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Abstract: Sleep monitoring has become a prevalent area of research where body position and physio-
logical data, such as heart rate and respiratory rate, are monitored. Numerous critical health problems
are associated with poor sleep, such as pressure sore development, sleep disorders, and low sleep
quality, which can lead to an increased risk of falls, cardiovascular diseases, and obesity. Current
monitoring systems can be costly, laborious, and taxing on hospital resources. This paper reviews
the most recent solutions for contactless textile technology in the form of bed sheets or mats to
monitor body positions, vital signs, and sleep, both commercially and in the literature. This paper is
organized into four categories: body position and movement monitoring, physiological monitoring,
sleep monitoring, and commercial products. A detailed performance evaluation was carried out,
considering the detection accuracy as well as the sensor types and algorithms used. The areas that
need further research and the challenges for each category are discussed in detail.

Keywords: pressure injury; sleep quality; sleep monitoring; body position monitoring

1. Introduction

Sleep monitoring has become an area of interest to many researchers and BioTech com-
panies. Sleep monitoring research and commercial products primarily focus on monitoring
body positions and movements as well as physiological signals to evaluate pressure sores,
sleep disorders, and sleep quality.

Pressure monitoring during sleep is an important factor which helps to minimize the
risk of pressure sore development. Pressure sores can develop when there is a constant
pressure applied to a specific region on the body, resulting in injury to the surrounding
skin or tissue region due to cell death, inflammation, and ischemia [1]. In 2020, pressure-
related injury complications were responsible for the deaths of roughly 60,000 people
worldwide [2]. Patients with pressure sores are 4.5 times more likely to die than those who
have similar health factors with no pressure-related injuries [2]. According to the Canadian
Association of Wound Care, 70% of pressure related injuries in healthcare settings are
preventable [3]. Currently, pressure sores are monitored by healthcare workers in hospitals
who are responsible for shifting the body positions of patients throughout the day and night.
This can be a laborious task for these workers and can be taxing on hospital resources [4].
According to the Canadian Association of Wound Care, where pressure injury is the main
cause for admission, the mean cost of hospitalization is CAD 23,922 ± 54,367 [3]. Therefore,
an unobtrusive monitoring technique is necessary to assist patients in and outside of the
hospital while reducing the workload of their caregivers.

Previous research showed that body postures and movement during sleep are closely
associated with sleep quality [5–7]. Good sleep quality is beneficial as it can improve work
efficiency, strengthen the immune system, and help maintain one’s physical health [8]. On
the other hand, poor sleep quality can cause extreme fatigue and emotional exhaustion
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and increase the risk of cardiovascular diseases, as well as obesity and diabetes [8,9].
An unobtrusive monitoring system could assist people with understanding their quality
of sleep.

Previous studies also demonstrated that position monitoring of the elderly population
plays an important role in fall prevention and sleep disorder diagnosis [10–13]. Falls can
often occur when a person attempts to get out of bed or becomes close to the edge of the
bed during sleep. Falling from the bed causes serious injuries, such as bruises, achiness,
and bone fracture [10]. In addition, remaining in the same sleep posture for a long time
will not only result in pressure sores but also other health issues, such as sleep paralysis
and nocturnal gastroesophageal reflux [11]. Therefore, an unobtrusive posture monitoring
system is critical for the elderly population, who are more susceptible to injuries and
health complications.

Monitoring physiological data during sleep such as the respiratory rate and heart rate
can help in daily health assessment. Such monitoring can also aid in the early detection of
issues like cardiovascular diseases, obstructive sleep apnea (OSA), and mental stress [14,15].
According to the Canadian Chronic Disease Surveillance System, as of 2018, 2.6 million
Canadian adults over the age of 20 live with a diagnosed heart disease [16]. Adults 40 years
and over with diagnosed heart failure are 6.3 times more at risk of death if not monitored
properly [16]. Respiratory monitoring is also important, as 12.8% of the elderly population
(60+ years old) reported being diagnosed with OSA, where males are 4.8% more likely to
have OSA than their female counterparts [17]. OSA can be defined as the inability to get
enough air during sleep, lowering oxygen blood levels [18]. This pattern may be repeated
on average between 5 and 30 times per hour, impairing one’s ability to reach a deep sleep
state [18,19]. Inadequate restful sleep may cause cardiac diseases such as hypertension,
stroke, and heart failure. Severe OSA can also be the reason for decreased memory and
cognitive decline [20]. However, 80% of people with symptoms of OSA go undiagnosed due
to costly and time-consuming diagnostic procedures [19]. Although the polysomnography
(PSG) is known as the gold standard in sleep disorder diagnosis, it is complicated, expensive,
time-consuming, and must be used inside a laboratory. Furthermore, it is difficult for people
to receive this diagnosis as there are few hospitals which provide PSG tests, especially
in rural areas. Therefore, there is a demand for a cost-effective, easy-to-set-up tool with
acceptable accuracy to monitor physiological data during sleep and detect sleep disorders.

