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Abstract: Glucose forecasting serves as a backbone for several healthcare applications, including real-
time insulin dosing in people with diabetes and physical activity optimization. This paper presents a
study on the use of machine learning (ML) and deep learning (DL) methods for predicting glucose
variability (GV) in individuals with open-source automated insulin delivery systems (AID). A three-
stage experimental framework is employed in this work to systematically implement and evaluate
ML/DL methods on a large-scale diabetes dataset collected from individuals with open-source AID.
The first stage involves data collection, the second stage involves data preparation and exploratory
analysis, and the third stage involves developing, fine-tuning, and evaluating ML/DL models. The
performance and resource costs of the models are evaluated alongside relative and proportional
errors for 17 GV metrics. Evaluation of fine-tuned ML/DL models shows considerable accuracy in
glucose forecasting and variability analysis up to 48 h in advance. The average MAE ranges from
2.50 mg/dL for long short-term memory models (LSTM) to 4.94 mg/dL for autoregressive integrated
moving average (ARIMA) models, and the RMSE ranges from 3.7 mg/dL for LSTM to 7.67 mg/dL
for ARIMA. Model execution time is proportional to the amount of data used for training, with long
short-term memory models having the lowest execution time but the highest memory consumption
compared to other models. This work successfully incorporates the use of appropriate programming
frameworks, concurrency-enhancing tools, and resource and storage cost estimators to encourage the
sustainable use of ML/DL in real-world AID systems.

Keywords: glucose forecasting; automated insulin delivery; glucose variability; glycemic variability;
closed loop; OpenAPS; large-scale diabetes dataset; AID

1. Introduction
1.1. Overview of Data-Driven Automated Insulin Delivery Systems

With an ever-increasing number of diabetes technologies that assist individuals living
with insulin-requiring diabetes, large amounts of diabetes-related and user-entered behav-
ioral data are generated. Connected insulin pens or insulin pumps deliver insulin, and
real-time blood glucose information is obtained using Bluetooth-enabled glucose meters or
continuous glucose monitors (CGM). Insulin pumps and CGM can be combined as part of
an automated insulin delivery (AID) system, where data from each device flows through
an algorithm to determine insulin-delivery rates and automatically adjust them to keep
glucose values in a specific range, requiring less work from people with diabetes and also
improving quality of life outcomes [1]. AID systems further generate rich data regarding
the conditions (such as sensor glucose values, user-entered information such as targets or
carbohydrates, and current and previous insulin delivery) in which it operates [2]. Explor-

Healthcare 2023, 11, 779. https://doi.org/10.3390/healthcare11060779 https://www.mdpi.com/journal/healthcare

https://doi.org/10.3390/healthcare11060779
https://doi.org/10.3390/healthcare11060779
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/healthcare
https://www.mdpi.com
https://orcid.org/0000-0001-9691-2183
https://orcid.org/0000-0001-9176-6308
https://orcid.org/0000-0002-3748-6361
https://doi.org/10.3390/healthcare11060779
https://www.mdpi.com/journal/healthcare
https://www.mdpi.com/article/10.3390/healthcare11060779?type=check_update&version=1


Healthcare 2023, 11, 779 2 of 21

ing these rich data sources unveils opportunities for scientific discoveries to understand
individual glucose outcomes better and improve diabetes technology.

There has been increasing interest in applying machine learning (ML) and deep learn-
ing (DL) techniques to improve predictions of glucose levels [3]. Accurate and reliable
glucose profile forecasting is essential for a range of data-driven applications and use
cases that improve diabetes management (Figure 1). ML models are able to train and auto-
matically capture hidden trends and patterns in large volumes of data with considerable
accuracy and efficiency. This enables them to make decisions for various prediction and
classification tasks and to learn and improve over time.

Figure 1. Applications and use cases of data-driven glucose profile forecasting in general healthcare
and diabetes-specific scenarios.

1.2. Applications of Machine Learning and Deep Learning in AID Systems

Several ML techniques, including K-Nearest Neighbour (KNN), Random Forests (RF),
Long Short Term Memory (LSTM), Support Vector Regressor (SVR), and Gradient Boost
(XGBoost), have been used for regression and classification tasks to predict and identify
hypoglycemia and hyperglycemia [4–14]. These methods use invasive and non-invasive
techniques to collect data such as continuous glucose monitor data and physiological
and demographic features to train the models and achieve high prediction accuracy. Our
in-depth review of ML/DL methods applied to glucose forecasting (Section 2.1) yields
a list of challenges and limitations to the practical adoption of these methods in open-
source AID systems for glucose profile forecasting, including: (1). limited prediction
horizon (30, 60, or 120 min) of trained models, (2). inconsistency of reported accuracies
and employed model evaluation metrics makes it difficult to compare and reproduce
the existing work, (3). unavailability of large-scale and real-world diabetes datasets that
encourage the use of artificial and synthetic data for model training and evaluation, (4).
lack of evaluation and reporting on the computing resource costs of building the models,
(5). lack of implementation details and open-source models that are fine-tuned on diabetes
datasets, and (6). lack of assessment of clinically-approved glucose variability metrics
(reviewed in Section 2.2) based on predicted glucose profiles.

Historically, due to the non-availability of quality diabetes data, many early datasets
used to perform ML-related work were considered “large” if they contained several weeks
of data from a dozen individuals. However, with the early adoption of open-source AID
systems, which predated the availability of commercial AID systems for several years,
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users donated their anonymized data for diabetes research [15]. The resulting dataset from
the OpenAPS Data Commons contains tens of thousands of days of glucose data points [16]
and is employed in this paper.

One unique aspect of open-source AID systems such as OpenAPS is its inherent design
to be understandable to users, including the rationale of every decision it makes. ML can
be seen as a black box, and it may be challenging to substitute an ML-based prediction
algorithm wholesale into an open-source AID. However, OpenAPS is uniquely designed
to generate predictions based on various scenarios, including whether carbohydrates are
fully absorbed, or a meal is consumed but not recorded to the system. These predictions
are conditionally blended and heuristically used [17], such as to produce estimates of
the lowest predicted glucose value to be observed over the timeframe relevant for insulin
dosing and separately the blended average glucose level over the approximate period when
the activity of any additional insulin would be peaking, in order to limit contributions to
hypoglycemia while also seeking to minimize hyperglycemia. Therefore, OpenAPS is one
such system where an ML-based prediction algorithm could be introduced and blended
into the current set of predictions and used alongside the backstop of safety rules used by
the system to achieve the highest possible time in the target glucose range (known as “time
in range” or TIR) without much hypoglycemia or hyperglycemia.

1.3. Original Contributions

As a result of this opportunity for improvement, this paper sought to assess different
ML-based prediction methods for glucose profiles, paying particular attention to limita-
tions mentioned above in the existing works [18] and to their performance in terms of
accuracy and resource consumption of the implementation (training/inference time and
memory consumption) intending to integrate them in open source or future commercial
AID solutions.

In this paper, 30 and 60 days of glucose data has been employed from a set of individ-
uals having diverse demographic attributes from OpenAPS Data Commons to train a set
of ML and DL models, including ARIMA, XGBoost, RF, SVR, and LSTM. The fine-tuned
models have been further evaluated based on their performance and resource consumption
for glucose profile prediction up to 48 h. Finally, a set of clinically-validated statistical and
glucose variability (GV) metrics have been calculated, and a comparative analysis of the
predicted and expected outcomes are presented.

All models have been implemented with the flexibility to train online, and program-
ming scripts are open-sourced for reproducibility and benchmarking [19].

1.4. Organisation of the Paper

The rest of this paper is divided into the following sections. Section 2 presents the
literature review of tools and technologies for glucose profile assessment and the latest
advances in ML-based glucose forecasting methods. Section 3 provides a summary of
the dataset and techniques adopted for diabetes data collection, selection and cleaning;
followed by a description of employed ML-based predictive models and the glucose
analysis metrics. Section 4 presents the glucose variability assessments and the evaluation
results of trained ML models for selected individuals with insulin-requiring diabetes. The
section further shows the performance and resource costs of ML-based predictive models
and reports the relative and proportional errors as a result of a comparison of GV metrics
obtained for predicted and expected glucose profiles. Section 5 presents discussions on
the analysed ML model outcomes and assessment of metrics used for glucose analysis,
highlights the lessons learned, and criticises the limitations. Finally, Section 6 concludes the
paper and provides a roadmap for future considerations.
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2. Related Work

This section first highlights recent research developments towards ML-enabled glucose
predictions and highlights the main limitations and challenges; followed by a review of
clinically-approved glucose variability metrics.

2.1. Review of Machine Learning and Deep Learning Methods and Techniques for
Glucose Forecasting

Several machine learning and statistical learning techniques have been employed for
regression and classification tasks to predict and identify hypoglycemia and hyperglycemia.

