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Abstract: Ultrasonography is widely used for diagnosis of diseases in internal organs because it is
nonradioactive, noninvasive, real-time, and inexpensive. In ultrasonography, a set of measurement
markers is placed at two points to measure organs and tumors, then the position and size of the target
finding are measured on this basis. Among the measurement targets of abdominal ultrasonography,
renal cysts occur in 20–50% of the population regardless of age. Therefore, the frequency of measure-
ment of renal cysts in ultrasound images is high, and the effect of automating measurement would be
high as well. The aim of this study was to develop a deep learning model that can automatically detect
renal cysts in ultrasound images and predict the appropriate position of a pair of salient anatomical
landmarks to measure their size. The deep learning model adopted fine-tuned YOLOv5 for detection
of renal cysts and fine-tuned UNet++ for prediction of saliency maps, representing the position
of salient landmarks. Ultrasound images were input to YOLOv5, and images cropped inside the
bounding box and detected from the input image by YOLOv5 were input to UNet++. For comparison
with human performance, three sonographers manually placed salient landmarks on 100 unseen
items of the test data. These salient landmark positions annotated by a board-certified radiologist
were used as the ground truth. We then evaluated and compared the accuracy of the sonographers
and the deep learning model. Their performances were evaluated using precision–recall metrics and
the measurement error. The evaluation results show that the precision and recall of our deep learning
model for detection of renal cysts are comparable to standard radiologists; the positions of the salient
landmarks were predicted with an accuracy close to that of the radiologists, and in a shorter time.

Keywords: deep learning; ultrasonic imaging; kidney; object detection

1. Introduction

Ultrasonography is widely used for diagnosis of diseases in internal organs, such as
the abdomen, heart, and thyroid gland, as well as for prenatal diagnosis. This is because
it is nonradioactive, noninvasive, real-time, and inexpensive. In ultrasonography, a set
of measurement markers is placed at two points to measure organs and tumors, and the
position and size of the target finding are measured based on these. While the markers play
an important role in diagnosis, they must be manually positioned, which places a burden
on the sonographer. Furthermore, because of the absence of fixed rules on the placement
of markers, differences between individuals with different levels of experience create an
additional problem [1]. Therefore, we believe that automating the placement of markers
using deep learning would lead to a reduced burden on sonographers, shorten the test
duration, and promote the elimination of inter-operator variability.

Studies have been conducted to automate measurement in ultrasonography using
deep learning. In ultrasonic image analysis, deep learning systems for detection and
classification of thyroid nodules, breast lesions, and liver lesions have been developed [2].
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Ma et al. [3] developed a system to automatically detect thyroid nodules from ultrasound
B-mode images using a cascade model containing two CNN models, achieving an area
under the curve (AUC) of 98.51%. Li et al. [4] employed a CNN model consisting of ResNet
50 and Darknet pre-trained with ImageNet [5] for the diagnosis of thyroid cancer. Using
large datasets collected from three hospitals, they showed that diagnosis with the same
sensitivity and higher specificity as that of radiologists is possible. Byra et al. [6] applied
transfer learning using VGG29 pre-trained with ImageNet [5] to a breast ultrasound image
dataset in order to classify benign and malignant breast cancer lesions. They achieved an
AUC of 93.6% on their own dataset and an AUC of approximately 89.0% on public datasets.
Liu et al. [7] proposed a system that extracts liver membrane features from ultrasound
images using a pre-trained CNN model, then classifies liver normality and abnormalities
by support-vector machine (SVM) based on the extracted features. These deep learning
methods are expected to help radiologists to shorten interpretation times and improve the
accuracy of diagnosis.

In addition to ultrasonic images, deep learning is widely applied to radiographic
images such as X-ray and Computed Tomography (CT) images. Muresan et al. [8] proposed
an approach for automatic tooth detection and disease classification in panoramic X-ray
images using deep learning-based image processing. Semantic segmentation and object
detection were used to detect tooth regions and label diseases affecting the tooth. Pang
et al. [9] proposed a two-step segmentation framework called SpineParseNet for child
spine analysis in a volumetric MR image. This model consists of a 3D graph convolutional
segmentation network (GCSN) that performs 3D segmentation and a 2D residual U-Net
(ResUNet) that performs 2D segmentation. Gu et al. [10] proposed an attention-based CNN
(CA-Net) for more accurate and explainable medical image segmentation. Their CA-Net
achieved higher accuracy than U-Net in skin lesions, placenta, and fetal brain segmentation.
Takeuchi et al. [11] constructed a system for diagnosing esophageal cancer from CT images
based on deep learning, and verified its performance. VGG16, which is one of the CNN
models used for image recognition, was fine-tuned for classification of the presence or
absence of esophageal cancer, and the authors confirmed that esophageal cancer could be
detected with high accuracy. Other studies have attempted the detection of landmarks in
radiographic images. Payer et al. [12] proposed a system using CNN to predict the position
of a landmark in an X-ray image of the hand using heat map regression. Zhong et al. [13]
applied landmark regression using a two-stage U-Net to detect anatomical landmarks on
cephalometric X-ray images.