To address these challenges, several studies worked on contactless textile technology
in the form of bed sheets or mats to monitor body positions, vital signs, and sleep. In this
paper, we review and compare both the prior literature and commercial devices related to
this technology, discussing the field’s advancements as well as the existing gaps.

This paper is organized as follows. Section 2 discusses the process of how this literature
search was conducted as well as the exclusion criteria. Section 3 explains the recent literature
and commercial products within the field of smart bed sheets and mats for in-bed posture
monitoring, physiological signal monitoring, and sleep monitoring. Section 4 discusses the
pros and cons of the research and existing products explained in Section 3 in more detail.
Finally, Section 5 concludes the review and discusses the next steps that should be taken
within this field of research.

2. Methods

The literature search was conducted from April to July 2023. Google Scholar, En-
gineering Village, and the University of Toronto’s Online Library Database were the
search engines used for this review paper. Databases such as IEEExplorer, PubMed,
and MDPI were also searched for papers. The following is a list of the key search
terms used, where a “+” signifies “and” and a “/” signifies “or”: smart mat/sheet,
sleep mat/sheet, smart mat/sheet + body posture/position, smart mat/sheet + body
movement, sleep mat/sheet + body posture/position, sleep mat/sheet + body move-
ment, smart mat/sheet + physiological data, sleep mat/sheet + physiological data, smart
mat/sheet + respiratory/breathing rate, sleep mat/sheet + respiratory/breathing rate,
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smart mat/sheet + heart rate/heartbeat, sleep mat/sheet + heart rate/heartbeat, smart
mat/sheet + sleep apnea monitoring/detection/diagnosis, sleep mat/sheet + sleep apnea
monitoring/detection/diagnosis, smart mat/sheet + sleep quality/sleep cycle/sleep stage,
and sleep mat/sheet + sleep quality/sleep cycle/sleep stage.

In total, 95 papers were analyzed, and 63 relevant papers were selected for this review.
Since the review was focused on the use of smart mats and sheets or sleep mats and sheets,
any studies or commercial products that incorporated a bed mattress were removed. Papers
and commercial products that focused on smart mats and sheets or sleep mats and sheets
that only examined the body or room temperature were also removed, as these areas were
not the focus of this study. As this is a state-of-the-art review paper, we focused on papers
from the past 13 years (2010–2023).

3. Applications of Textile Technologies for In-Bed Patient Monitoring

This section is composed of four subsections. The first subsection discusses the existing
literature on the application of smart bed sheets and mats in detecting and classifying in-bed
postures using machine learning algorithms. The subsequent subsection reviews previous
studies on detecting the respiratory rate and heart rate from data collected by smart bed
sheets or mats. The third subsection investigates the accuracy within the literature with
regard to detecting obstructive sleep apnea as well as sleep quality using data collected by
smart bed sheets and mats. Finally, the last subsection summarizes the smart mats or bed
sheets on the market that are used to detect in-bed body positions, in-bed body movement,
or in-bed vital signs.

