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Abstract: The presence of non-biomedical foreign objects (NBFO), such as coins, buttons and jewelry,
and biomedical foreign objects (BFO), such as medical tubes and devices in chest X-rays (CXRs), make
accurate interpretation difficult, as they do not indicate known biological abnormalities like excess
fluids, tuberculosis (TB) or cysts. Such foreign objects need to be detected, localized, categorized
as either NBFO or BFO, and removed from CXR or highlighted in CXR for effective abnormality
analysis. Very specifically, NBFOs can adversely impact the process, as typical machine learning
algorithms would consider these objects to be biological abnormalities producing false-positive cases.
It holds true for BFOs in CXRs. This paper examines detailed discussions on numerous clinical
reports in addition to computer-aided detection (CADe) with diagnosis (CADx) tools, where both
shallow learning and deep learning algorithms are applied. Our discussion reflects the importance of
accurately detecting, isolating, classifying, and either removing or highlighting NBFOs and BFOs in
CXRs by taking 29 peer-reviewed research reports and articles into account.
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1. Introduction

Chest X-rays are the most common, widely available, and affordable diagnostic
imaging technique for cardiothoracic and pulmonary disorders [1]. Chest radiography is
paramount in identifying abnormalities. CXRs are also used as an early diagnosis tool in
the cardiothoracic region identifying lung and heart pathologies such as: atelectasis, consol-
idation, pneumothorax, pleural and pericardial effusion, cardiac hypertrophy, tuberculosis
(TB), HIV and hyperinflation [1].

The detection of pulmonary abnormalities concerning tuberculosis (TB) with the pres-
ence of foreign objects could influence decision-making procedures [2]. An extensive
number of individuals worldwide suffer from serious lung diseases, such as tuberculosis,
pneumonia, lung cancer, and pulmonary edema [3] according to a World Health Orga-
nization (WHO) report. A total of 1.5 million people died from TB in 2020 (including
214,000 people with HIV). Worldwide, TB is the 13th leading cause of death and the second
leading infectious killer after COVID-19 (above HIV/AIDS) [4]. A total of 1.80 million
people has died from lung cancer [5] and pneumonia accounts for 14% of all deaths of
children under 5 years old, killing 740,180 children in 2019 [6]. The development of CADs
for automatic CXR screening has been prompted by the introduction of new, very effective
hardware and software methodologies [7–9] (TB cases). More than 6.5 million people have
died due to COVID-19 [10] which could have been less if we had considered the CAD
system during the pandemic [11–13]. However, without proper instructions and training
CAD can give us false-positive results. For example, foreign elements, such as buttons,
coins, medical tubes, and medical devices within the CXR images hinder the performance
of the automatic screening system, and we can divide these foreign objects into two groups
(BFO and NBFO). Any medical devices, such as pacemakers, buttons, and pinnodes which

Healthcare 2023, 11, 308. https://doi.org/10.3390/healthcare11030308 https://www.mdpi.com/journal/healthcare

https://doi.org/10.3390/healthcare11030308
https://doi.org/10.3390/healthcare11030308
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/healthcare
https://www.mdpi.com
https://orcid.org/0000-0003-1178-400X
https://orcid.org/0000-0003-4176-0236
https://doi.org/10.3390/healthcare11030308
https://www.mdpi.com/journal/healthcare
https://www.mdpi.com/article/10.3390/healthcare11030308?type=check_update&version=2


Healthcare 2023, 11, 308 2 of 13

can be found on a medical gown that patients are wearing, and medical tubes, jewelry, and
so forth are considered as a BFO in CXR images. On the other hand, coins or rings which
are mistakenly swallowed by patients, candy wrappers, broken toys, and so forth are con-
sidered NBFO in CXR images. BFO is a nonharmful foreign object and it is not considered
a lung abnormality in CXR images [14,15]. For example, people who are in an intensive
care unit (ICU) need BFO, or people who have a pacemaker in their heart cannot get rid of
it in the CAD process. Meanwhile, if we failed to detect, localize, and identify NBFO early,
it could be a serious threat to our health. Even clinicians could sometimes fail to detect it
properly. For example, a tiny circle is considered an abnormality for TB. However, it could
be buttons, rings, or coins. Therefore, in the screening process, precise detection of foreign
objects is an important issue for screening chest diseases in CAD systems. Figure 1 shows
the BFO (medical device, tube, buttons, pinnode) and NBFO (chain, ring) in CXR images
with annotations. Figure 2 shows a closer view of the NBFO (chain and ring) and BFO
(medical devices, medical tube, buttons, and pinnodes).