Mordvanyuk et al. [4] employed K-Nearest Neighbour (KNN) algorithm on machine-
simulated data and used the meal information along with CGM data to predict out of range
glucose with 83.64% accuracy. Dave et al. [5] employed 26 features including gender, the
hour of the day, etc as multivariate input in logistic regression (LR) and random forest
(RF) algorithms to predict glucose up to 60 min with sensitivity and specificity over 90%.
Another approach is the use of physiological data including heart rate and movement
recorded by a smartwatch alongside CGM data of an individual employed in the Gradient
Boost algorithm to classify normal blood glucose levels and hypoglycemia with an accuracy
of 82.7% [6].

Zhu et al. [7] used OhioT1DM dataset [20] to train Long Short Term Memory (LSTM)
network to predict up to 30 and 60 min of glucose data and reported root mean square
error (RMSE) of 19.10 mg/dL and 32.61 mg/dL, respectively. In [8], simulated data from
UVA-Padova [21] (360 simulated days of 10 patients) and OhioT1DM dataset (8 weeks
of clinical trials on 6 patients) were employed to train a dilated recurrent neural network
(D-RNN) with prediction RMSE of 20.1 mg/dL. Using data from 12 individuals from
OhioT1DM, Yang et al. [9] developed an autonomous channel model using a combination
of multiple LSTM models for glucose prediction for up to next 30 and 60 min with an RMSE
of 18.9 mg/dL and 31.79 mg/dL, respectively.

Berikov et al. [10] used eight CGM-derived metrics including glycemic control and glu-
cose variability from 406 patients in RF, logistic linear regression with lasso regularization,
and artificial neural networks (ANN) to predict the next 15 and 30 min of glucose data with
considerable accuracy. Duckworth et al. in [11] used explainable ML (trained using CGM
data for 153 people with diabetes) to make predictions of hypoglycemia and hyperglycemia
up to 60 min. The gradient boost (GB) algorithm yielded a reasonable prediction perfor-
mance (AUROC) of 0.998 and 0.989 for hypoglycemia and hyperglycemia, respectively, in
comparison to standard heuristic and logistic regression models. Van et al. [12] employed
a portion of the Maastricht Study’s dataset (including CGM and accelerometer) to train
multiple ML and DL models (including ARIMA, support vector regressor (SVR), GB, LSTM,
and RNN) and predicted the next 15 and 60 min of blood glucose levels with an RMSE
of 0.48 mmol/L and 0.9 mmol/L, respectively. In [13], authors trained a personalized
LSTM model (using UVA-Padova simulator data for 100 patients with meals, insulin, and
past blood glucose) to predict the next 40 min of blood glucose levels with an RMSE of
7.67 mg/dL.

Allam et al. [14] trained an RNN and SVR using data from 9 individuals to predict
blood glucose for 15, 30, and 60 min horizon with an RMSE (in mmol/L) for 0.14, 0.55, 1.32
for RNN and 0.52, 0.89, 1.37 for SVR, respectively. In [22], authors presented an ensemble
approach using SVR as a base model and using ARIMA and physiological features (trained
on data for 10 individuals with type-1 diabetes) to predict blood glucose levels with RMSE
(in mg/dL) of 19.5 and 35.7 for 30 and 60 min prediction horizon, respectively. A jump
neural network (JNN) in [23] is trained on data for 20 T1D individuals to predict 30 min of
blood glucose with an RMSE (Mean ± Standard deviation) of 16.6 ± 3.1 mg/dL.

Pustozerov et al. [24] trained a linear regression model using data from 62 individuals
(with 48 pregnant women with gestational diabetes mellitus (GDM) and 14 women with
normal glucose tolerance) with food intake as an evaluation parameter. Results show that
the RMSE of BG levels for 1 h after food intake is 0.87 mmol/L. The use of smartwatches
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has seen tremendous growth with improvements in sensor technology motivated by the
use of Photoplethysmography (PPG) signals to detect volumetric changes in blood in the
peripheral circulation [25]. Data from 9 people (3 males and 6 females) was used to train
ada-boost and RF models to provide 90% prediction accuracy for glucose levels [25]. Dave
et al. [5] trained an RF model to predict possible hypoglycemia for 30 and 60 min ahead of
time with a sensitivity and specificity of 91% and 90%, respectively.

Georga et al. [26] used multivariate data (including glucose profile, plasma insulin
concentration, appeared glucose derived from a meal in the blood circulation, and the
energy utilized during other physical activities) from 27 people in free-living conditions in
an SVR to predict glucose levels for 15, 30, 60, and 120 min with average prediction errors
of 5.21, 6.03, 7.14, and 7.62 mg/dL, respectively. Pérez-Gandía et al. [27] trained a neural
network using data from 15 individuals to predict glucose in 15, 30 and 45 min horizon
with an RMSE of 10, 18, and 27 mg/dL, respectively.

Limitations and Shortcomings

To summarise, multiple ML/DL frameworks and methodologies have been employed
to forecast and predict blood glucose for people with diabetes. The limitations and short-
comings of the existing literature are listed below:

• The primary issue of all the reported methods is the evaluation of trained models
for a limited prediction horizon of 30 min and 60 min, with the maximum being
120 min, i.e., the reported predictions for the trained models are in the range of 30, 60,
or 120 min.

• The lack of consistency in the accuracies of the reported models makes it difficult to
compare the existing work. This further affects the reliability of the trained models for
further evaluation and reproducibility.

• Another drawback of the existing literature is the previous lack of large-scale and
real-world datasets for individuals with diabetes that use automated insulin delivery
systems. Therefore, the majority of the aforementioned models in the literature are
trained on partial/fully simulated data or limited days of real-world CGM data.

• Multiple model performances and accuracy metrics have been used (including RMSE,
specificity, MAE and F1 score) to evaluate the model predictions. However, to the best
of our knowledge, none of the existing works has evaluated and studied the impact
of glucose predictions by calculating the clinically validated glucose variability (GV)
metrics.

• There is a lack of implementation details and open-source methods to reproduce the
reported results which makes it difficult to independently evaluate them on additional
datasets or to be able to evaluate their applicability for different modalities of insulin
therapy, such as in sensor-augmented pump therapy as compared to automated
insulin delivery therapy.

• Most of the existing works employed a limited number of machine learning models
(one or two) for evaluation which certainly adds inconsistency. However, it is critical
to evaluate model results for multiple machine learning and deep learning models
along with tuned time series analysis frameworks like ARIMA. Evaluating the results
of multiple model types would lay a foundation for benchmarking.

2.2. Clinically-Approved Statistical and Variability Metrics for Glucose Analysis

Over 25 clinically approved GV metrics have been adopted by the diabetes research
community. Table 1 list the acronyms and full forms of the most important and commonly
used metrics for GV assessment.

To assist in the automated calculation and visualisation of clinically approved GV
and statistical metrics, many open-source programming tools and frameworks have been
developed. These include cgmquantify [28], CGM-GUIDE [29], CGDA [30], EasyGV [31],
cgmanalysis [32], and GlyCulator [33].
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Table 1. Clinically Approved Glucose Variability Metrics.

Acronym Description

ADRR The average daily risk range (ADRR) measures the overall daily variation of glucose,
within a specific risk range meanwhile the risk is defined based on the target.

CONGA Continuous overall net glycemic action (CONGA) is applicably close to standard
deviation (SD) and measures the possible changes in glucose for a defined period.

CV Coefficient of Variation (CV) is a statistical metric to evaluate the diversity in glucose
data and is commonly subdivided into inter-day and intra-day CV metrics.

GRADE The glycemic risk assessment diabetes equation (GRADE) score evaluates the risk
correlated with a particular glucose profile comprehensively.

HBGI
High blood glucose index (HBGI) is a metric that quantifies the possible risk of
hyperglycemia and it can be calculated using self-monitoring of blood glucose
(SMBG) or continuous glucose monitor (CGM) data.

LBGI Low blood glucose index (LBGI) is used for hypoglycemic risk management.

MAG
Mean absolute glucose (MAG) represents the difference of summation between
sequential glucose profiles over 24 h, which is divided by the time (in hours)
between the starting and ending glucose values.

MAGE
The Mean Amplitude of Glycemic Excursion (MAGE) is defined as the mean of
glucose values that exceed the 24-h mean blood glucose value, by one standard
deviation.

MODD Mean of daily differences (MODD) evaluates the inter-day variability; the average
difference between glucose values is calculated over multiple days at the same time.

SD Standard deviation (SD) determines the deviation of values in a group from the
mean value of the same group of values.

TIR Time In Range (TIR) quantifies the percentage of time spent within the target sensor
glucose range (between 70 mg/dL and 180 mg/dL).

TAR Time Above Range (TAR) quantifies the percentage of time spent above
(>180 mg/dL) the target sensor glucose range.

TBR Time Below Range (TBR) quantifies the percentage of time spent below
(<70 mg/dL) the target sensor glucose range.

3. Materials and Methods

This section presents the experimental workflow and adopted processes and proce-
dures for diabetes data collection, anonymisation, cleaning, processing, modeling, and
analysis.

3.1. Experimental Workflow and ML Development Pipelines

The experiments are conducted using a standalone Intel-based Core-i7 CPU processor
(2 cores, 2 threads) with 8 GB of main memory. Figure 2 illustrates a tri-staged architec-
ture demonstrating the experimental workflow employed in developing and analyzing
ML/DL models.