3.1. Body Position and Movement Monitoring Using a Smart Mat or Bedsheet

Body position monitoring has been an area of research over the past couple of decades.
This is an area of interest as sleep postures can contribute to sleep disorders, pressure
ulcers, and pain in the shoulder, neck, and back regions [8]. In recent studies, sleep posture
and body movement monitoring has been applied to determine sleep quality and sleep
efficiency as well as warn caregivers whether a person is near the edge of the bed [8,10].
Today, monitoring body positions during sleep typically includes the use of either a video
infrared camera or wearable devices. However, there are concerns with the use of these
systems. Video infrared cameras are sensitive to environmental changes such as blanket
movement and suffer from occlusion issues. Wearable devices such as watches [21] and
chest straps [22] tend to be obtrusive to sleep, reducing a person’s sleep quality, and
are sensitive to motion artifacts [8]. Therefore, a variety of sleep monitoring mats have
been studied which create an unobtrusive monitoring system for detecting body position
and motion.

In this section, 29 articles have been reviewed with a focus on body position and
movement detection. All these studies were conducted in either a simulated or clinical
testing environment. A simulated testing environment typically relates to the supervisor
instructing the subject to lie in specific postures for a short period of time (less than 1 h),
which can be seen in [23–30]. Contrastingly, a clinical testing environment allows the subject
to alter their body position for their comfort for a minimum of 1 h. However, typically this
study is conducted overnight for a minimum of 7 h, which can be seen in [31–34]. Diao et al.
presented the outcomes from both clinical and simulated testing environments for detecting
body postures in [8,32] using various algorithms. The results showed that the detection rate
in a simulated environment had an accuracy of 95.08% and 95.43% in [8,32] respectively,
while in the clinical testing environment, the detection accuracy dropped to 86.35% and
86.80% in [8,32], respectively. Therefore, as expected, a simulated study can have a higher
detection accuracy as it is more controlled. However, sleep is not typically controlled, and
therefore a simulated testing environment may not represent actual overnight sleep.

A variety of embedded sensors have been studied to determine the accuracy of
detecting sleep positions and movement. These sensors are classified into two main
categories: pressure sensors and force sensors. Pressure sensors have been used in many
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articles, including studies completed by Stern et al. [35], Davoodnia et al. [36], Enokibori
et al. [31], and Matar et al. [37]. Force sensors such as force-sensitive resistors (FSRs),
resistive sensors, piezoresistive force-based sensors (FSAs), and load cells were used in
studies completed by Huang et al. [38], Kitzig et al. [39], and Liu et al. [34]. Although
these two categories of sensors use different mechanisms for detecting body position and
movement on the bed, they provided similar results in terms of detection accuracy.

The most common machine learning algorithms to use within body posture detection
analysis are deep neural networks (NNs), K-nearest neighbor (KNN), and support vector
machines (SVMs). Neural networks can be described as a system that has many intercon-
nected nodes and works similar to the neurons of the brain to classify different events and
objects [31]. A KNN model is a machine learning algorithm that uses the distance and
proximity to classify data into groups [24]. An SVM model is a classifier that uses labeled
datasets to train itself to perform classifications or regression analysis on datasets [37].

Several studies ignored classifying supine and prone body positions separately or
ignored the prone position entirely. It was determined that it can be difficult to distinguish
between these two postures via force and pressure imaging as these two positions have
quite similar pressure spots. Indeed, the main difference is that the supine position occurs
while one is lying on his or her back, whereas the prone position occurs while lying on
the stomach [4]. Figure 1a depicts the detection accuracy of the reviewed articles versus
the number of subjects for the posture classification algorithms, and Figure 1b shows the
detection accuracy versus the number of postures classified within the algorithm. Both
figures consider studies that merge supine and prone positions (orange dots) or exclude
the prone position (blue dots). The black dashed lines represent the average accuracy
and sample size or positions considering all 20 studies. The gray region shows the region
of interest, which has large sample size and high accuracy values in Figure 1a or a high
quantity of positions in Figure 1b.
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Figure 1. Accuracy comparison between studies that included the prone position and studies that
either exclude the prone position or merge it with the supine position (a) versus the number of
subjects and (b) versus the number of postures detected [4,8,10,11,23–38,40–47].