Healthcare 2023, 11, x FOR PEER REVIEW 2 of 13 
 

 

of the automatic screening system, and we can divide these foreign objects into two groups 

(BFO and NBFO). Any medical devices, such as pacemakers, buttons, and pinnodes which 

can be found on a medical gown that patients are wearing, and medical tubes, jewelry, and 

so forth are considered as a BFO in CXR images. On the other hand, coins or rings which 

are mistakenly swallowed by patients, candy wrappers, broken toys, and so forth are con-

sidered NBFO in CXR images. BFO is a nonharmful foreign object and it is not considered 

a lung abnormality in CXR images [14,15]. For example, people who are in an intensive 

care unit (ICU) need BFO, or people who have a pacemaker in their heart cannot get rid 

of it in the CAD process. Meanwhile, if we failed to detect, localize, and identify NBFO 

early, it could be a serious threat to our health. Even clinicians could sometimes fail to de-

tect it properly. For example, a tiny circle is considered an abnormality for TB. However, 

it could be buttons, rings, or coins. Therefore, in the screening process, precise detection 

of foreign objects is an important issue for screening chest diseases in CAD systems. Fig-

ure 1 shows the BFO (medical device, tube, buttons, pinnode) and NBFO (chain, ring) in 

CXR images with annotations. Figure 2 shows a closer view of the NBFO (chain and ring) 

and BFO (medical devices, medical tube, buttons, and pinnodes). 

  

(a) (b) 

  

(c) (d) 

Figure 1. Foreign objects (annotated/labeled) in chest X-rays: (a) jewelry and buttons, (b) ring, (c) 

pacemaker, and (d) medical tube. 
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(c) pacemaker, and (d) medical tube.
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This paper focuses on the impact of NBFOs in CXRs by reviewing clinical studies and
how much work has been done to detect and classify NBFOs and BFOs using artificial
intelligence (AI)-guided tools. In Section 2, we describe our search criteria. In Section 3,
we review clinical significance by considering NBFOs and their possible impacts. We
then discuss the use of AI-guided tools to detect and localize foreign objects in CXRs.
Section 4 includes both shallow learning and deep learning algorithms. While reviewing
the performance of machine learning, we review data sets and their respective sources in
Section 5. Section 6 concludes our study.

2. Inclusion/Exclusion Criteria

Our review process includes search keywords, search space, inclusion criteria, and
exclusion criteria.

Search keywords: (chest X-ray OR chest radiograph) AND (foreign object detection) OR
object detection.

Search spaces: PubMed and Web of Science.

As we primarily consider experimental papers with clinical significance that are
primarily aimed for pulmonary abnormality screening, we reviewed 29 papers in total.
We did not consider preprint papers (e.g., ArXiv, medRxiv, and TechRxiv) as they are not
peer-reviewed.
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3. Clinical Significance

In this section, we review the impact of BFOs and NBFOs from a clinical perspective,
and based on literature from the 1980s onward, we consider the following types of NBFOs:
magnets, button batteries, coins, disk magnets, scarf pins, metallic candy wrappers, as
well as BFOs which turned out to be chest tubes, automatic implantable cardiovascular
defibrillators, cardiopulmonary devices, pacemakers, catheters, intra-aortic counter pul-
sation balloon pumps, ventricular assist devices, endotracheal and tracheostomy tubes,
nasogastric and nasoenteric tubes, and medically implanted wires, to name a few. The
following discussion highlights these NBFOs and BFOs as they appear in CXRs.