Several previous studies have been conducted to automate measurements in ultrasonog-
raphy using deep learning. Chen et al. [14] proposed a method for the automatic measurement
of the width of the fetal lateral ventricle. The lateral ventricle was segmented using a deep
convolutional network, and measurement was performed by finding the minimum bounding
rectangle of the segmented region. Biswas et al. [15] proposed an automatic measurement
method for carotid intima–media thickness. The arterial wall is composed of the intima, media,
and adventitia, and the intima–media thickness is the combined thickness of the intima and
media. The luminal and media/adventitia regions were segmented using a deep learning
method, and the intima–media thickness was obtained from the distance between the bound-
ary surfaces of the regions. Leclerc et al. [16] conducted a study to automatically measure
left ventricular volume from echocardiographic images by segmentation using deep learning
methods. In these methods, segmentation is performed for measurement; however, creating a
mask that serves as training data for segmentation is a time-consuming task. Although re-
search is being conducted to automate measurements in ultrasonography of the heart, carotid
artery, and foetation, there have been few studies on abdominal ultrasonography. For example,
Jagtap et al. [17] proposed a method to measure the total kidney volume from 3D ultrasound
images using CNN. Akkasaligar et al. [18] developed a method for automatic segmentation of
renal cysts in ultrasound images using the active contour method and level set segmentation
method. However, neither study addressed the prediction of salient landmark positions.
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Related studies on deep learning-based analysis of ultrasound images are summarized in the
Table 1.

Among the measurement targets of abdominal ultrasonography, renal cysts occur in
20–50% of the population regardless of age [19]. Therefore, the frequency of measurement
of renal cysts is high, which leads us to believe that the effects of automating measurement
would be high as well.

Saliency map regression is often used to predict the location of landmarks such as
salient landmarks; however, previous studies have predicted only a fixed number of land-
marks [13]. When assigning salient landmarks to renal cysts, two landmarks are assigned
to one renal cyst; because multiple renal cysts may exist in one image, it is necessary to
predict the position of a non-constant number of salient landmarks. Therefore, conventional
saliency map regression, which can predict only a certain number of landmarks, cannot be
used to address this problem.

Table 1. Summary of related studies on deep learning-based analysis of ultrasound images.

Study Object Task

Ma et al. [3] thyroid nodules detection

Li et al. [4] thyroid cancer classification

Byra et al. [6] breast cancer classification

Liu et al. [7] liver membrane detection & classification

Chen et al. [14] fetal lateral ventricles measurement

Biswas et al. [15] carotid measurement

Leclerc et al. [16] left ventricular measurement

Jagtap et al. [17] kidney measurement

Akkasaligar et al. [18] renal cysts segmentation

Our study renal cysts landmark placement

The following are the main contributions of this study:

• We developed a measurement assistance function for ultrasonic images using deep
learning with the aim of supporting the measurement of renal cysts using measure-
ment markers.

• To predict the landmarks for multiple renal cysts within one image, we developed
a system in which all renal cysts in the image were detected prior to saliency map
regression. Then, we performed saliency map regression to predict the positions of
two salient landmarks for each detected renal cyst.

• Because the proposed method only uses the coordinates of the measurement mark-
ers when training the models, it is possible to automate the measurement without
performing segmentation, thereby avoiding high annotation costs.

• In comparative tests, our method achieved almost the same accuracy as a radiologist.
The errors of the measured length and measurement marker coordinates were used as
evaluation indices.

• Our results indicate that the proposed method is able to perform measurements
at a higher speed than manual measurement and with an accuracy close to that
of sonographers.

2. Materials and Methods

In this paper, we propose an automated system for detecting renal cysts from abdomi-
nal ultrasonography and assigning a pair of salient landmarks to the detected renal cysts,
as shown in Figure 1. The renal cyst measurement task was divided into three steps. First,
a YOLOv5 object detection model [20] was trained to detect renal cysts from ultrasound
images. Next, the area around each detected renal cyst was extracted from the image, and a
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heat map expressing the positions of the two measurement markers within that range was
predicted using the UNet++ convolutional neural network [21]. Finally, the output heat
map was post-processed and the coordinates were corrected to determine the predicted
coordinates of the measurement marker. First, we developed a system in which all renal
cysts in the image were detected prior to saliency map regression. Then, we performed
saliency map regression to predict the positions of two salient landmarks for each detected
renal cyst. Thus, two models were required for one for the task of detecting renal cysts
and another for saliency map regression to predict the positions of the salient landmarks.
The output of the saliency map regression was subjected to post-processing in order to
determine the appropriate coordinates of each salient landmark. If the size of the detected
renal cyst and measurement result using the predicted salient landmark coordinates were
significantly different, the predicted coordinates were corrected. We integrated a renal cyst
detection model, a salient landmark position prediction model, and coordinate determi-
nation with post-processing and correction to construct an automated system for salient
landmark assignment. The renal cyst detection model and the salient landmark position
prediction model were trained separately. The performance of this system was compared
with that of a radiologist. The system was trained and evaluated using 2664 ultrasound
images of renal cysts.