As highlighted in Figure 1a,b, the study in [40] provided a maximum accuracy of
99.97% with 13 subjects and 3 body postures. The study in [31] examined cases where the
prone position was included and excluded, resulting in accuracies of 97.1% and 99.7%,
respectively. This demonstrated that there was higher accuracy detection when the prone
position was excluded. However, the 2.6% difference may not justify excluding this body
position, since this position is a part of the four most common sleeping postures. Based
on Figure 1a, this study included 19 participants, and from Figure 1b, this study classified
3 and 4 body positions: supine, left side, right side, and prone (as the fourth position).
Based on Figure 1b, the studies in [38,41] classified the highest number of body postures,
totaling 9 different positions with accuracy rates of 94.05% and 96.10% with and without
the prone position, respectively. However, these studies tested three and six participants,
as shown in Figure 1a. Among the articles reviewed, the maximum sample size was
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300 participants in [42]. This article was excluded from Figure 1 for better visualization.
The studies in [11,37] were also excluded from Figure 1a, as these studies did not mention
the number of subjects tested. Viriyavit et al. [10] and Tang et al. [11] proposed body
position detection for the elderly population of 60+ years old. Both studies examined
fall prevention methods for the elderly population when getting off the bed or coming
close to the edge of the bed while sleeping. Viriyavit et al. [10] classified an unoccupied
bed, sitting, lying in the center, right edge lying, and left edge lying using a combined
naïve Bayes and Bayesian network algorithm, with detection accuracies of 98.46%, 89.07%,
96.40%, 98.46%, and 93.05%, respectively. Tang et al. [11] classified an unoccupied bed
and a singular posture representing edge detection using a convolution neural network
(CNN), with accuracy rates of 100% and 95%, respectively. This study also used a mobile
application to detect the postures throughout the night and notify a caregiver of a fall event
when edge detection occurred [11].

Tables 1 and 2 summarize the literature reviewed with merged supine and prone
positions or the prone position excluded and the literature that included both the prone
and supine positions, respectively.

Table 1. Body posture classification studies with merged supine and prone positions or prone position
excluded. The order is from highest to lowest detection accuracy rates.

Year Ref. #Subs #Postures Testing Condition Type and Sensor No. Algorithm Accuracy

2021 [40] 13 3 Simulated 2048 pressure CNN 1-to-SNN 2

conversion
100%

2023 [35] 13 3 Simulated 2048 pressure ResNet-18 99.97%

I3D 3 98.90%

2021 [36] 13 3 Simulated 2048 pressure
SVM 4 99.20%

KNN 5 99.80%

Deep NN 6 99.97%

2018 [31] 19 3 Clinical 784 pressure Deep NN 99.70%

2016 [23] 10 5 Simulated 2048 FSR HoG 7 and deep NN 98.10%

2020 [10] 3 5 Simulated 2 piezoelectric and
2 pressure NN and BN 8 95.09%

2011 [24] 6 5 Simulated 2038 FSA KNN 97.70%

2013 [25] 20 8 Simulated 2048 FSR KNN 97.10%

2017 [38] 6 9 Simulated 6 FSR Pattern matching 96.10%

2022 [43] 1 5 Clinical 1080 pressure and
1080 piezoelectric LSTM 9 94.74%

2016 [37] NA 3 Simulated 512 pressure SVM 94.14%

2014 [26] 9 3 Simulated 1728 resistive KNN 91.60%

2011 [27] 3 3 Simulated 1024 FSA HMM 10 90.40%

2021 [28] 5 6 Simulated 1024 pressure HoG and SVM 83.36%

CNN 86.94%

2017 [44] 13 3 Simulated 2048 pressure Deep NN 82.70%

2015 [29] 10 6 Simulated 1768 pressure SVM 77.10%

CNN 1 = convolution neural network, SNN 2 = spiking neural network, I3D 3 = inflated 3D network,
SVM 4 = support vector machine, KNN 5 = K-nearest neighbor, NN 6 = neural network, HoG 7 = histogram
of oriented gradients, BN 8 = batch normalization, LSTM 9 = long short-term memory, and HMM 10 = hidden
Markov model.
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Table 2. Sleep posture classifications with supine and prone positions distinguished. The order is
from highest to lowest detection accuracy rates.