Batteries and magnets are common in children’s toys and the ingestion of these items is
an increasingly common theme with children. The harm in swallowing these items is often
difficult to express for young children, including autistic, developmentally delayed, non-
verbal, or non-disclosing children. In the Ref. [16] the authors showed a case study where
challenges occurred in identifying and locating magnets and batteries in CXRs ingested
by children. They reported that mild symptoms and signs resulted in a delayed diagnosis
leading to serious consequences. Initially, these symptoms were mistakenly diagnosed
as gastric issues, which prompted the CXRs. In the Ref. [17] Pugmire et al. presented a
15-year single-centered review from 2000 to 2015, based on clinical reports and images from
Cincinnati Children’s Hospital Medical Center, where 276 cases of battery ingestion and
insertions were confirmed. Fuentes et al. provided a case report in the Ref. [18] in which
button batteries made up a small percentage of all foreign bodies eaten by children, and
their position in the esophagus is even less common, making them more likely to cause
serious injury. They presented three cases of children (2–7 years old) in which CXR imaging
revealed circular NBFOs in the middle esophagus with unilateral esophageal burns (EB).
In two of the three patients, the EBs progressed to esophageal stenosis. The researchers
discovered 29 more cases in their investigation, with injuries including EB, esophageal
perforation (EP), and tracheoesophageal fistula (TEF). They also stated that dysphagia or
odynophagia were the primary symptoms in most patients (56%); however, non-specific
symptoms, such as irritability, vomiting, and cough were also prevalent.

The growing number of small electronic devices with an electric supply by lithium
button batteries (LBBs) has increased the number of cases of LBB ingestions, causing severe
medical complications [19]. In the Ref. [20] Meyer et al. presented a study where the
main aim was to analyze relevant diagnostic aspects of lithium button battery (LBB) X-ray
imaging, and retrospective analysis of the imaging of radiopaque foreign bodies. For this
study, they listed commercially available LBBs and alternate NBFOs, such as European coins
(EC) and disk magnets (DM) according to their sizes and compositions. Thompson et al.
compared digital and analog radiographs of the chest for use in detecting and evaluating a
variety of cardiopulmonary devices (BFOs) in 40 patients which included 23 endotracheal
tubes, 21 Swan–Ganz catheters, 14 central venous pressure catheters, 11 prosthetic valves,
10 chest tubes, six pacemaker wires, and five intra-aortic balloon pumps in the Ref. [21].
The validation of 40 digital and analog film pairs was compared by five radiologists, who
assigned confidence levels for various judgments about each device. The results showed
that there were no statistically significant differences in the identification of the devices
except for prosthetic valves (all valves were detected on digital radiographs, compared with
62% on analog radiographs). The devices were detected on 96% of the digital radiographs
and 90% of the analog radiographs.

The radiographic evaluation of the support and monitoring devices used in patients in
the intensive care unit (ICU) is critically important because the potentially serious complica-
tions arising from their introduction and use are often not clinically apparent. For example,
central venous catheters, pulmonary artery catheters, left atrial catheters, transvenous pace-
makers, automatic implantable cardioverter defibrillators, intra-aortic counter pulsation
balloon pumps, and ventricular assist devices are frequently used in critically ill patients.
Godoy et al. [22,23] discussed and illustrated normal and aberrant positioning of support
and monitoring devices frequently used in critically ill patients, including endotracheal
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and tracheostomy tubes, chest tubes, and nasogastric and nasoenteric tubes, as well as
their inherent complications in radiography. Jennings et al. [24] compared computed and
traditional radiography for the identification and visualization of cardiovascular devices in
intensive care unit patients. Using a 2K × 2K, 12-bit storage phosphor plate technique that
is readily available, they produced their calculated pictures. Three independent observers
evaluated the validity of these 50 patient image sets. The observers noted a large variation
in the sorts of images discovered for the detection of prosthetic valves and mediastinal
drainage tubes. Greater assurance in identifying courses and line tips was seen in the
computed pictures. They claimed that knowledge of typical and aberrant radiography
findings is crucial for spotting these devices.

In the Ref. [25] Grier et al. reviewed the chest radiographs of 600 consecutive patients
to review the necessity of chest radiography after undergoing insertion of a permanent
cardiac pacemaker. The incidence and nature of CXR abnormalities were reviewed. They
reported that abnormalities were detected on the chest radiographs of 131 patients (21.8%).
Unsatisfactory electrode tip positions and other features related to the electrode wire were
most common (14.4%). Complications related to the lungs and pleura were present at 5.5%,
and those related to the generator and pouch were least frequent (1.9%). Complications
occurred more frequently following the installation of a replacement system (48.3%) com-
pared to new systems (17.2%). Important complications not initially detected included
pneumothorax (8/15) and poor electrode loops (26/27). Chest radiographs following per-
manent cardiac pacing frequently demonstrate significant abnormalities whose detection is
improved by awareness of their incidence and nature.