Figure 1. Salient landmarks placed on a renal cyst. A pair of salient landmarks are placed on the
longest diameter of the renal cyst.

2.1. Automated System for Assigning Salient Landmarks

Figure 2 shows the processing flow of an automated system that integrates the renal
cyst detection model, the salient landmark position prediction model, and coordinate
determination by post-processing and correction. First, an ultrasound image was input to
the renal cyst detection model and a bounding box surrounding the renal cyst was output.
The area surrounded by the output bounding box was extracted from the ultrasound
image. Because this process was performed on all bounding boxes output by the renal
cyst detection model, a multiple number of bounding boxes and their areas were extracted.
Then, the extracted area images were input to the salient landmark position prediction
model one by one and a saliency map denoting the position of the salient landmark
was output. For each of the obtained saliency maps, post-processing and correction of
coordinates were performed as necessary to determine the appropriate coordinates of the
salient landmarks. Because salient landmark position prediction was performed for all the
bounding boxes output by the renal cyst detection model and because the salient landmark
position prediction model predicts the positions of two salient landmarks per bounding
box, the number of output salient landmarks was twice the number of detected renal cysts.
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Figure 2. Processing flow of automated system for assigning salient landmarks to renal cysts: (a)
ultrasound images are input into YOLOv5 [20] to detect renal cysts; (b) the area around the detected
renal cyst is extracted and input to UNet++ [21] to predict the saliency map (represented by a heatmap)
of the salient landmark position; in post-processing, the point with the smallest saliency map value
from the output saliency map is selected and used as the appropriate coordinate. If necessary, the
coordinates are corrected and the appropriate coordinates determined. Finally, all predicted salient
landmarks are plotted on the original image.

2.2. Renal Cyst Detection Model

We constructed a model to detect renal cysts using ultrasound images as input. A
renal cyst detection model was trained to predict the bounding box surrounding the renal
cyst. The YOLOv5 object detection algorithm was used as the model. YOLOv5 is a model
originally proposed by Glenn Jocher in June 2020 [20]; its architecture is shown in Figure 3.
Compared with object detection models that require two steps for prediction (i.e., searching
for area candidates in which an object appears from an image and identifying its category),
YOLO directly predicts the bounding box and its class [22]. Therefore, the calculation speed
of YOLO is higher than that of the conventional methods. Moreover, the entire image is
used during training, making it possible to consider the surrounding context. Because the
detection of renal cysts requires information on whether the background is the kidney, a
model that can detect objects based on the surrounding context is suitable. In addition,
when the automated system is used for ultrasonic examination, the processing must be
faster than the manual placement of salient landmarks by the sonographer. For these
reasons, YOLOv5 was selected as a suitable model for this task. The initial parameters
of YOLOv5 were pre-trained using the COCO dataset [23], which is a large dataset of
RGB images with object bounding boxes and category information. YOLOv5 has multiple
models of different sizes, and we used the small (YOLOv5s), medium (YOLOv5m), large
(YOLOv5l), and extra-large (YOLOv5x) models for accuracy comparison. The architecture
of YOLOv5 consists of three components: BackBone, PANet, and Head. Here, Bottleneck
CSP [24] represents the CSP bottleneck architecture proposed by CSPNet, Conv represents
the convolutional layer, Upsample represents the upsampling layer, Concat represents the
concatenate function, and SPP represents spatial pyramid pooling [25], which is a pooling
method that can handle images of various sizes and shapes. First, in the BackBone, namely,
CSP Darknet, performs feature extraction twice on multiple scales via Conv and Bottleneck
CSP. Second, pooling processing is performed on feature maps with different scales using
SPP. This is the backbone of CSP Darknet, which introduces the mechanism proposed by
CSPNetinto the Darknet neural network framework in order to reduce the required amount
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of calculation while maintaining accuracy. Third, the extracted feature map is processed
by Neck. PANet is used for Neck; after repeating a series of processing of BottleNeckCSP,
Conv, Upsample, and Concat twice, it is processed again by BottleneckCSP. Finally, Conv is
performed in Head, and the class, score, position, and size are output as detection results.
The loss function of YOLOv5 is the sum of the loss functions of the bounding box regression,
confidence, and classification, as indicated in the following equations [26]:

