2020) [188]

Development and applying of AI in
various sectors of Brazil 29 September 2021
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5. Discussion

In this paper, we highlighted the applications of AI and its recent developments
in various fields in tackling the pandemic. We detailed the impact of AI in confronting
coronavirus handling; secondary infections such as CAM, blood coagulation, blood stream
infections, UTI, and antibiotic resistance; diagnosis and treatments in healthcare; along
with prevention measures such as face mask detection, production, design, and robotics in
public life. Even though its applications seem to be highly useful, it is still in the beginning
stages and needs more room to improve and be implemented in different applications
of healthcare to tackle the situation. Still, many hospitals in various countries are in a
dilemma when choosing AI-driven solutions for screening and treatment. As a result,
various countries enact laws and act to implement AI and ML in various fields. Because AI
is currently used in a variety of fields, we highlighted some research gaps and challenges
that AI is currently facing, which can be useful in future exploration.

The secondary infections are predominant in COVID-19 patients: CAM has been
reported in various countries such as India, Iran, Italy, the USA, Brazil, and Egypt [14].
Novel therapies are under research for the treatment of CAM. Currently, there is no direct
medicine for CAM control, but combination therapy with AmB and atorvastatin is more
promising when treated against R. arrhizus. However, it should be studied in detail to
deliver this combination to diabetes patients. The use of statins to treat CAM is being con-
sidered, but research is still in its early stage [189]. Coagulation problem is more frequent
in COVID-19 patients after CAM. Pulmonary embolism and venous thromboembolism are
more prevalent in hospitalized patients. Preventive measures such as observing platelet
count, d-dimer marker, and C-reactive protein during admission will help in the earlier
identification of coagulations. BSI infections with bacteria are more common in patients
admitted to the ICU; around 14% of patients admitted to the ICU acquire BSI. The majority
of superinfections are caused by carbapenem-resistant K. pneumonia bacteria in the respira-
tory tract, particularly in the ICU [88]. Similarly, UTI infections are more prevalent along
with the BSI. UTI or CAUTI emerge in hospitalized COVID-19 patients, with the most
prevalent infections arising from ICU-acquired bacterial infections. Enterococcus sp. and E.
coli are predominant in UTI patients. It is an urgent situation to implement new methods
to prevent CAUTI-based infections, and pre-planned antibiotics treatment will become
more beneficial in saving lives [22]. Most of the above-mentioned circumstances occur due
to the uptake of antibiotics without proper guidance by physicians. It is complicated to
treat antibiotic-resistant bacteria, which could be more harmful to patients. Among various
bacteria, Pseudomonas and Stenotrophomonas families are more virulent in ICU patients. In
many cases, ICU-acquired AR bacteria are more critical to handle since they may be resis-
tant to various families of antibiotics. Since microbial resistance to antibiotics is increasing
every year, national recommendations of antimicrobial stewardship principles during the
COVID-19 pandemic need to be followed to minimize hospital-acquired AR. To overcome
the effects of a pandemic and reduce the burden on healthcare, the help of AI is inevitable.

ML, which uses huge healthcare datasets to train the program, is more accurate in
predicting coronavirus outbreaks. The use of a neural network trained on an organized
dataset to support machines involved in the diagnosis of diseases in healthcare is a vital
approach. DL models can be used to analyze CAM, blood coagulation, BSI, UTI, and
AR using images and clinical data from models such as XGBoost, HLNNC, CNN, and
SVM. Furthermore, chest X-ray and CT scans using deep neural networks can study pa-
tient status and health conditions. Many advanced technologies are used to confront
the pandemic, but AI [190], blockchain [191], open-source technologies, telehealth tech-
nologies [192], 3D printing [193], gene editing technology [194], nanotechnology [145],
synthetic biology [195,196], and robots [158] are the most significant. These advanced
technologies are combined with various models to produce promising outcomes, and
further enhancements are needed to train with large public and hospital datasets to combat
the pandemic.