Murthy et al., in the Ref. [26] provided a case report of six patients who were brought
with a history of aspirating a sharp foreign body (scarf pin). The ages of the patients, all
of whom were female, ranged from 5 to 16. Between three hours and a day following the
unintentional consumption, patients were admitted to hospitals. None of the patients had
any localized respiratory obstruction symptoms or indications. They provided examples
of the risks associated with mouth-holding by girls. It was demonstrated how to handle
these pointed, potentially piercing foreign bodies. On the other hand, the majority of
airway NBFOs occurs in children between the ages of 6 months and 6 years. Candy is
something that children are particularly fond of, resulting in a high chance that kids may
consume candy wrappers as well as candy. In the Ref. [27] Orgill et al. presented a case
where the main goal was determining whether conventional and dual-energy radiographic
techniques would exclude the presence of aspirated metallic foil wrappers. Single-layer and
multi-layer metallic candy wrappers were radiographically studied with conventional and
dual-energy radiographic techniques in three tissue models. They reported that no single-
layer metallic samples were detectable with conventional or dual-energy radiography. The
multilayer samples were non-detectable at less than 8 layers (pulmonary tissue model) or
16 layers (mediastinal model) by either conventional or dual-energy radiography. Findings
indicate that conventional and dual-energy chest radiographic techniques do not reliably
exclude the presence of aspirated metallic foil wrappers.

Coins currently represent the most retained esophageal foreign body among children in
the United States [28–30]. Suspicion for coin ingestion is typically brought on by witnessed
ingestion or symptoms such as gagging, choking, vomiting, and dysphagia [28]. In the
Ref. [31] the focus of Huyett et al. was to determine the accuracy of CXRs in children
using ingested radiopaque NBFOs of known size. A database of foreign body ingestion
at a tertiary care children’s hospital was queried from 2013 to 2016 for children who had
ingested US coins, had a pre-operative chest X-ray, and documentation of coin type at
the time of endoscopic removal. Four blind research tests measured the coin diameter
on chest X-rays using iSite PACS software, and based on the measurement, predicted
the coin type. Researchers concluded that the measurement of esophageal coins on chest
X-ray was relatively inaccurate and overestimates the size in most cases, and clinicians
should exercise caution when performing fine measurements on chest X-rays, especially
in children younger than 4 years old. Raney et al., in the Ref. [32] presented a case study
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where a child had ingested an esophageal coin, but radiographic findings supported a
coin located in the trachea. This case study illustrates the importance of performing
radiographic studies that include both anteroposterior and lateral neck/chest views in
patients who aspirate or swallow coins. The purpose of this report is to show that there
are exceptions to the guidelines used to interpret roentgenograms for the determination of
esophageal or tracheal coin location. Tander et al. evaluated patients with coins retained in
the esophagus and the impact of the size of the coins on lodgment location in the Ref. [33].
They investigated 62 children with a history of coin ingestion and a chest X-ray, showing
a retained coin in the esophagus. They reported that there were 27 male and 35 female
patients with coin lodgment (median age, 4 years; range, 1–13). Forty-five patients (73%)
ingested a coin with a diameter between 23.45 and 26.00 mm. In the remaining 17 patients
(27%), ingested coins had a diameter between 17.00 and 20.90 mm or between 26.85 and
28.00 mm. Fifty coins were localized in the upper esophagus, eight coins were found
in the middle esophagus, and four patients had a coin in the distal esophagus. There
was a positive correlation between the diameter of the coin and the age of the patient
(r = 0.415 and P¡ 0.001). Even though esophageal NBFOs in children remains an important
and complex medical subject, these accidental ingestions can be dangerous for adults as
well. Teenagers often keep pen tops or pins in their mouths during their routine daily
activities. In the Ref. [34] Rybojad et al. worked with a study of 192 cases of suspected
esophageal NBFOs between 1998 and 2010. One radiopaque showed a wedding ring in
the esophageal area. Rybojad et al. mentioned that sometimes NBFO ingestions can be
difficult to diagnose. In suspected cases, the doctors X-rayed both a lateral chest and neck
profile. The authors discussed clinical symptoms and radiological findings of variable
esophageal NBFOs as well as therapeutic procedures in pediatric patients. Data were
statistically analyzed by a chi-square test. Reporting’s demonstrated that a NBFO was
removed from the digestive tract of 163 children aged 6 months to 15 years (mean age 4.9).
Most objects were located within the cricopharyngeal sphincter. Dysphagia occurred in
43%, followed by vomiting (29%) and drooling (28%). The most common ingested objects
were coins. Ordinal chest X-rays demonstrated aberrations in 132 cases, and in uncertain
situations, an esophagram test was additionally ordered. For the group of 37 patients
whose radiograms were normal, esophagoscopy revealed fifteen more NBFOs, which were
eventually successfully removed. In the Ref. [35] Schlesinger and Crowe evaluated the
clinical presentation and radiographic appearance in eight cases of esophageal coins in
children with an atypical sagittal orientation on chest radiographs. They reviewed patient
age, sex, type of coin, location of the coin within the esophagus, method of coin removal,
presence of underlying esophageal anomalies, treatment, and complications related to
the coin ingestion or removal among the clinical records and chest radiographs of eight
children. They reported that the age of the eight children ranged from 3.8 to 17.7 years
(mean, 7.8 years), the coins were lodged at the level of the aortic arch in seven of the eight
patients and the level of the distal third of the esophagus in one patient. One of the eight
cases showed the coin was originally in the sagittal plane but spontaneously reoriented into
the coronal plane. They also mentioned that the coins with a sagittal orientation on chest
radiographs in the trachea were usually not correct. A coin seen with a sagittal orientation
on a chest radiograph will more likely be in the esophagus.