LOSS = LGIoU + Lcon f + Lclass (1)

LGIoU =
S2

∑
i=0

B

∑
j=0

Iobj
i,j [1− IoU +

AC −U
AC ] (2)

Lcon f = −
S2

∑
i=0

B

∑
j=0

Iobj
i,j [Ĉ

j
i log(Cj

i ) + (1− Ĉj
i ) log(1− Cj

i )]− λnobj

S2

∑
i=0

B

∑
j=0

Iobj
i,j [Ĉ

j
i log(Cj

i ) + (1− Ĉj
i ) log(1− Cj

i )] (3)

Lclass = −
S2

∑
i=0

Inobj
i,j ∑

c∈classes
[P̂j

i log(Pj
i (c)) + (1− P̂j

i (c)) log(1− Pj
i (c))] (4)

where S2 is the number of grids, B is the number of bounding boxes in each grid, obj means
that an object exists in a bounding box, nobj means that no object exists in the bounding
box, Iobj

i,j is equal to 1 when an object exists in a bounding box and is otherwise 0, IoU is the
Intersection over Union between the predicted bounding box and the real bounding box,
AC is the smallest rectangular box that can completely contain the predicted bounding box
and the real bounding box, U is the sum of area of the predicted bounding box and the real
bounding box, Ĉj

i is the prediction confidence of the jth bounding box in the ith grid, Cj
i is

the true confidence of the jth bounding box in the ith grid, λnobj is the confidence weight

when no object exists in the bounding box, P̂j
i is the probability of predicting the detection

object as category c, and Pj
i (c) is the probability of actually being category c.

Figure 3. Architecture of YOLOv5, consisting of three components: BackBone, PANet, and Head.
BottleNeck CSP refers to CSP Bottleneck, SPP to Spatial Pyramid Pooling, Conv to the Convolutional
Layer, and Concat to the Concatenate Function. First, feature extraction is performed on multiple
scales using BackBone, then PANet processes the extracted feature map, and finally Head outputs the
class, score, position, and size as detection results.
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All layers of YOLOv5 were fine-tuned using the renal cyst detection dataset described
later in this section. The same single grayscale ultrasound image was input to three channels
for RGB in YOLOv5.

2.3. Saliency Map Representing the Location of Salient Landmarks

Our proposed method results in a saliency map predicting and indicating the position
of the salient landmarks. Saliency map regression is often used to predict the location of
landmarks. In this work, the heatmap is used to represent the saliency map, as shown in
Figure 4. Using a Gaussian distribution centered on the position of the salient landmarks,
the saliency map value gradually decreases according to the distance from the salient land-
mark position. Rather than using a uniform gradient, we used the Gaussian distribution
to cause the loss function to converge abruptly around the salient landmark position. The
saliency map value at the salient landmark position was set to 0, increasing the distance
of saliency map value from the salient landmark position. The maximum value was set
to 255. The radius of the Gaussian distribution was set to 50. The saliency map of the left
landmark used the G channel of the RGB image format, while the saliency map of the right
landmark used the R channel. All pixel values of the B channel were set to 0. The left part
of Figure 4 shows the positions of the salient landmarks on the ultrasonic image (displayed
as yellow crosses), while the right part of Figure 4 shows the corresponding saliency maps;
the green part shows the position of the left landmark and the red part shows the position
of the right landmark.

Figure 4. Saliency map showing the location of salient landmarks. The position of the left salient
landmark is represented in green and the right one in red.

2.4. Salient Landmark Position Prediction Model

We constructed a salient landmark position prediction model that predicts a saliency
map. For the prediction of salient landmark position, we adopted a strategy of predicting
the saliency map instead of directly predicting the salient landmark position. In our study,
the saliency map is represented by the heatmap. We adopted UNet++ [21] to produce
a heatmap as output. UNet++ is an improved version of the U-Net deep convolutional
neural network [27], which was developed for segmentation tasks. Using training data
consisting of pairs of input images and heatmap outputs representing saliency maps, we
trained UNet++ to produce a heatmap instead of segmentation. The salient landmark
position prediction dataset (described in a later section) was used for fine-tuning of UNet++
to output a heatmap. U-Net consists of an encoder that extracts features by convolution
and downsampling and a decoder that increases the resolution of the feature map by
convolution and upsampling, producing segmentation results. A feature of U-Net is a skip
connection that directly connects the feature map output in each layer of the encoder to
the decoder. UNet++ decodes the feature map outputs at each level of the encoder and
then connects them to the decoder by skip connection (Figure 5); this supplements the local
features and enables more accurate area detection. Moreover, it reduces the difference in the
expression of the encoder/decoder and simplifies the optimization problem [21]. The loss
function was the mean square error of the saliency map. DenseNet121 [28] was used for
the backbone. The initial parameters of the backbone were pretrained with ImageNet [5],
which is a large dataset of RGB images.
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Figure 5. Architecture of UNet++. Each node in the graph represents a convolution block. The
down arrow indicates downsampling, the up arrow indicates upsampling, and the dashed arrow
indicates the skip connection. Using the skip connection, features with the same resolution from the
preceding node are combined. In addition, upsampling combines features from the preceding node
with different resolutions. This multi-scale feature aggregation is an advance of UNet++.