Healthcare 2023, 11, 854 26 of 35

The telemonitoring of patients is especially beneficial during the COVID-19 pandemic,
because, according to numerous publications, patients have the greatest potential for
viral transmission during the incubation period. Due to their increased susceptibility
to infection, older persons frequently require general or urgent hospital care. In some
circumstances, even people who have recovered from an infection can spread it to others.
As a new era of homecare systems, telehealth monitoring is a breakthrough in patient health
condition monitoring from their homes, minimizing direct contact between an infected
person and a healthcare practitioner. Introducing digital technology for health monitoring
in the patient’s home improves the homecare system, which could monitor even simple
movements, wake-up pattern, medical alerts, and nursing staff on demand [197,198]. In
order to combat the pandemic, telemonitoring tools such as the Resilia app, Tel.Te.COVID-
19 platform, and the Italian linked-care solution are highly valued, considering that these
platforms may improve the lives of elderly people and patients who are unable to take care
of themselves. Every new innovative technology has its own drawbacks, which should
be considered in order to avoid any complications for users. Considerations should be
made for elements such as software repeatability, data privacy and security, and civil
responsibility brought on by software or programs for health monitoring. Who is liable
if any AI or monitoring software fails to provide a positive outcome in a treatment or
poses a health risk to the patient? This is because many people, including the producer,
developer, distributor, programmer, doctor who typically recommends it, and patient who
used it, were involved in its creation. Similar problems are frequently seen in other AI
application sectors. The legal systems of various nations should presumably specify clear
decision-making pathways that are guaranteed for the patient when employing this type of
AI-based telemonitoring software.

Though we have discussed the recent nanofiber membrane technologies in fighting
COVID-19, our primary shield against the virus remains the face mask. By considering
further modifications to the nanofiber mask, such as surface charge, hydrophobicity, and
antiviral-embedded nanoparticles, we can manage the spread of the virus to the maximum.
Mask reusability, a major question, now has a positive answer: “yes”, but only with
nanofiber masks. The biopolymer is the best choice of nanofiber mask material since it can
be reused and is eco-friendly; we can avoid single-use disposable masks for the sake of the
environment and a lack of demand.

â A face recognition and attendance project is in the developmental stage, and a face
mask recognition system must be included to detect a violation committed by a
specific person in a closed office environment and send an alert to management.

â The Center for Disease Control and Prevention (CDC) maintains a large database of
“COVID-19 Science Update Database” published and pre-print databases which are
easily accessible for any AI-based healthcare articles. Similarly, Lawrence Berkeley
developed a COVID-19 literature search powered by advanced NLP algorithms, which
uses AI to search attributes such as keyword, topic, title, year, and so on.

â Another central data service for documents is CORD-19 and LitCovid, with a regular
update on COVID-19 research outputs. These databases encourage the scientific
community to access free articles, which helps in developing novel research ideas
and outputs.

â The promising results obtained from various drug makers’ companies’ AI-based
technologies give hope to end the pandemic, but the real question is why these drug
companies are having such difficulty sharing their data with low-income countries to
end the pandemic. Until this happens, COVID-19 may repeatedly invade developed
nations with various mutated stains.

â Hospitals need to adopt recent AI technologies for analyzing radiographic images of
patients with COVID-19, to reduce the burden on doctors. Telemonitoring and speech
and text recognition using NLP will improve doctor–patient interactions in remote
treatment methods.
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â AI offers doctors and health workers the ability to store and handle or share patient
records very safely and securely through Cloud platforms such as Google Cloud AI,
Amazon AI services, Microsoft Azure AI, IBM Watson Studio, ref. [199] H2O.ai, Ten-
sorFlow, DataRobot, Wipro Holmes AI and automation platform, Salesforce Einstein,
Infosys Nia, and others that can be accessed through AI-infused technology.

At the time of writing this manuscript, the WHO has approved 11 vaccines for use
in emergencies around the world [200]. We have been forced to identify various effective
control measures and search for effective medicines and vaccines due to the increase in
the number of cases and the impact on the current global economy. In this context, earlier
detection of COVID-19, prediction, and hospital management are vital for controlling the
cases and mortalities. AI has become a boon for the current situation in addressing the
pandemic and providing a ray of hope in various healthcare and technological areas.

6. Conclusions

The collection of findings made available here demonstrates that AI-based ML and
DL models can be extremely helpful in diagnosing and forecasting a variety of healthcare
issues connected to COVID-19 infections, as well as assisting healthcare professionals in
monitoring and making decisions. To locate and gauge the severity of an illness, numerous
separate algorithms are employed. However, when compared to AI-based tools, it is widely
acknowledged that human intellect is a pioneer in decision-making. The observations and
diagnoses made by doctors and medical personnel in emergency situations are incompara-
ble to those made by computers; however, AI can work in tandem with health professionals
to lighten their workload during this urgent pandemic period. Few options are given to
the medical professionals at each level of their diagnosis and treatment.
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