In the Ref. [36] Ullal et al. presented the case study of a new investigative technique of
virtual bronchoscopy, which is useful in locating non-radiopaque NBFOs missed using ordi-
nal radiography. The aim was to study the clinical profile of patients with suspected NBFO
aspiration and to evaluate the changing trends in the diagnosis for quicker management of
NBFO aspiration by the way of virtual bronchoscopy. For validation, Ullal et al. reviewed
the medical records of patients with NBFO aspiration from August 2006 to September 2016.
They reported that in 150 patients with NBFO aspiration, detected by virtual bronchoscopy,
148 patients were diagnosed to have NBFO by rigid bronchoscopy. This amounts to a
positive predictive value of 97.3% which was like the positive predictive value of rigid
bronchoscopy at 99%. Virtual bronchoscopy is the only imaging modality that returned
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99.9% reassurance about the presence or absence of a NBFO, because of both its high sensi-
tivity and specificity, proving to be a lifesaving tool. On the other hand, Morrier et al. [37]
evaluated the efficacy of a seed-migration detector and compared its performance to fluo-
roscopy and postoperative chest radiographs. Their propositions use a gamma scintillation
survey meter which was converted to a seed-migration detector by adding a shield on the
probe detection window. To validate, the detector was used to perform a chest evaluation
on 737 patients at their first postoperative visit. When the detector showed positive activity,
seed migration was confirmed by taking a chest radiograph and by looking at the region
with fluoroscopy. They reported that 103 patients (14.0%) presented at least one embolized
seed. This accounts for 123 of the 39,887 seeds. A total of 87, 12, and 4 patients had
1, 2, and 3 seed embolizations, respectively. Compared with the seed-migration detector,
detection based on fluoroscopy had led to 13 false-negative detections (of 103, or 12.6%),
and the radiograph had resulted in 31 or 30.1. In the Ref. [38] Kero et al. presented a report
during the years 1969–1981 where 57 children with inhaled NBFOs in the tracheobronchial
tree were treated at Turku University Hospital. They reported that 91% had a history of
NBFO inhalation and 25% had a radiopaque NBFO which was seen in the CXR. A total
of 9% of 57 patients had a NBFO discovered unexpectedly through bronchoscopy. These
NBFOs were removed by bronchoscopy from all the patients but one, who required a
segmentectomy due to a fragment of a spike in the lung parenchyma. Overall, we found
that it is frequently challenging to identify NBFOs in clinical settings since patients rarely
exhibit any specific symptoms, even though the longer they remain in the chest region,
the greater the risk to their health. Additionally, employing CXR to detect NBFOs early in
clinical fields is not an effective method, which motivates us to examine CAD performance,
as detailed in the following section of our research. In Table 1, all these cases and subjects
are described from clinical observation.