Each node in the graph shown in Figure 5 represents a convolution block composed of
a Convolution layer, a Batch Normalization layer, and a ReLu layer. This block is stacked in
five layers. The down arrow indicates downsampling, the up arrow indicates upsampling,
and the dashed arrow indicates the skip connection. Using the skip connection, the features
from the preceding node with the same resolution are combined. In addition, upsampling
combines features with different resolutions from the preceding node. This multi-scale
feature aggregation is one of the improvements available with UNet++. During the fine-
tuning process, all layers were trained. The loss function of UNet ++ was as follows:

Loss =
1
n

n

∑
i=1

(ŷi − yi)
2 (5)

where n is the number of images, yi is the pixel value of the ith pixel of the correct image,
and ŷi is the pixel value of the ith pixel of the predicted image.

2.5. Post-Processing

Post-processing was performed to determine the appropriate coordinates of the salient
landmarks from the salient landmark position image. In the R and G channels of the
saliency map showing the position of salient landmarks output by the salient landmark
prediction model, the coordinates with the smallest saliency map value were selected
and the coordinates were determined as the appropriate coordinates of the two salient
landmarks. Note that when multiple coordinates had the same minimum values, we
followed the heuristic of selecting the one closest to the top left corner.

2.6. Coordinate Correction

If the size of the detected renal cyst and the distance between the two salient landmarks
differed significantly, the predicted coordinates were corrected. Note that the size of the
detected renal cyst is defined as the length of the shorter side of the bounding box. Multiple
regions with low saliency map values may appear in one channel. If we were to simply
select the coordinates in this image with the smallest saliency map value, the coordinates
determined from the R channel and G channel might be too close to each other. On the the
hand, in the case of a large difference between the distance of the two predicted salient
landmarks and the size of the bounding box, it follows that the predicted coordinates
must be incorrect. The criteria for determining incorrectness were calculated as follows.
Assuming that the predicted coordinates are p

′
1 and p

′
2 and the length of the shorter side of
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the bounding box is l, a correction was made if the following condition (6) was satisfied:
there is a difference in the Euclidean distance between the two predicted coordinates (p

′
1

and p
′
2) and their length (l) that is greater than 5% of the length (l). Note that the double

vertical line represents the L2-norm and the single vertical line represents the L1-norm.

| ||p′1 − p
′
2|| − l | > l × 0.05 (6)

The correction method was as follows. First, the coordinates with the lowest saliency
map values in each of the R and G channels were selected, then the coordinate with the
smaller value between them was selected as the position of the first salient landmark.
Second, the coordinates of a point symmetrical to the first salient landmark with respect to
the center of the bounding box were selected as the second salient landmark.

Figure 6 shows the coordinates before and after correction. Before correction, the
distance between the two salient landmarks, indicated by the light blue crosses, was
significantly different from the length of one side of the light blue bounding box; thus, the
measurement was considered incorrect. After correction, the distance between the two
salient landmarks, indicated by the light blue crosses, was closer to the length of one side
of the bounding box. In addition, the measurement was more accurate when compared to
the distance between the two true salient landmarks, indicated by the yellow crosses.

Figure 6. Coordinates before and after coordinate correction. The yellow rectangle is the true
bounding box, the light blue rectangle is the bounding box predicted by the renal cyst detection
model, the yellow crosses are the true salient landmark coordinates, and the light blue crosses are
the salient landmark coordinates determined from the saliency map output by the salient landmark
position prediction model. The left side of the figure shows the coordinates before correction and
the right side shows the coordinates after correction. After correction, the distance between the two
salient landmarks of the prediction is closer to the distance between the two salient landmarks of the
true one.

2.7. Evaluation Metrics

We evaluated the accuracy of renal cyst detection and salient landmark coordinate
prediction by the automated system. The region of the renal cyst output by the renal cyst
detection model was defined as one of following three types: true positive (TP), when the
model correctly detected a renal cyst; false positive (FP), when the model identified regions
that were not renal cysts as renal cysts; and false negative (FN), when the model failed to
detect an existing renal cyst. To establish the criteria for correct detection of a measured
renal cyst, a circle with a diameter of a straight line connecting two paired points was
drawn for each of the true and predicted salient landmarks. TP was defined as a rate of the
intersection over union (IoU) (defined in Equation (7)) of the two circles drawn from the
true landmark coordinates and predicted ones that was greater than 0.5. The IoU threshold
was determined by reference to a previous study on cyst detection [29].