• Stage 1: Data generation and collection includes data provision from the OpenAPS
Data Commons [34], which contains data from open-source AID users who have
contributed their data via the Open Humans platform [15] (Steps 1 and 2).

• Stage 2: Data preparation and exploratory data analysis (EDA) is composed of four
steps: Data is exported, prepared using anonymization and cleaning protocols (Step
3), a diverse subset of individuals are selected, and the glucose profiles are analyzed
using descriptive statistics and clinically approved GV metrics (Steps 4 and 5). The
data is then split into training and testing sets. Models have been trained on 30 and
60 days of glucose data and individually tested to predict upto 48 h of glucose data
points. (Step 6).
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• Stage 3: ML/DL modeling, evaluation and analysis consists of 4 steps. ML/DL
algorithms are fine-tuned and evaluated for accuracy and resource consumption (step
7), and analyzed using statistical and glucose variability metrics from expected and
predicted glucose profiles (Steps 8, 9, 10).

Figure 2. Tri-staged experimental workflow and ML/DL development pipelines for glucose data
analysis. Stage 1 includes data generation and collection, stage 2 involves data preparation and
exploratory statistical analysis, and stage 3 consists of ML/DL modeling, evaluation and analysis.

3.2. Highlights of Data Collection, Anonymisation, and Cleaning

The OpenAPS Data Commons, collated as a project on the Open Humans platform, is
imported as anonymized diabetes dataset with rich CGM data, insulin delivery information
from insulin pumps, user-entered information such as carbohydrate entries or temporary
target changes, as well as algorithm-derived information about insulin dosing decisions.

An individual was randomly chosen to test the ML/DL methods described below.
After initial tests of methods and validating how much data was needed for analysis, an
additional 18 individuals were chosen from the dataset based on the diversity of demo-
graphic variables such as ages, AID system used, geography, etc. Table 2 summarizes the
demographics of the resulting n = 19 individuals employed in the dataset for this paper,
alongside their gender and geography distributions.
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Table 2. Self-reported demographics of selected AID users within OpenAPS Data Commons.

ID Age Daily Insulin (units) Daily Basal Insulin (units) Height (cm) Weight (lb) Gender Country AID Technology

AID1 51–60 52 16.7 195.07 198 Male Netherlands OpenAPS
AID2 11–20 66.6 21 155.45 158 Male Canada OpenAPS
AID3 21–30 30.97 11.09 170.69 132 Female Hungary OpenAPS
AID4 11–20 36.61 9.14 155.45 105 Female USA OpenAPS
AID5 11–20 78.63 16.75 155.45 131 Male USA OpenAPS
AID6 31–40 86.98 38.72 173.74 277 Female Canada OpenAPS
AID7 41–50 45 26 182.88 196 Male UK AndroidAPS
AID8 31–40 35 12 164.59 132 Female Australia AndroidAPS
AID9 31–40 32 15 167.64 160 Trans Male USA OpenAPS

AID10 51–60 44 18 179.83 191 Male Norway Loop
AID11 11–20 35 11 167.64 111 Male Australia Loop
AID12 41–50 25 14.65 188.98 180 Male Sweden AndroidAPS
AID13 11–20 36.31 15.36 146.3 49 Female Australia AndroidAPS
AID14 31–40 30 10 167.64 130 Female USA OpenAPS
AID15 11–20 35 18 173.74 160 Female UK OpenAPS
AID16 21–30 36.85 23.9 179.83 150 Female Italy AndroidAPS
AID17 51–60 40 19.5 173.74 224 Female Germany OpenAPS
AID18 21–30 90 49 155.75 264 Male Australia Loop
AID19 41–50 43.21 26.65 188.98 180 Male Germany AndroidAPS

Data cleaning methods has been reproduced for timestamps and glucose entries from
previous work on glycemic variability [35], and all programming scripts are open-source
at [36].

3.3. Machine Learning and Deep Learning Algorithms Employed for Glucose Forecasting

Selected ML and DL timeseries forecasting models for glucose include ARIMA [37],
XGBoost [38], RF [39], LSTM [40], and SVR [41]. Table 3 provide model descriptions,
their fine-tuned hyperparameters for glucose data, and Python implementation library.
Although SVR was initially employed to forecast glucose profiles, due to excessive training
and execution time and resource consumption, it was dropped and was not considered
for further experiments on our dataset. Model evaluation metrics for performance and
resource cost are described in Appendix A.

It is important to note that a three-stage process is utilized for ARIMA model build-
ing [37]. The first step involves the identification of the order of differencing (d), the order
of autoregression (p), and the order of moving average (q) required to model the data.
This step involves analyzing the autocorrelation and partial autocorrelation functions of
the time series data to determine the values of p and q and analyzing the time series data
to determine the value of d. In the second step, parameters have been estimated using
maximum likelihood estimation. Lastly, the adequacy of the ARIMA model is checked.
This involves analyzing the residuals of the model, which are the differences between the
actual data and the model predictions.

When it comes to predicting time series data there are several DL algorithms, however,
LSTMs are often considered a reasonable choice for univariate time series prediction due
to its ability to handle long-term dependencies and capture temporal patterns in the data.
LSTM is a type of recurrent neural network (RNN) that is capable of retaining long-term
dependencies in the data, which is particularly useful for time series prediction, where past
values can have a strong influence on future values. Unlike traditional RNNs, which can
suffer from vanishing or exploding gradients when dealing with long-term dependencies,
LSTM has a mechanism to selectively forget or remember information from previous
time steps.

Some other conventional DL algorithms were less suitable for our task due to a
number of reasons including the inefficiency of univariate time series prediction tasks,
computational complexity, and complex hyperparameter tuning. For example, Convo-
lutional Neural Networks (CNNs) are often used for image classification, they can also
be applied to time series prediction by treating the time series as a 1D image. However,
CNNs may not be suitable for all time series problems, especially if the time series has



Healthcare 2023, 11, 779 9 of 21

complex temporal dependencies that cannot be captured by convolutional filters. Similarly,
Deep Belief Networks (DBNs) are generative models that consist of multiple layers of
Restricted Boltzmann Machines (RBMs) and can be used for unsupervised feature learning.
However, they can be computationally expensive to train and may require more data to
learn meaningful representations.

Table 3. Machine learning and deep learning model training parameters and their descriptions.

Model Description Category Parameters Python
Library

Optimizing
function

ARIMA

A modelling technique for estimating or
foreseeing future results in light of previous
time series data. Since constant variance and

normal distribution are observed between
actual and predicted glucose data, fine-tuned

hyperparameters have been reported.

Auto
Regressor

P = 7, Q = 0, D = 1,
Lags = 7 Statsmodels ACF, PACF,

Stationarity

XGBoost

An additive model is generated by this
estimator in a forward fashion which

incorporates multiple stages. Further, it adds
optimization for differential loss functions.

In each stage, a tree is on a negative gradient
for a provided loss function.

Regressor

learning rate = 0.1,
estimators = 100,

sub-sample = 1, max
depth = 3

Scikit Learn Squared Error

Random
Forest

A meta assessor that fits various
characterizing decision trees on different
sub-samples of the dataset and utilizes
averaging to work on the exactness and

avoid over-fitting.

Regressor
max depth = none,
estimators = 100,

min sample split = 2
Scikit Learn Squared Error

LSTM

The models use a progression of ’gates’ to
control and manage the data in a string of

information as input and output to the
framework. There are three gates in a usual

LSTM; forget gate, input gate and output
gate. These gates can be considered as
channels each having its own cognitive

framework.

Deep
Learning

lags = 1, epochs = 15,
batch size = 1,
neurons = 50

Keras Mean Squared
Error

SVR

The model implementation is based on
libsvm library with high training time

complexity, i.e., proportionally more than
quadratic with the number of samples. The
implementation becomes challenging with

large datasets.

Regressor

Kernel = RBF,
Gamma = Scale,

Epsilon = 0.1,
C(regularization

param) = 1

Scikit Learn Epsilon Value

3.4. Statistical and Variability Metrics for Glucose Analysis

Descriptive statistic metrics are computed for glucose profiles to analyse the spread,
variation, and distributions. These metrics include mean, standard deviation (SD), coeffi-
cient of variation (CV), skewness score, and quantile statistics (Table 4). Q1, Q2, and Q3
represent the first, second, and third quartiles that evaluate the overall data distribution,
respectively. CV indicates the variability in data concerning the mean; the higher the CV
is, the more dispersed the data will be. The skewness score is the measure of asymmetric
distribution.

A number of clinically approved GV metrics are computed using EasyGV tool [31]
and compared for measured (using CGM sensors) and predicted (using ML/DL models)
glucose profiles. Relative and proportional errors were calculated and the rationale behind
using two error metrics is given in Appendix B.
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Table 4. Descriptive statistics for complete glucose profiles of selected AID users. Abbreviations:
Count, count of glucose data points; SD, standard deviation; Q1/Q2/Q3, first/second/third quantile;
CV, coefficient of variation.