Table 1. Foreign objects in chest X-rays (clinical observation) dataset (cases and subjects).

Authors Foreign Objects Method Dataset (Case)
(Subjects)

Brown et al. (2012) [16] Magnets and batteries Case Study 1 Subject
Pugmire et al. (2016) [17] Button Battery Review 276 cases
Fuentes et al. (2014) [18] Button Battery Review and Case Study 3 Cases and 29 Review
Meyer et al. (2020)) [20] Button Battery, Coins, Disk magnets Case Study 20 subjects

Thompson et al. (1989) [21] Cardiopulmonary devices Digital and Analog 40 subjects

Godoy et al. (2012) [22]

Catheters, Pacemakers, Automatic
implantable cardioverter defibrillators,
intra-aortic counter pulsation balloon

pump, ventricular assist devices

Case Study -

Godoy et al. (2012) [23]
Endotracheal and tracheostomy tubes,

Chest tubes, and Nasogastric and
Nasoenteric tubes

Case Study -

Jennings et al. (1992) [24] Cardiopulmonary devices Phosphor plate system 50 subjects
Grier et al. (1990) [25] Pacemaker Case Study 600 subjects

Murthy et al. (2001) [26] Scarf pin Case Study 6 subjects
Orgill et al. (2018) [27] Multi-layer metallic candy wrappers Duel-energy radio-graph 1 subject

Huyett et al. (2018)) [31] Coins Case Study 4 subjects
Raney, Losek (2007)) [32] Coins Case Study 1 subject

Schlesinger, Crowe (2011) [35] Coins Case Study 8 subjects
Tander et al. (2009) [33] Coins Case Study 62 subjects
Ullal et al. (2018) [36]

Morrier et al. (2010) [37]
Foreign body Case Study 150 subjects

Seed-migration A gamma scintillation 737 Subjects
Kero et al. (1983) [38]

Rybojad et al. (2012) [34]
Foreign bodies Case Study 57 subjects

Esophageal foreign bodies Chi-square test 192 subjects

4. AI-Guided Tools for NBFO and BFO

Typical AI-guided tools work as demonstrated in Figure 3. In Figure 3, annotated
NBFOs and BFOs are used to train AI-guided tools that employ image processing, machine
learning, computer vision, and pattern recognition algorithms to detect/classify foreign
objects: NBFO and BFO.
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tion/detection.

Automatically detecting foreign objects in CXRs is not trivial [39] and it does not
have rich state-of-the-art literature. Often, shallow learning algorithms are used, and
feature engineering covers most of it, where basic image processing and pattern recognition
techniques are common. A technique to identify NBFOs in chest X-rays, such as buttons on
the patient’s robe, was developed by Zohora et al. [2]. The four main techniques used in
these claims—intensity normalization, low-contrast picture identification and enhancement,
segmentation of lung areas, and button object extraction are based on the Hough transform
and the Viola–Jones algorithm. Using a ground truth dataset of 505 button objects, they
examined and contrasted both methods for validating these approaches. Using a new
method, Zohora et al. [40] mentioned the detection of circular NBFOs and BFOs (such as
buttons and medical devices) in lung areas. They first created an edge map using a variety
of edge detection methods, then performed morphological procedures to choose possible
candidates. They applied the circular Hough transform (CHT), and with lung segmentation,
they reported precision, recall, and F1 scores of 96%, 90%, and 92%, respectively. Their
results are comparable with state-of-the-art works. An automated approach was created
by Hogeweg et al. [41] to identify and eliminate NBFOs and BFOs from chest radiographs,
such as buttons, brassier clips, jewelry, pacemakers, and wires. These methods produced
a probability estimate for each pixel belonging to a projected NBFO and BFO by using
supervised pixel classification using a kNN classifier. By grouping and post-processing
pixels with a probability greater than a specific benchmark threshold, segmentation was
carried out. In paintings, texture took the place of actual objects. They assessed trials on
257 chest radiographs and the reported accuracy of the detection at a pixel level value of
0.949 to validate this method. At the object level, free response operator characteristic
analysis revealed that 95.6% of objects were recognized with an average of 0.25 false-positive
detections per image.