IoU =
Area o f Intersection

Area o f Union
(7)
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Precision (8) and recall (9) were calculated as the detection accuracy.

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

The position error and diameter length error (DLE) in cyst measurements by both
the AI and sonographer were used to evaluate the coordinates of the predicted salient
landmarks. The position error (defined in Equation (10)) is defined as the Euclidean
distance between the predicted and true coordinates. DLE (defined in Equation (11)) is
defined as the absolute value of the difference between the Euclidean distance between the
two predicted coordinates and the Euclidean distance between the two true coordinates.
If the true coordinates are p1,p2 and the predicted coordinates are p

′
1,p

′
2, then the position

error and DLE are defined as follows:

Position error = ||p1 − p
′
1||+ ||p2 − p

′
2|| (10)

DLE = ||l − l
′ || (11)

l = ||p1 − p2|| (12)

l
′

= ||p′1 − p
′
2|| (13)

The relationship between the loss function of each model and these evaluation indices
is as follows. The loss function of YOLOv5 is the sum of three terms, namely, the loss
functions of the bounding box regression, prediction confidence, and classification [26].
The loss function of the bounding box regression is calculated from the IoU of the correct
and predicted bounding boxes. Because the salient landmark coordinates are predicted
within the bounding box, a smaller loss function of the bounding box regression and more
accurate prediction of the bounding box makes for an improvement in the position error
and detection accuracy calculated from the bounding box. The loss function of UNet++ is
the mean square error. When the output saliency map is closer to the correct answer, the
mean square error and position error determined from the output saliency map decrease.

2.8. Performance Comparison of Model and Sonographers

The ground truth coordinates in the test data were set using the annotations of two
board-certified radiologists (Sonographers 1 and 4). The annotations of the remaining
two radiologists (Sonographers 2 and 3) and the predicted coordinates of the model were
compared with the correct coordinates in order to calculate the recall, precision, position
error, and diameter length error.

2.9. Post Hoc Evaluation by a Radiologist

In the form of a post hoc evaluation, the predictions of the automated system were
manually evaluated by the most experienced radiologist (Sonographer 1). The predictions
of salient landmarks by the automated system and predictions of salient landmarks placed
by Sonographers 2 and 3 were presented to Sonographer 1 in an anonymous and random
order. Sonographer 1 examined the ultrasound image and both predictions, pointed out
FPs and FNs, and corrected the coordinates as necessary. The number of FPs and FNs,
images with corrected coordinates, salient landmarks, and magnitude of the correction
of coordinates were calculated and compared between the automated system and the
two radiologists.

2.10. Deep Learning Framework and Computation Time

Python was used as the programming language. In YOLOv5, Torch 1.7.1 version or
earlier was used as the framework. The number of training epochs was set to 100, and the
weight at the epoch with high mAP (mean Average Precision) was used. SGD was used
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as the optimizer for training. The batch size was set to 16 and the size of one side of the
input image was 256 pixels. In UNet++, TensorFlow GPU version 1.4.0 was used as the
framework. The number of training epochs was set to 20, and the weight at the epoch when
the loss function was improved was saved. The Adam optimizer was used for training.
The hyperparameters, as presented in Table 2, were searched. As a result of this search, the
hyperparameters indicated in bold were adopted.

Table 2. The hyperparameter search and its results; the hyperparameters highlighted in bold
were adopted.

Parameter Range of Parameter to Be Searched

CNN architecture VGG16, ResNet50, densenet121

Decode method transpose, upsampling

Number of decoder filters (128, 64, 32, 16, 8), (256, 128, 64, 32, 16),
(512, 256, 128, 64, 32)

Batch size 8 to 32 (21)

The computational time required to read the ultrasound image, predict the coordinates
of the salient landmarks, plot them, and display the image was measured. This experiment
was performed on a computer with an Intel (R) Xeon (R)W-3235 CPU@3.30GH and an
NVIDIA Quadro RTX 8000. In addition, the time required for manual assignment of salient
landmarks by the radiology specialists was measured for comparison. The methodology
source code is available in a public GitHub repository with the following address: https:
//github.com/henyo245/RenalCystMeasurement, accessed on 6 February 2023.