ID Count Mean SD Q1 Q2 Q3 CV Skewness Distribution

AID1 312,212 147.94 60.27 101 139 185 40.74 0.37 Symmetrical
AID2 357,587 144.51 47.51 110 135 171 32.88 0.93 Moderately Skewed
AID3 486,197 133.09 50.68 96 123 160 38.08 1.08 Highly Skewed
AID4 282,441 140.11 48.22 102 131 169 34.41 0.89 Moderately Skewed
AID5 242,279 145.53 56 106 135 174 38.48 −0.12 Symmetrical
AID6 276,622 140.05 58.85 99 126 167 42.02 0.89 Moderately Skewed
AID7 280,822 127.89 43.35 97 120 151 33.9 1.04 Highly Skewed
AID8 206,778 158.42 57.6 115 153 195 36.36 0.47 Symmetrical
AID9 201,712 116.22 51.57 82 104 137 44.37 1.46 Highly Skewed
AID10 168,848 147.35 55.88 107 135 177 37.92 1.08 Highly Skewed
AID11 163,267 117.18 30.68 95 112 134 26.18 0.30 Symmetrical
AID12 145,692 147.67 53.23 108 138 178 36.04 0.90 Moderately Skewed
AID13 122,557 148.45 55.32 107 138 178 37.27 0.99 Moderately Skewed
AID14 102,673 152.71 56.36 112 138 184 36.91 0.73 Moderately Skewed
AID15 104,669 138.08 40.84 109 130 160 29.58 1.03 Highly Skewed
AID16 96,270 143.14 59.29 101 131 175 41.42 0.98 Moderately Skewed
AID17 77,946 134.24 46.37 100 126 162 34.54 0.13 Symmetrical
AID18 78,798 98.42 33.3 76 91 114 33.84 1.43 Highly Skewed
AID19 27,786 132.75 47.66 97 126 160 35.9 0.45 Symmetrical

4. Results

This section presents the results of in-depth statistical and GV analysis followed by
evaluation and analysis of trained ML/DL models.

4.1. Descriptive Statistics and Glucose Variability Metrics for Selected AID Users

Statistical methods are applied to complete glucose profiles for n = 19 individuals to
evaluate timeseries data in terms of their characteristics. Stationarity analysis was applied
using the augmented Dickey-Fuller (ADF) and Kwiatkowski Phillips Schmidt Shin (KPSS)
test. A glucose profile is labeled stationary if both tests conclude that the series is stationary.
It is labeled as difference stationary in case only the ADF test is positive and trend stationary
if only the KPSS test is positive. It was observed that all the glucose profiles are stationary,
with both ADF and KPSS tests being positive. Further analyse was done to evaluate if
the time series is seasonal using auto-correlation, and if seasonality is detected, the best
period would be found. If the autocorrelation is over 0.9, the data was labelled as seasonal.
However, no evident seasonality and periods are detected for selected individuals.

Table 4 reports the descriptive statistics for complete glucose profiles for n = 19 indi-
viduals. AID19 had the minimum number of data points (equal to 96 days worth of glucose
data), whereas AID3 has the maximum count (constituting 1688 days worth of glucose data).
The glucose profile variation is an essential factor in hypoglycemia/hyperglycemia assess-
ment. The minimum and maximum mean values for glucose profiles are 98.42 mg/dL and
158.42 mg/dL, respectively, and the overall average of glucose profiles is 137.56 mg/dL. The
minimum, maximum, and average SD for glucose profiles are {30.68, 60.27, 50.15} mg/dL.
The average CV for all glucose profiles is 36.36 mg/dL, while the maximum and minimum
are 44.37 mg/dL and 26.18 mg/dL, respectively.

Quantiles Q1, Q2, and Q3 determine how many values in a distribution are above or
below 25%, 50%, and 75% limits. The minimum, average, and maximum of Q1, Q2, and
Q3 are {76, 101.05, 115} mg/dL, {91, 127.94, 153} mg/dL, and {114, 164.78, 195} mg/dL,
respectively.

The skewness value greater than ±1 indicates highly skewed distributions. These
include AID3, AID7, AID9, AID10, AID15, and AID18. The skewness score between −0.5
and 0.5 (including AID1, AID5, AID8, AID11, AID17, and AID19) indicates symmetrical
distributions. The rest of the glucose profiles have skewness scores between 0.5 and 1 or
−0.5 and −1, demonstrating that they are moderately skewed.
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Table 5 reports the GV metrics. The average SD ROC recorded amidst all glucose pro-
files is 1.47 mg/dL, whereas the minimum and maximum are 0.79 mg/dL and 2.05 mg/dL,
respectively. The minimum and maximum TBR, TIR, and TAR are {0.78%, 16.97%}, {63.6%,
93.9%}, and {2.6%, 32.43%}, respectively. The overall averages for TBR, TIR, and TAR among
all glucose profiles are {4.78%, 76.85%, 18.36%}. The recorded average (min–max) for LBGI,
HBGI, GMI, and J-Index among selected AID users is 1.23 (0.41–3.82), 4.16 (0.74–6.84), 6.59
(5.66–7.1), and 35.68 (17.35–46.66), respectively.

Table 5. Glucose variability outcomes for complete glucose profiles of selected AID users. Ab-
breviations: SD ROC, Standard deviation for glucose rate of change; TBR/TIR/TAR, Time be-
fore/inside/after range; HBGI/LBGI, High/Low blood glucose index; GMI, Glycemic manage-
ment index.

ID SD ROC TBR (%) TIR (%) TAR (%) LBGI HBGI GMI J_index

AID1 1.45 6.24 67.13 26.63 1.48 5.85 6.85 43.35
AID2 1.07 1.7 77.77 20.52 0.54 4.42 6.77 36.87
AID3 1.68 5.78 78.05 16.17 1.42 3.64 6.49 33.77
AID4 1.15 1.42 79.1 19.48 0.68 4.12 6.66 35.47
AID5 1.53 4.14 74.33 21.54 0.99 5.1 6.79 40.61
AID6 1.74 4.68 76.29 19.03 1.2 4.77 6.66 39.56
AID7 1.35 4.56 83.76 11.68 1.25 2.71 6.37 29.32
AID8 1.73 3.97 63.6 32.43 0.93 6.84 7.1 46.66
AID9 1.72 14.51 75.06 10.43 3.26 2.56 6.09 28.15
AID10 1.6 2.42 74.36 23.23 0.73 5.31 6.83 41.3
AID11 0.89 2.33 93.9 3.77 0.98 1.23 6.11 21.86
AID12 1.58 2.6 73.55 23.86 0.74 5.19 6.84 40.36
AID13 0.79 2.37 74 23.63 0.73 5.41 6.86 41.52
AID14 2.05 0.78 73.45 25.76 0.43 5.9 6.96 43.71
AID15 1.7 0.83 84.51 14.66 0.41 3.32 6.61 32.01
AID16 1.94 6.13 71.66 22.21 1.48 5.17 6.73 40.98
AID17 1.52 4.3 79.7 16 1.14 3.45 6.52 32.62
AID18 0.95 16.97 80.42 2.6 3.82 0.74 5.66 17.35
AID19 1.59 5.21 79.55 15.24 1.34 3.4 6.49 32.55

4.2. Performance and Resource Cost Evaluation and Analysis of Trained ML/DL Algorithms

The ML/DL models are trained by employing 30 and 60 days of data and tested
individually for their performance and resource costs to predict glucose up to 48 h. Resource
costs are evaluated by measuring execution time and memory consumption, whereas RMSE
and MAE are calculated to assess the model’s prediction performance.

Figure 3 shows the MAE, RMSE, and execution time for models trained on 30 days
of glucose data. The results for models trained on 60 days of glucose data are given in
Appendix E.

The maximum value of MAE of 8.07 is observed for ARIMA, whereas the lowest MAE
is 1.295 reported for the random forest model (Figure 3a). Overall, the ARIMA model yields
the highest MAE indicating the least prediction performance.

The maximum and minimum recorded RMSE is 10.42 for AID9 and 2.16 for AID11,
respectively, both in the case of XGBoost (Figure 3b). No noticeable trend was observed
between the RMSE values of reported models trained on 30 days of glucose data when
compared with the ones trained on 60 days of glucose data.

ARIMA yields a maximum execution time equal to 780 s. In comparison, LSTM per-
forms best in terms of execution time with a minimum of 162 s (Figure 3c. However, LSTMs
are recorded as memory-hungry, with consumption peaking at 1993 MBs (Appendix D).
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(a) Mean Absolute Error (MAE) in mg/dL for models trained on 30 days of glucose profile data.

(b) Root Mean Squared Error (RMSE) in mg/dL for models trained on 30 days of glucose profile data.

(c) Execution time in seconds for models trained on 30 days of glucose profile data.

Figure 3. MAE, RMSE, and execution time from ML/DL models employing 30 days of training data.

4.3. Comparative Analysis of Glucose Variability for Predicted and Expected Glucose Profiles

GV metrics have been calculated from the predicted and expected profiles up to 48 h
for n = 19 individuals and evaluate error scores between each GV metric using relative and
proportional errors (defined in Appendix B).