Schultheiss et al. [42] developed a design to improve the early detection of lung cancer
in computed tomography and CXR. Based on segmented pulmonary nodules, their model
trained a convolutional neural network (CNN) based on a single-stage detector (RatinaNet)
with 257 annotated radiographs and 154 additional radiographs from a public dataset. They
conducted a reader study with 75 cases to validate the design and found that for nodule
location detection, the architecture had a performance of 43 true-positives, 26 false-positives,
and 22 false-negatives. They also compared the performance of the convolutional neural
network with the performance of two radiologists. In contrast, the dual readers performed
with 42 true-positives and 2 false-positives, 28 true-positives and 0 false-positives, and
23 false-negatives. They found a ROC, AUC value of 0.87 for the reader study testing the
trained RetinaNet architecture to be only marginally susceptible to detect NBFOs and BFOs
in terms of misclassifications: out of 59 additional radiographs containing NBFOs and BFOs,
two radiographs had false positives that were mistakenly identified as foreign bodies.
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Deshpande et al. [43] proposed a design to classify NBFOs (e.g., tubes and wires,
pacemakers, implants, small external objects, jewelry, and pushbuttons) in CXRs. They
used a deep learning framework with the subset of the MIMIC CXR dataset and anno-
tated 6061 images with the primary purpose of classifying NBFOs. Their networks were
pre-trained using ImageNet on the NIH database ChestX-ray14. Using five-fold cross-
validation on 4704 images plus an additional test set containing 1357 images, they reported
classification AUCs of 0.984 (for binary classification) and 0.96 (for multilabel classification).
Note that their objective was to classify foreign objects, not detection and/or localization of
foreign objects. As a result, it was not included in Table 2.

Table 2. NBFO and BFO in chest X-ray, dataset size, and performance measured in Performance,
Recall, F1-score.

Authors NBFO, BFO Methods Datasets
(Size of Images) Performance (in %)

Precision Recall F1-Score

Xue et al. (2015) [39] Buttons Hand-crafted
features 505 0.84 0.88 -

Zohora, Santosh (2017) [2] Buttons, medical devices Hand-crafted
features 50 100 100 -

Zohora, Santosh (2017) [40] Circular (buttons,
medical devices)

Hand-crafted
features 400 0.96 0.90 0.92

Hogeweg et al. (2013) [41]
Buttons, brassier clips,
jewelry, or pacemakers

and wires
kNN classifier 257 0.949 (pixel

level value) - -

Schulthesiss et al. [42] Nodule detection CNN (RatinaNet) 411 - 0.87
(ROC) -

Santosh et al. (2020) [44] Circle like (e.g.,
coins/buttons) R-CNN 400 0.97 0.90 0.93

Santosh et al. (2022) [45]
Buttons, coins, ring,
pinnode, medical

devices, tube
YOLOv4 400 0.85 0.93 0.89

Santosh et al. [44] created a method that used a faster region-based convolutional
neural network to detect circle-like NBFOs (such as coins and buttons) of various sizes
during an automated CXR screening process (R-CNN). On a set of 400 publicly accessible
CXR images hosted by LHNCBC, the U.S. National Library of Medicine (NLM), and the
National Institute of Health (NIH), the authors validated the use of the proposed deep
neural network (DNN) and achieved 97% precision, 90% recall, and a 93% F1-score. All
these reported works were mostly limited to circle-like foreign object detection. Using
this same dataset, Santosh et al. [45] published their recent work based on a YOLOv4-a
DNN-based object detection technique, and they were able to detect all kinds of foreign
objects (BFO and NBFO) in their research. They achieved the following performance scores:
accuracy of 91.00%, precision of 85.00%, recall of 93.00%, and f1-score of 89.00%. Unlike
state-of-the-art works, where they are limited to a specific type of foreign object (e.g., circle-
like objects), this is the first time they reported experimental results on all possible types of
foreign objects. In Table 2, the methods and performance of detecting BFOs and NBFOs
are described.

5. Data Description

In this section, we summarize datasets used in Section 4. Table 3 includes the dataset
name size and the author’s name, which are mentioned in Section 4. The National Library of
Medicine (NLM) dataset, which had been preserving a sizable dataset of chest radiographs
as well as related radiological reports, was used by Xue et al. [39]. This dataset, compiled
by the medical school at the University of Indiana, includes around 4000 frontal and lateral
chest X-ray DICOM image pairings and 4000 textual reports that correlate to the images [46].
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It was incorporated into Open-i, a multi-modal system for retrieving biological literature
created by NLM [47]. The creation and evaluation of computer-aided diagnosis (CAD)
algorithms for lung disorders can benefit from this dataset.