2.11. Materials

We extracted 170,538 images from 6420 abdominal ultrasound examinations taken
by LOGIQE9 or LOGIQS8 GE ultrasonic devices from January 2019 to May 2020 at Keio
University Hospital. Of the 6420 examinations, 2134 were identified as “renal cyst” in the
report. Among the extracted ultrasound images, 2664 images were selected in which the
body marker was located on the kidney and the radiologist determined that renal cysts
were measured. Images with no salient landmarks or those determined by the radiologist
to not be renal cysts were excluded. The 2664 images were taken from 1444 patients, and
therefore contained multiple images of the same patients. All data were annotated by
eight radiology technicians and ten radiologists at the clinical site. No double-checking
was performed. All data were divided into training and test data at a ratio of 7:3. There
was no patient overlap between the training and the test data. Training image data were
preprocessed to suit the respective tasks of object detection and salient landmark position
prediction. In addition, 100 images were randomly extracted from the test data and used
as a dataset in order to compare the performance of the sonographers and the automated
system. For the training data, the markers measured at the clinical site were directly used as
the true ones. For the test data, the ground truth was regenerated by Sonographers 1 and 4.
Sonographer 1 placed the landmarks, Sonographer 4 reviewed the results, and for images
with differing opinions, Sonographers 1 and 4 discussed and reassigned the landmarks
as ground truth. Patient informed consent for the retrospective datasets was obtained
only for this current research work, and has not been confirmed for sharing outside Keio
University Hospital.

We created a dataset for training of the renal cyst detection model. The ultrasound
images were used as the input data. A bounding box, which is required for object detec-
tion training, was created by the following procedure. First, a circle was drawn with its
diameter being a straight line connecting the two paired salient landmarks. Next, a square
circumscribing this circle was drawn, which was used as a bounding box surrounding the
renal cyst. The x and y coordinates, height h, and width w of the center coordinates of the
bounding box were saved in a text file and used as the training data.

https://github.com/henyo245/RenalCystMeasurement
https://github.com/henyo245/RenalCystMeasurement


Healthcare 2023, 11, 484 12 of 16

We created a dataset for use in training the salient landmark position prediction model.
The area surrounded by the bounding box for use as the training data of the renal cyst
detection model was cropped from the ultrasound image and used as the input image of
the salient landmark position prediction model. Then, to ensure that the outline of the
renal cyst fit in the image, the cropped area of the bounding box was resized by expanding
the area by the length of one side of the bounding box × 0.2 on the top, bottom, left, and
right. The cropped images were resized to 256 × 256 pixels and used as the input images.
In addition, a saliency map (heatmap) representing the salient landmark position in the
area corresponding to the input image was generated and used as training data.

2.12. Ethics

This study was approved by the Ethics Committee of the Keio University School of
Medicine (ethical approval code 20170018).

3. Result
3.1. Performance Comparison of Model and Sonographers

Table 3 shows the performance of the automated system on the test data and a perfor-
mance comparison on the 100 selected images between the automated system and the two
radiologists (Sonographers 2 and 3) with the annotation of two specialists (Sonographer
1 and 4) as the ground truth. As a result of the automated system for assigning salient
landmarks, the detection accuracy was the highest when YOLOv5m and UNet++ were
used and the coordinates were corrected. The precision and recall of the automated system
were comparable to Sonographers 2 and 3. The position error and the diameter length
error (DLE) of the automated system were comparable or slightly lower than those of the
sonographers. No significant differences were found among the YOLO models. Figure 7
shows several examples of annotations by radiologists and the coordinates predicted by
the automated system on the ultrasound images.

Table 3. Results of the performance of the automated system in the test data (above) and perfor-
mance comparison on the 100 selected images (below) between the automated system and the two
radiologists (Sonographers 2 and 3) with the annotation of two specialists (Sonographer 1 and 4) as
the ground truth. The position error and DLE were calculated only for the true positive predictions
of salient landmark positions. * a statistical t-test examining the average of IoU values between the
“YOLOv5m + UNet++ + Correction” combination method and other combinations, along with the
calculated p-values.

Detection Accuracy Position Error [mm] DLE [mm]

Precision Recall p-Value * Mean Median Mean Median(of t-Test for IoU Average)

YOLOv5s + UNet++ 0.71 0.75 0.07 3.54 ± 2.81 2.54 1.22 ± 1.04 1.02

YOLOv5s + UNet++ + Correction 0.78 0.82 0.07 3.59 ± 2.81 2.63 1.19 ± 1.02 0.93

YOLOv5m + UNet++ 0.81 0.81 0.26 3.15 ± 2.48 2.36 1.08 ± 0.83 0.90

YOLOv5m + UNet++ + Correction 0.85 0.86 - 3.22 ± 2.57 2.36 1.09 ± 0.80 0.89

YOLOv5l + UNet++ 0.74 0.78 0.07 3.19 ± 2.57 2.51 1.06 ± 1.92 0.90

YOLOv5l + UNet++ + Correction 0.82 0.86 0.18 3.29 ± 2.66 2.60 1.13 ± 1.00 0.88

YOLOv5x + UNet++ 0.70 0.73 0.004 3.05 ± 2.72 2.39 1.15 ± 0.87 1.05

YOLOv5x + UNet++ + Correction 0.77 0.81 0.04 3.24 ± 2.73 2.63 1.13 ± 0.89 0.91

Detection Accuracy Position Error [mm] DLE [mm]