Table 6 reports the mean of minimum, average, and maximum relative and propor-
tional errors for GV metrics among selected individuals; obtained by comparing ground
truths with the ones calculated using the glucose profiles predicted by ARIMA, XGBoost,
LSTM, and RF, respectively. The models trained on 30 days of data are denoted by
ARIMA30, XGBoost30, LSTM30, and RF30, respectively. Additional results for the models
trained on 60 days of data (ARIMA60, XGBoost60, LSTM60, and RF60) are provided in
Appendix F.

Errors have been represented in sets of minimum, average, and maximum. The highest
score in the case of ARIMA30 for relative and proportional errors is obtained for TBR with
{0%, 11.78%, 54.55%} and {1, 1.12, 1.55}, respectively. The noticeable problem with the
relative error is the inconsistency in the maximum error because it considers equal relative
proportions for expected and predicted values. Therefore, the proportional error can be
considered a comparatively more gaugeable parameter.



Healthcare 2023, 11, 779 13 of 21

The relative and proportional errors obtained by XGBoost30 is the highest for MVALUE
equal to {1.67%, 12.18%, 64.69%} and {1.02, 1.12, 1.65}, respectively. For LSTM30, MAG
has the highest reported relative and proportional errors equal to {12.54%, 37%, 110%} and
{1.14, 1.63, 2.57}, respectively.

The relative errors obtained by RF30 are the highest for MAGE equal to {0%, 18.2%, 182%}.
However, the highest proportional errors are obtained for TBR equal to {1, 1.22, 3.5}, respectively.

Table 6. Relative and proportional errors for glucose variability metrics calculated using 48 h
of glucose profiles predicted using ARIMA, Gradient Boost, LSTM, and Random forests models
employing 30 days of training data.

Relative Error (%)

ARIMA30 XGBoost30 LSTM30 RF30

Min Avg Max Min Avg Max Min Avg Max Min Avg Max

CONGA 0.12 0.33 0.85 0.02 0.45 1.21 0.01 2.66 44.29 0.06 0.5 1.18

LI 1.86 4.53 10.54 0.24 3.48 11.2 0.06 15.57 207.66 0.02 3.8 15.63

JINDEX 0.02 0.37 0.86 0.03 1.01 3.27 0.03 9.16 163.53 0.06 0.75 2.78

LBGI 0.42 2.85 6.28 0.17 9.84 31.76 0.23 5.91 40.19 0.38 6.07 29.45

HBGI 0.02 1.38 4.52 0.15 3.74 14 0.45 35.39 626.52 0.07 2.87 13.03

GRADE 0.44 2.77 9.78 0.59 4.96 18.24 0.08 20.95 327.02 0.14 4.32 15.47

MODD 0.03 0.68 1.84 0.46 2.18 4.8 0.04 10.59 184.19 0.17 1.46 4.36

MAGE 0.01 6.9 19.88 1.05 10.51 36.59 0.16 9.29 43.58 0 18.2 182.65

ADDR 0.19 3.63 15.73 0.78 4.51 39.98 0.26 47.47 753.86 0.54 5.69 35.9

MVALUE 0.44 3.31 8.65 1.67 12.18 64.69 0.24 8.33 77.16 0.13 7.97 58.22

MAG 6.85 13.68 25.51 0.2 5.29 10.2 12.54 37.11 110.75 12.62 26.48 46

SD 0.14 0.82 1.89 0.53 2.4 5.77 0.28 0.91 2.82 0.07 1.49 4.75

MEAN 0 0.03 0.11 0 0.34 1.06 0.02 0.25 0.77 0 0.27 0.78

CV 0.13 0.81 1.89 0.53 2.55 5.85 0.04 0.91 2.69 0.08 1.59 4.62

TIR 0 0.33 0.91 0 1.04 4.56 0 0.51 2.19 0 1.15 4.12

TAR 0 2.6 14.29 0 1.24 4.44 0 3.68 13.63 0 4.03 13.04

TBR 0 11.78 54.55 0 7.7 40 0 15.76 150 0 11.34 71.43

Proportional Error

ARIMA30 XGBoost30 LSTM30 RF30

Min Avg Max Min Avg Max Min Avg Max Min Avg Max

CONGA 1 1 1.01 1 1 1.01 1 1.03 1.44 1 1.01 1.01

LI 1.02 1.05 1.11 1 1.04 1.11 1 1.16 3.08 1 1.04 1.19

JINDEX 1 1 1.01 1 1.01 1.03 1 1.09 2.64 1 1.01 1.03

LBGI 1 1.03 1.06 1 1.1 1.32 1 1.07 1.67 1 1.06 1.29

HBGI 1 1.01 1.05 1 1.04 1.14 1 1.35 7.27 1 1.03 1.13

GRADE 1 1.03 1.1 1.01 1.05 1.18 1 1.21 4.27 1 1.04 1.15

MODD 1 1.01 1.02 1 1.02 1.05 1 1.11 2.84 1 1.01 1.04

MAGE 1 1.07 1.25 1 1.1 1.37 1 1.09 1.44 1 1.17 2.83

ADDR 1 1.04 1.16 1.01 1.05 1.4 1 1.52 8.54 1.01 1.06 1.36

MVALUE 1 1.03 1.09 1.02 1.12 1.65 1 1.09 1.77 1 1.08 1.58

MAG 1.07 1.14 1.26 1 1.06 1.11 1.14 1.63 2.57 1.14 1.38 1.85

SD 1 1.01 1.02 1.01 1.02 1.06 1 1 1.02 1 1.01 1.05

MEAN 1 1 1 1 1 1.01 1 1 1 1 1 1.01

CV 1 1.01 1.02 1.01 1.03 1.06 1 1 1.02 1 1.02 1.05

TIR 1 1 1.01 1 1.01 1.05 1 1 1.02 1 1.01 1.04

TAR 1 1.03 1.14 1 1.01 1.05 1 1.03 1.15 1 1.04 1.15

TBR 1 1.12 1.55 1 1.63 11 1 1.16 2.5 1 1.22 3.5
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5. Discussion

Large-scale diabetes datasets, such as the OpenAPS Data Commons, provide opportu-
nities for researchers to develop innovative ML/DL tools and technologies and improve
the functionality of future automated insulin delivery (AID) systems. This work addresses
the limitations of existing ML/DL methods (Section 2.1) for predicting glucose profiles by
developing models using a dataset of diverse individuals with insulin-requiring diabetes
who use open-source AID systems.

ML/DL solutions for diabetes require computing resources, so practical solutions that
are fine-tuned and optimized to reduce energy consumption without degrading perfor-
mance are necessary. This includes using appropriate programming frameworks and tools
that enhance concurrency, as well as resource and storage cost estimators and minimizers.
Incorporating these strategies ensures the sustainable use of ML technologies and mini-
mizes the environmental impact. In addition to evaluating the accuracy of predictions, it is
important to assess the feasibility and sustainability of ML/DL models for use in real-world
AID solutions.

The min and max mean values for glucose are likely below average (137.56 mg/dL)
due to the use of open-source AID (Table 4). This is confirmed by studies, including a recent
RCT [42], which show that open-source AID users typically achieve above-goal glucose
metrics. This work also uniquely evaluates data from three open-source AID systems
(OpenAPS, AndroidAPS, and Loop). It is worth reflecting that with a decrease in time
below range (TBR) and as it is approaching to 0 (which is ideal), the relative error will
increase accordingly.

Although AID systems significantly improve glucose management, one should also
consider infrequent but significant events such as severe hypoglycemia (a “bad low”) and
its long-lasting effects on glucose variability. However, current literature on ML/DL-based
glucose forecasting only considers prediction horizons of up to 120 min, hindering the
understanding of the relationship between glucose variability and such events. These
ML/DL models fine-tuned using the OpenAPS Data Commons accurately forecast glucose
profiles up to 48 h (see Appendix C for example profiles). The average MAE range for all
trained models is 2.50 mg/dL (for LSTM) to 4.94 mg/dL (for ARIMA). LSTMs have the
lowest overall MAE (0.99 mg/dL for AID14) when trained with 60 days of glucose data.
The average RSME is 3.7 mg/dL for LSTM to 7.67 mg/dL for ARIMA (Figure 3b).

ML/DL models developed in this work have been evaluated for their computing
resource costs. This analysis shows that the execution time of a model is proportional to
the amount of data used to train it. For example, models trained on 30 days of data have
almost half the execution time of models trained with 60 days of data. LSTMs have the
least execution time and the highest memory consumption compared to other models.
However, since CPU/GPU time contributes the most to energy-consumption costs, LSTMs
are the most resource-efficient in our case. LSTMs could run daily during non-critical times
to generate daily predictions, similar to how Autotune, a non-ML-based algorithm for
recommending setting changes, runs overnight in OpenAPS [43]. Future work should also
consider evaluating cloud computing and the tradeoff costs, including both computing
power and the safety risk of off-device calculations in the context of AID.