Table 3. Datasets.

Dataset Size Authors

US NLM, National Institute of Health (Indiana Dataset) 278 Xue et al. (2015) [39]

US NLM, National Institute of Health 50 Zohora, Santosh (2017) [2]

US NLM, National Institute of Health 400 Zohora, Santosh (2017) [40]
Santosh et al. (2020,2022) [44,45]

Digital Diagnost Trixel, Philips Healthcare, the Netherlands 257 Hogeweg et al. (2013) [41]

Japanese Society of Radiological Technology (JSRT) 411 Schulthesiss et al. [42]

Zohora et al. [2,40] used a subset of the dataset maintained by the National Library of
Medicine (NLM) composed of 50 DICOM and 400 DICOM CXRs images. There was a total
of 32 buttons on the chest of this subgroup of the data set. Since they are not present in this
data set, they marked the related ground truths. Additionally, Santosh et al. [44,45] used
the same dataset of 400 CXR images in their experimental work.

For evaluation of the detection and removal of NBFO, Hogeweg, et al. [41] used a
large chest radiograph database of 257 chest radiographs from a tuberculosis screening
program for high-risk groups in London [48]. Each image was captured digitally using a
single device (DigitalDiagnost Trixel, Philips Healthcare, the Netherlands). According to
the size of the source image, all photos in this work were scaled to a width of 1024 pixels,
giving them resolutions ranging from 0.22 to 0.38 mm per pixel. They discovered that
this resolution is adequate for the detection of tuberculosis-related anomalies in chest
radiographs, even though the original resolution is about a factor of 2 higher (0.144 mm
pixel size). For the identification and segmentation of NBFOs, this resolution also proved
sufficient. Full-resolution photographs could also use inpainting if desired. NBFOs can be
found in this database’s photos in about 20% of the cases. A subset of this database was
used to evaluate the automatic detection of foreign objects and their effect on the automatic
detection of textural abnormalities.

A dataset of 391 CXRs was collected from Schultheiss et al. [42] and the institution’s
picture archiving and communication system (PACS). Therefore, case-level ground truth
labels (unsuspicious or nodulous) were assigned based on the diagnosis of two radiologists:
the first radiologist made the diagnosis according to a clinical routine, and a second radiol-
ogist (who had 3 years of experience in chest imaging) verified and segmented the nodules,
retrospectively, using our in-house built web-based platform. Another radiologist checked
the segmented nodules for the reader study test set (12 years of experience). Based on the
segmentation boundaries, bounding boxes were extracted from the segmentations. A total
of 257 radiographs with nodules were utilized for training purposes. The Japanese Society
of Radiological Technology (JSRT) dataset 31, from which 154 additional radiographs with
labeled nodules were obtained, was used to complement the training data. Consequently,
411 radiographs were used in total for training. To train a lung segmentation network,
lung segmentations for each of the 247 JSRT files were also taken from the segmentation in
chest radiography (SCR) database 32. Please take note that 93 more non-nodulous photos
from the JSRT database were included in the data for lung segmentation. For the lung
segmentation train, validation and test set sizes were set to 157, 40, and 50.

6. Conclusions

In this paper, we analyzed overlaid foreign objects in chest X-ray (CXR) images by
considering two factors: clinical significance and AI-guided tools. Both non-biomedical
foreign objects (NBFOs) and biomedical foreign objects (BFOs) were considered in our
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study since we were required to have effective reading and accurate interpretation of CXRs.
While reviewing, we observed that NBFOs range from accidentally ingested batteries, coins,
hair pins, jewelry, candy wrappers, hardware, or toys, and BFOs include biomedical devices
like pacemakers, medical device wiring, medically installed prostheses, and medical tubing.
In addition to clinical significance, we examined the detailed discussions on numerous
clinical reports in addition to computer-aided detection (CADe) with diagnosis (CADx)
tools. In CADe and CADx, both shallow learning and deep learning algorithms were
considered. When it comes to automation, AI-guided tools (with the possibility of having
explainability and/or interpretability) are a must, but they require larger datasets.
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