Precision Recall Mean Median Mean Median

Sonographer 2 0.86 0.87 2.56 ± 2.76 1.42 1.21 ± 1.36 0.89

Sonographer 3 0.83 0.84 2.34 ± 2.63 1.53 0.95 ± 1.07 0.63

YOLOv5m + UNet++ + Correction 0.85 0.86 3.22 ± 2.57 2.36 1.09 ± 0.8 0.89
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Figure 7. Ultrasound images with salient landmarks placed by sonographers and placed at coordi-
nates predicted by the automated system.

Figure 8 shows the coordinates of the salient landmarks placed by Sonographer 1 and
the coordinates predicted by the automation system.

(a) (b) (c)

Figure 8. Ultrasound images with salient landmarks placed by sonographers and placed at coor-
dinates predicted by the automated system. The yellow crosses are the coordinates of the salient
landmarks placed by Sonographer 1 and the light blue crosses are the coordinates predicted by the
automation system. Renal cysts are approximated by a circle with a diameter that is a straight line
connecting the two points of salient landmarks. Yellow corresponds to placement by Sonographer 1
and light blue corresponds to prediction by the automated system. (a,b) show detection of a single
renal cyst. (c) shows detection of two renal cysts.

3.2. Post Hoc Evaluation by Radiologist

Table 4 presents the results of the post hoc manual evaluation by the most experienced
radiologist. The numbers of FPs and FNs produced by the automated system were less
than those produced by Sonographer 2 and the same as those produced by Sonographer 3.
The number of corrected images and salient landmarks were larger than those produced by
Sonographers 2 and 3. The difference between the number of images and the number of
salient landmarks is because there were ultrasound images with multiple renal cysts and
images in which the coordinates of only one of the pair of salient landmarks were corrected.
The magnitude of this modification was the smallest when using the proposed system.

Table 4. Results of post hoc manual evaluation by the most experienced radiologist.

False False Corrected Coordinates Position Error [mm]

Positive Negative Number of Images Number of Landmarks Mean Median[Pair] [Pair] [Image] [Point]

Sonographer 2 3 3 16 18 9.09 ± 5.90 6.80

Sonographer 3 1 0 14 21 8.65 ± 5.40 7.24

YOLOv5m + UNet++ + Correction 1 1 16 22 8.49 ± 8.04 5.47
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3.3. Computational Time

The average execution time of the model was 0.45 ± 0.02 s per image. The average
time required for measurement by a radiologist was 14.9 ± 4.5 s per image.

4. Discussion

There are a number of limitations to this study. First, this study was a single-center
study limited to Japanese patients. In addition, the ultrasound images were taken with a
limited number of ultrasonic device models. More ultrasound imaging datasets of renal
cysts from multiple institutions are required to build a more accurate system. Moreover,
the results may change because of the influence of the amount of noise depending on the
sonographer’s imaging skills, ghost artifacts (unwanted reflections of ultrasonic waves),
and artifacts, such as shadows that darken the back of tissues.

Based on the above, the salient landmark prediction system constructed using deep
learning technology has great potential to detect renal cysts faster than radiologists and
with comparable accuracy. Further training using larger amounts of data collected from
multiple institutions can enable even more accurate detection and measurement of renal
cysts. In addition, because the constructed method can be applied to other targets, such
as hepatic cysts, we expect artificial intelligence-based measurement support systems for
various areas of interest to be developed in the future.

There are a number of issues with the system developed in this study that could
represent possibilities for future improvement. Several parameters, including the radius
of the Gaussian distribution and the threshold value used for coordinate correction, were
determined experimentally; in future work, a more comprehensive and systematic op-
timization of these parameters is necessary. We simply input the same single grayscale
image into three channels for RGB in YOLOv5. Optimizing YOLOv5 to work with only
one grayscale channel is another possibility for future work.

5. Conclusions

In this study, we constructed an automated system for assigning salient landmarks to
renal cysts using deep learning methods, namely, YOLOv5 and UNet++, with 2664 ultra-
sound images. Previous studies have relied on segmentation, and have not targeted the
abdomen. Here, we developed an automatic measurement method for renal cysts that does
not require segmentation. Because the position of the salient landmarks can be predicted
with an accuracy close to that of a radiologist in a shorter time, this system is useful for
automating the measurement process in ultrasonography.
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