6. Conclusions

Our study comparing GV metrics calculated using predicted and original glucose
profiles show the improved accuracy and reliability of extended horizon forecasts in real-
world applications. GV metrics are widely used to understand diabetes management
outcomes, above and beyond standard glucose outcome metrics, and should continue to
be used to evaluate ML/DL-based glucose forecasting methods. The lower error scores in
Table 6 show that fine-tuned ML/DL models can accurately estimate glucose variability
outcomes for up to 48 h in the future, which is a much longer horizon than has previously
been studied with ML/DL methods. Future work should evaluate these methods on
different, non-AID diabetes datasets to assess whether ML/DL is “learning” that an AID
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system will be able to successfully correct according to the forecast; additional work should
then also extend this work to assess the utility of such extended forecasts for non-AID users
living with diabetes.

The applications of ML/DL described in this paper have the potential to form the
basis for intelligent recommender systems in future-generation AIDs and other diabetes
applications. In particular, these can be applied thoughtfully to enable individuals to target
improvements for their most relevant areas. Quality-of-life improvement could be achieved
for people with diabetes by further optimizing exercise, minimizing hypoglycemia, or
reducing AID system interaction requirements, all of which can be achieved with future
research and applications such as the ML/DL-based forecasts described in this work.
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Appendix A. Model Evaluation Metrics for Performance and Resource Cost

All the aforementioned models are trained by employing 30 and 60 days of glucose
data for each selected individual using closed-loop AID technology and are evaluated for
their accuracy and resource costs to predict up to 48 h.

The forecasting accuracy of models is evaluated using Root Mean Square Error (RMSE)
and Mean Absolute Error (MAE).

RMSE is calculated as a square root of the second moment of the disparity between
expected and predicted data samples and is mathematically defined by Equation (A1);
where ŷ is the expected value, y is the predicted value, and T denotes the total number of
samples.

RMSE =

√
∑T

t=1(ŷt − yt)2

T
(A1)

MAE provides the average difference between expected and predicted values, whereas
the difference between the two is an absolute value. It helps to estimate the disparity
between corresponding actual and predicted observations and is mathematically defined
by Equation (A2); where yi is the expected value, xi is the predicted value, and n denotes
the total number of samples.

MAE =
∑n

i=1|yi − xi|
n

(A2)

Furthermore, in order to assess the suitability of ML and DL models to be employed
online and in a real-time application, resource costs have been measured using overall
execution time and their memory consumption.

Appendix B. Relative and Proportional Errors

The relative error (r) between a predicted GV metric (p) and the expected (ground
truth) GV metric (g) is given by Equation (A3).

r =
|g− p|

g
× 100% (A3)

Relative error (r) gives a lower score for a profile that underestimates the GV metric
than a profile that overestimates it. This can negatively impact the interpretation of the
results. Therefore, proportional error has been further reported.

The proportional error (µ) for predicted GV metric (p) with the ground truth (g) is
a ratio of a maximum of the two values with the minimum of the two values (given by
Equation (A4)). The proportional error of 1 indicates no error. The proportional error
greater than 1 indicates the difference between the predicted and expected GV metric.

µ =
max(g, p)
min(g, p)

(A4)

Appendix C. Example Predicted and Expected Glucose Profiles for 48 h

Figures A1 and A2 show the comparison of expected and predicted glucose profiles
for 48 h (576 data points) using XGBoost and ARIMA, respectively.
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Figure A1. Comparison of expected glucose profiles with predictions from XGBoost trained on
30-day glucose data for 48 h.

Figure A2. Comparison of expected glucose profiles with predictions from ARIMA trained on 30-day
glucose data for 48 h.

Appendix D. Memory consumption by ML/DL Models

Table A1. Memory consumption by ML/DL Models during training and testing.

Model Memory Consumption Range (MB)

ARIMA 994–1024
XG Boost 800–1024

Random Forest 750–1123
LSTM 1100–1993
SVR 1024–1345

Appendix E. MAE, RMSE, and Execution Time for Models Trained on 60 Days of
Glucose Data

Figure A3 shows the MAE, RMSE, and execution time for models trained on 60 days
of glucose data. The maximum and minimum reported MAE is 6.21 for the ARIMA and
0.99 for LSTM, respectively (Figure A3a). Figure A3b shows that ARIMA yields the highest
error equal to 13.7 for AID19, whereas the minimum RMSE equal to 2.17 for AID14 is
obtained for LSTM. Furthermore, LSTM performs best in execution time with a minimum
of 346 s.
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(a) Mean Absolute Error (MAE) in mg/dL for models trained on 60 days of glucose profile data.

(b) Root Mean Squared Error (RMSE) in mg/dL for models trained on 60 days of glucose profile data.

(c) Execution time in seconds for models trained on 60 days of glucose profile data.

Figure A3. MAE, RMSE, and execution time from ML/DL models employing 60 days of training data.

Appendix F. Relative and Proportional Errors for Models Trained on 60 Days of
Glucose Data

In the case of ARIMA60, the highest relative errors of {0.1%, 45.57%, 705.65%} are
obtained for HBGI. However, the highest proportional errors of {1, 4, 50.78} are obtained
for ADDR. XGBoost60 yields the highest relative and proportion errors for MAGE equal to
{0.18%, 8.76%, 59.67%} and {1, 1.13, 2.48}, respectively. For LSTM60, TBR has the highest
reported relative and proportional errors equal to {0%, 51.54%, 700%} and {1, 1.52, 8},
respectively. RF60 yield the highest relative errors for TAR equal to {0%, 13.53%, 100%}.
The highest proportional errors for RF60 are reported for MAGE equal to {1, 1.22, 3.38},
respectively.
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Table A2. Relative and proportional errors for glucose variability metrics calculated using 48 h
of glucose profiles predicted using ARIMA, Gradient Boost, LSTM, and Random forests models
employing 60 days of training data.

Relative Error (%)

ARIMA60 XGBoost60 LSTM60 RF60

Min Avg Max Min Avg Max Min Avg Max Min Avg Max

CONGA 0.08 3.85 47.28 0 0.5 1.04 0.1 0.72 2.21 0.13 0.64 1.7

LI 1.11 13.58 88.93 0.01 2.53 6.23 0.48 6.96 12.86 0.57 3.88 15.42

JINDEX 0.04 8.23 79.36 0.06 0.7 1.75 0.12 0.77 2.72 0.07 0.66 2.38

LBGI 0.21 12.27 70.35 2.22 6.05 12.17 0.02 4.52 15.09 0.87 4.39 8.87

HBGI 0.1 45.57 705.65 0.02 1.75 4.32 0.37 4.1 31.74 0.04 7.03 100

GRADE 0.1 20.42 262.81 0.27 4.68 10.2 0.04 2.86 6.45 0 4.59 8.63

MODD 0.06 11.92 152.79 0.31 1.57 2.79 0.33 1.4 5.58 0.03 1.19 2.43

MAGE 1.01 15.52 86.33 0.18 8.76 59.67 0.09 14.75 179.59 0.06 12.54 70.45

ADDR 0.08 43.29 621.83 0.17 1.67 5.35 0.06 8.91 67.25 1.01 12.83 100

MVALUE 0.41 11.6 76.71 1.53 6.38 11.28 0.17 4.07 9.01 0.58 4.15 8.32

MAG 3.52 20.59 100.51 0.14 5.47 11.3 8.63 36.25 60.68 18.18 29.44 45.99

SD 0.17 1.16 4.51 0.02 1.5 3 0.38 1.27 4.02 0.09 0.73 2.15

MEAN 0 0.03 0.13 0.04 0.26 0.82 0 0.4 1.29 0.03 0.34 1.05

CV 0.22 1.17 4.54 0.23 1.57 3.86 0.38 1.47 3.79 0.01 0.7 1.75

TIR 0 0.82 3.16 0 1.77 5.62 0 1.02 5.07 0 1.3 3.84

TAR 0 4.27 21.21 0 3.05 22.22 0 9.25 50 0 13.53 100

TBR 0 25.98 150 0 13.42 50 0 51.54 700 0 11.6 50

Proportional Error

ARIMA60 XGBoost60 LSTM60 RF60

Min Avg Max Min Avg Max Min Avg Max Min Avg Max

CONGA 1 1.06 1.9 1 1 1.01 1 1.01 1.02 1 1.01 1.02

LI 1.01 1.4 6.83 1 1.03 1.06 1 1.07 1.14 1.01 1.04 1.18

JINDEX 1 1.24 4.84 1 1.01 1.02 1 1.01 1.03 1 1.01 1.02

LBGI 1 1.21 3.37 1.02 1.06 1.12 1 1.05 1.15 1.01 1.04 1.09

HBGI 1 3.5 40.78 1 1.02 1.04 1 1.04 1.32 1 1.02 1.07

GRADE 1 1.52 7.87 1 1.05 1.1 1 1.03 1.06 1 1.05 1.09

MODD 1 1.15 2.53 1 1.02 1.03 1 1.01 1.06 1 1.01 1.02

MAGE 1.01 1.23 2.86 1 1.13 2.48 1 1.15 2.8 1 1.22 3.38

ADDR 1 4 50.78 1 1.02 1.05 1 1.1 1.67 1.01 1.1 1.47

MVALUE 1 1.25 4.29 1.02 1.06 1.11 1 1.04 1.09 1.01 1.04 1.08

MAG 1.04 1.21 2.01 1 1.06 1.13 1.09 1.69 2.54 1.22 1.45 1.85

SD 1 1.01 1.05 1 1.02 1.03 1 1.01 1.04 1 1.01 1.02

MEAN 1 1 1 1 1 1.01 1 1 1.01 1 1 1.01

CV 1 1.01 1.05 1 1.02 1.04 1 1.01 1.04 1 1.01 1.02

TIR 1 1.01 1.03 1 1.02 1.06 1 1.01 1.05 1 1.01 1.04

TAR 1 1.04 1.21 1 1.04 1.29 1 1.09 1.5 1 1.08 1.5

TBR 1 1.26 2.5 1 1.16 1.86 1 1.52 8 1 1.15 2



Healthcare 2023, 11, 779 20 of 21

References
1. Benhamou, P.Y.; Reznik, Y. Closed-loop insulin delivery: Understanding when and how it is effective. Lancet Digit. Health 2020,

2, e50–e51. [CrossRef] [PubMed]
2. Lewis, D.M. Quantifying input behaviors that influence clinical outcomes in diabetes and other chronic illnesses. J. Diabetes Sci.

Technol. 2022, 16, 786–787. [CrossRef] [PubMed]
3. Benhamou, P.Y.; Franc, S.; Reznik, Y.; Thivolet, C.; Schaepelynck, P.; Renard, E.; Guerci, B.; Chaillous, L.; Lukas-Croisier, C.;

Jeandidier, N.; et al. Closed-loop insulin delivery in adults with type 1 diabetes in real-life conditions: A 12-week multicentre,
open-label randomised controlled crossover trial. Lancet Digit. Health 2019, 1, e17–e25. [CrossRef] [PubMed]

4. Mordvanyuk, N.; Torrent-Fontbona, F.; López, B. Prediction of Glucose Level Conditions from Sequential Data. In Proceedings of
the CCIA, Terres de l’Ebre, Spain, 25–27 October 2017; pp. 227–232.

5. Dave, D.; DeSalvo, D.J.; Haridas, B.; McKay, S.; Shenoy, A.; Koh, C.J.; Lawley, M.; Erraguntla, M. Feature-based machine learning
model for real-time hypoglycemia prediction. J. Diabetes Sci. Technol. 2021, 15, 842–855. [CrossRef]

6. Maritsch, M.; Foll, S.; Lehmann, V.; Bérubé, C.; Kraus, M.; Feuerriegel, S.; Kowatsch, T.; Zuger, T.; Stettler, C.; Fleisch, E.; et al.
Towards wearable-based hypoglycemia detection and warning in diabetes. In Proceedings of the Extended Abstracts of the 2020
CHI Conference on Human Factors in Computing Systems, Honolulu, HI, USA, 25–30 April 2020; pp. 1–8.

7. Zhu, T.; Kuang, L.; Li, K.; Zeng, J.; Herrero, P.; Georgiou, P. Blood Glucose Prediction in Type 1 Diabetes Using Deep Learning on
the Edge. In Proceedings of the 2021 IEEE International Symposium on Circuits and Systems (ISCAS), Daegu, Republic of Korea,
22–28 May 2021; pp. 1–5.

8. Zhu, T.; Li, K.; Chen, J.; Herrero, P.; Georgiou, P. Dilated recurrent neural networks for glucose forecasting in type 1 diabetes. J.
Healthc. Informatics Res. 2020, 4, 308–324. [CrossRef] [PubMed]

9. Yang, T.; Yu, X.; Ma, N.; Wu, R.; Li, H. An autonomous channel deep learning framework for blood glucose prediction. Appl. Soft
Comput. 2022, 120, 108636. [CrossRef]

10. Berikov, V.B.; Kutnenko, O.A.; Semenova, J.F.; Klimontov, V.V. Machine Learning Models for Nocturnal Hypoglycemia Prediction
in Hospitalized Patients with Type 1 Diabetes. J. Pers. Med. 2022, 12, 1262. [CrossRef]

11. Duckworth, C.J.; Guy, M.J.; Kumaran, A.; O’Kane, A.; Ayobi, A.; Chapman, A.; Boniface, M. Explainable machine learning for
real-time hypoglycaemia and hyperglycaemia prediction and personalised control recommendations. medRxiv 2022. [CrossRef]

12. van Doorn, W.P.; Foreman, Y.D.; Schaper, N.C.; Savelberg, H.H.; Koster, A.; van der Kallen, C.J.; Wesselius, A.; Schram, M.T.;
Henry, R.M.; Dagnelie, P.C.; et al. Machine learning-based glucose prediction with use of continuous glucose and physical activity
monitoring data: The Maastricht Study. PLoS ONE 2021, 16, e0253125. [CrossRef]

13. Iacono, F.; Magni, L.; Toffanin, C. Personalized LSTM models for glucose prediction in Type 1 diabetes subjects. In Proceedings of
the 2022 30th Mediterranean Conference on Control and Automation (MED), Athens, Greece, 28 June–1 July 2022; pp. 324–329.

14. Allam, F.; Nossai, Z.; Gomma, H.; Ibrahim, I.; Abdelsalam, M. A recurrent neural network approach for predicting glucose
concentration in type-1 diabetic patients. In Engineering Applications of Neural Networks; Springer: Berlin/Heidelberg, Germany,
2011; pp. 254–259.

15. Greshake Tzovaras, B.; Angrist, M.; Arvai, K.; Dulaney, M.; Estrada-Galiñanes, V.; Gunderson, B.; Head, T.; Lewis, D.; Nov, O.;
Shaer, O.; et al. Open Humans: A platform for participant-centered research and personal data exploration. GigaScience 2019,
8, giz076. [CrossRef]

16. Hameed, H.; Kleinberg, S. Comparing Machine Learning Techniques for Blood Glucose Forecasting Using Free-living and
Patient Generated Data. In Proceedings of the 5th Machine Learning for Healthcare Conference; Doshi-Velez, F., Fackler, J., Jung, K.,
Kale, D., Ranganath, R., Wallace, B., Wiens, J., Eds.; Proceedings of Machine Learning Research, PMLR, MLResearchPress: 2020;
Volume 126, pp. 871–894. Available online: http://proceedings.mlr.press/v126/hameed20a.html (accessed on 20 January 2023).

17. Lal, R.A.; Maikawa, C.L.; Lewis, D.; Baker, S.W.; Smith, A.A.; Roth, G.A.; Gale, E.C.; Stapleton, L.M.; Mann, J.L.; Yu, A.C.;
et al. Full closed loop open-source algorithm performance comparison in pigs with diabetes. Clin. Transl. Med. 2021, 11, e387.
[CrossRef] [PubMed]

18. Broome, D.T.; Hilton, C.B.; Mehta, N. Policy implications of artificial intelligence and machine learning in diabetes management.
Curr. Diabetes Rep. 2020, 20, 1–5. [CrossRef] [PubMed]

19. Zafar, A. Machine Learning/Deep Learning Models and Statistical Analysis Scripts for the Analysis of Glucose Profiles. 2022.
Available online: https://github.com/ahtshamzafar1/ML-and-DL-for-Diabetes-Datasets (accessed on 20 January 2023).

20. Marling, C.; Bunescu, R. The OhioT1DM dataset for blood glucose level prediction: Update 2020. In Proceedings of the CEUR
Workshop Proceedings; NIH Public Access: Bethesda, MD, USA, 2020; Volume 2675, p. 71.

21. Man, C.D.; Micheletto, F.; Lv, D.; Breton, M.; Kovatchev, B.; Cobelli, C. The UVA/PADOVA type 1 diabetes simulator: New
features. J. Diabetes Sci. Technol. 2014, 8, 26–34. [CrossRef] [PubMed]

22. Bunescu, R.; Struble, N.; Marling, C.; Shubrook, J.; Schwartz, F. Blood glucose level prediction using physiological models and
support vector regression. In Proceedings of the 2013 12th International Conference on Machine Learning and Applications,
Miami, FL, USA, 4–7 December 2013; Volume 1, pp. 135–140.

23. Zecchin, C.; Facchinetti, A.; Sparacino, G.; Cobelli, C. Jump neural network for online short-time prediction of blood glucose
from continuous monitoring sensors and meal information. Comput. Methods Programs Biomed. 2014, 113, 144–152. [CrossRef]

http://doi.org/10.1016/S2589-7500(19)30219-5
http://www.ncbi.nlm.nih.gov/pubmed/33334557
http://dx.doi.org/10.1177/19322968211068445
http://www.ncbi.nlm.nih.gov/pubmed/34971322
http://dx.doi.org/10.1016/S2589-7500(19)30003-2
http://www.ncbi.nlm.nih.gov/pubmed/33323237
http://dx.doi.org/10.1177/1932296820922622
http://dx.doi.org/10.1007/s41666-020-00068-2
http://www.ncbi.nlm.nih.gov/pubmed/35415447
http://dx.doi.org/10.1016/j.asoc.2022.108636
http://dx.doi.org/10.3390/jpm12081262
http://dx.doi.org/10.1177/19322968221103561
http://dx.doi.org/10.1371/journal.pone.0253125
http://dx.doi.org/10.1093/gigascience/giz076
http://proceedings.mlr.press/v126/hameed20a.html
http://dx.doi.org/10.1002/ctm2.387
http://www.ncbi.nlm.nih.gov/pubmed/33931977
http://dx.doi.org/10.1007/s11892-020-1287-2
http://www.ncbi.nlm.nih.gov/pubmed/32008107
https://github.com/ahtshamzafar1/ML-and-DL-for-Diabetes-Datasets
http://dx.doi.org/10.1177/1932296813514502
http://www.ncbi.nlm.nih.gov/pubmed/24876534
http://dx.doi.org/10.1016/j.cmpb.2013.09.016


Healthcare 2023, 11, 779 21 of 21

24. Pustozerov, E.; Popova, P.; Tkachuk, A.; Bolotko, Y.; Yuldashev, Z.; Grineva, E. Development and evaluation of a mobile
personalized blood glucose prediction system for patients with gestational diabetes mellitus. JMIR mHealth uHealth 2018, 6, e9236.
[CrossRef]

25. Tsai, C.W.; Li, C.H.; Lam, R.W.K.; Li, C.K.; Ho, S. Diabetes care in motion: Blood glucose estimation using wearable devices. IEEE
Consum. Electron. Mag. 2019, 9, 30–34. [CrossRef]

26. Georga, E.I.; Protopappas, V.C.; Ardigo, D.; Marina, M.; Zavaroni, I.; Polyzos, D.; Fotiadis, D.I. Multivariate prediction of
subcutaneous glucose concentration in type 1 diabetes patients based on support vector regression. IEEE J. Biomed. Health Inform.
2012, 17, 71–81. [CrossRef] [PubMed]

27. Pérez-Gandía, C.; Facchinetti, A.; Sparacino, G.; Cobelli, C.; Gómez, E.; Rigla, M.; de Leiva, A.; Hernando, M. Artificial neural
network algorithm for online glucose prediction from continuous glucose monitoring. Diabetes Technol. Ther. 2010, 12, 81–88.
[CrossRef]

28. Bent, B.; Henriquez, M.; Dunn, J.P. Cgmquantify: Python and R Software Packages for Comprehensive Analysis of Interstitial
Glucose and Glycemic Variability from Continuous Glucose Monitor Data. IEEE Open J. Eng. Med. Biol. 2021, 2, 263–266.
[CrossRef]

29. Rawlings, R.A.; Shi, H.; Yuan, L.H.; Brehm, W.; Pop-Busui, R.; Nelson, P.W. Translating Glucose Variability Metrics into the Clinic
via C ontinuous G lucose M onitoring: AG raphical U ser I nterface for D iabetes E valuation (CGM-GUIDE©). Diabetes Technol.
Ther. 2011, 13, 1241–1248. [CrossRef]

30. Attaye, I.; van der Vossen, E.W.; Mendes Bastos, D.N.; Nieuwdorp, M.; Levin, E. Introducing the Continuous Glucose Data
Analysis (CGDA) R Package: An Intuitive Package to Analyze Continuous Glucose Monitoring Data. J. Diabetes Sci. Technol.
2022, 16, 783–785. [CrossRef] [PubMed]

31. Moscardó, V.; Giménez, M.; Oliver, N.; Hill, N.R. Updated software for automated assessment of glucose variability and quality
of glycemic control in diabetes. Diabetes Technol. Ther. 2020, 22, 701–708. [CrossRef]

32. Vigers, T.; Chan, C.L.; Snell-Bergeon, J.; Bjornstad, P.; Zeitler, P.S.; Forlenza, G.; Pyle, L. cgmanalysis: An R package for descriptive
analysis of continuous glucose monitor data. PLoS ONE 2019, 14, e0216851. [CrossRef] [PubMed]

33. Czerwoniuk, D.; Fendler, W.; Walenciak, L.; Mlynarski, W. GlyCulator: A glycemic variability calculation tool for continuous
glucose monitoring data. J. Diabetes Sci. Technol. 2011, 5, 447–451. [CrossRef] [PubMed]

34. OpenAPS Data Commons. Available online: https://openaps.org/outcomes/data-commons/ (accessed on 20 January 2023).
35. Shahid, A.; Lewis, D.M. Large-Scale Data Analysis for Glucose Variability Outcomes with Open-Source Automated Insulin

Delivery Systems. Nutrients 2022, 14, 1906. [CrossRef]
36. Shahid, A. Programming Scripts for Demographics and Glucose Variability Analysis for OpenAPS Data Commons Dataset.

2022. Available online: https://github.com/danamlewis/OpenHumansDataTools/tree/master/bin/GV-demographics-scripts
(accessed on 20 January 2023)

37. Newbold, P. ARIMA model building and the time series analysis approach to forecasting. J. Forecast. 1983, 2, 23–35. [CrossRef]
38. Taieb, S.B.; Hyndman, R.J. A gradient boosting approach to the Kaggle load forecasting competition. Int. J. Forecast. 2014,

30, 382–394. [CrossRef]
39. Masini, R.P.; Medeiros, M.C.; Mendes, E.F. Machine learning advances for time series forecasting. J. Econ. Surv. 2021, 37, 76–111.

[CrossRef]
40. Siami-Namini, S.; Tavakoli, N.; Namin, A.S. A comparison of ARIMA and LSTM in forecasting time series. In Proceedings of the

2018 17th IEEE international conference on machine learning and applications (ICMLA), Orlando, FL, USA, 17–20 December
2018; pp. 1394–1401.

41. Lin, K.; Lin, Q.; Zhou, C.; Yao, J. Time series prediction based on linear regression and SVR. In Proceedings of the Third
International Conference on Natural Computation (ICNC 2007), Haikou, China, 24–27 August 2007; Volume 1, pp. 688–691.

42. Burnside, M.J.; Lewis, D.M.; Crocket, H.R.; Meier, R.A.; Williman, J.A.; Sanders, O.J.; Jefferies, C.A.; Faherty, A.M.; Paul, R.G.;
Lever, C.S.; et al. Open-source automated insulin delivery in type 1 diabetes. N. Engl. J. Med. 2022, 387, 869–881. [CrossRef]

43. Lewis, D.M.; Leibrand, S. Automatic estimation of Basals, ISF, and CARB ratio for sensor-augmented pump and hybrid
closed-loop therapy. In Proceedings of the Diabetes; American Diabetes Association: Alexandria, VA, USA, 2017; Volume 66,
p. LB33.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.2196/mhealth.9236
http://dx.doi.org/10.1109/MCE.2019.2941461
http://dx.doi.org/10.1109/TITB.2012.2219876
http://www.ncbi.nlm.nih.gov/pubmed/23008265
http://dx.doi.org/10.1089/dia.2009.0076
http://dx.doi.org/10.1109/OJEMB.2021.3105816
http://dx.doi.org/10.1089/dia.2011.0099
http://dx.doi.org/10.1177/19322968211070293
http://www.ncbi.nlm.nih.gov/pubmed/35043702
http://dx.doi.org/10.1089/dia.2019.0416
http://dx.doi.org/10.1371/journal.pone.0216851
http://www.ncbi.nlm.nih.gov/pubmed/31603912
http://dx.doi.org/10.1177/193229681100500236
http://www.ncbi.nlm.nih.gov/pubmed/21527118
https://openaps.org/outcomes/data-commons/
http://dx.doi.org/10.3390/nu14091906
https://github.com/danamlewis/OpenHumansDataTools/tree/master/bin/GV-demographics-scripts
http://dx.doi.org/10.1002/for.3980020104
http://dx.doi.org/10.1016/j.ijforecast.2013.07.005
http://dx.doi.org/10.1111/joes.12429
http://dx.doi.org/10.1056/NEJMoa2203913

	Introduction
	Overview of Data-Driven Automated Insulin Delivery Systems
	Applications of Machine Learning and Deep Learning in AID Systems
	Original Contributions
	Organisation of the Paper

	Related Work
	Review of Machine Learning and Deep Learning Methods and Techniques for Glucose Forecasting
	Clinically-Approved Statistical and Variability Metrics for Glucose Analysis

	Materials and Methods
	Experimental Workflow and ML Development Pipelines
	Highlights of Data Collection, Anonymisation, and Cleaning
	Machine Learning and Deep Learning Algorithms Employed for Glucose Forecasting
	Statistical and Variability Metrics for Glucose Analysis

	Results
	Descriptive Statistics and Glucose Variability Metrics for Selected AID Users
	Performance and Resource Cost Evaluation and Analysis of Trained ML/DL Algorithms
	Comparative Analysis of Glucose Variability for Predicted and Expected Glucose Profiles

	Discussion
	Conclusions
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Appendix F
	References