Year Ref. #Subs #Postures Testing
Condition Type and Sensor No. Algorithm Accuracy

2020 [4] 12 4 Simulated 1728 piezoresistive Artificial NN 97.9%

2019 [42] 300 6 Simulated 2048 piezoresistive CNN 97.2%

2018 [31] 19 4 Clinical 784 pressure Deep NN 97.1%

2021 [45] 7 4 Simulated 1024 pressure
SVM 95.54%

KNN 96.43%

2022 [32]
16

4
Simulated

1024 FSR
FCSNet 95.43%

5 Clinical Tiny-MobileNetV2 86.80%

2021 [8]
16

4
Simulated

1024 FSR ResNet
95.08%

5 Clinical 86.35%

2010 [41] 3 9 Simulated Video and FSR SVM 94.05%

2016 [33] 14 6 Clinical 8192 piezoelectric pressure EMD 11 and KNN 91.21%

2022 [46] 6 4 Simulated 330 pressure sensors Sparse classifier 91.00%

2015 [47] 14 6 Simulated 8192 pressure KNN 90.78%

2021 [11] NA 6 Simulated 171 piezoresistive CNN 90.5%

2021 [30] 11 5 Simulated
5 pressure tiles and

8 electrodes for
capacitive sensing

Random forest 85.02%

2014 [34] 14 6 Clinical 8192 FSR Sparse classifier 83.2%

EMD 11 = empirical mode decomposition.

3.2. Physiological Data Monitoring Using a Smart Mat or Bedsheet

Monitoring physiological data during sleep such as the respiratory rate and heart
rate can help monitor daily health and discover abnormalities such as cardiovascular
diseases, sleep apnea, and mental stress in the early stages [14,15]. Conventionally, a
polysomnography (PSG) monitors physiological data during sleep. However, this device
requires subjects to be in sleep laboratories and attach several sensors to their bodies during
sleep. Although PSG is the “gold standard” for monitoring physiological data during
sleep, it can be obstructive to normal sleep, and the sensors may fall off the body, causing
inaccurate results [14]. Wearable devices such as smart watches and chest straps [48,49] have
become increasingly popular to monitor physiological data. However, these devices must
be in direct contact with the skin and are susceptible to motion artifacts [14]. Contactless
smart mats or cover sheets are viable solutions for establishing an unobtrusive monitoring
system for physiological data in laying down positions.

In this section, 15 academic papers are reviewed relating to detection of the respiratory
rate and heart rate using a smart bedsheet or mat. Similar to the body posture detection
section, clinical and simulated testing environments were used to evaluate the smart mats
and bed sheets with respect to respiratory rate and heart rate. Seven out of 15 studies only
used a simulated setting [14,50–55], while the rest used the clinical testing environment,
allowing for more reliable results. Only [15] used both clinical and simulated testing
environments, with a simulated environment only having 0.9% higher heart rate coverage
than a clinical environment, demonstrating that these studies should also be evaluated
in a clinical setting to show the potential use in a realistic situation. Additionally, only
two sensor categories were studied to determine the accuracy of detecting physiological
data: pressure sensors and force sensors. There was no significant discrepancy in accuracy
between these two methods when it came to detecting physiological data. A variety of
algorithms were used for detecting the respiratory rate and heart rate. The most common
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detection method was peak detection, which identifies the peaks of the signal to determine
each breath or beat [15,50,56–58]. Maximal overlap discrete wavelet transform (MODWT),
wavelet analysis, cepstrum, clustering, and empirical mode of decomposition (EMD) are
also popular detection algorithms for detecting the signals of the heart rate and respiratory
rate, which can be seen in [12,14,51,59]. Peng et al. [14] compared the wavelet analysis
and EMD for estimating the respiratory rate and heart rate. This study found that wavelet
analysis was more accurate than the EMD method by 3.83% for detecting the respiratory
rate and by 1.92% for detecting the heart rate. This study also considered different window
sizes (10 s, 30 s, and 60 s) using three algorithms: wavelet analysis, EMD, and dynamic
smoothing (DS). Their findings indicated that increased window sizes consistently yielded
more accurate results.

Huang et al. in [53] used a de-shape synchrosqueezing transform (DSST) to evaluate
the respiratory rate and heart rate and consider both the time and frequency domains’
features. The authors decided to use two methods when evaluating the respiratory rate:
examining the shoulder region and examining the torso-weighted centroid. The DSST
was performed on filtered data obtained from nonzero values found in the shoulder blade
regions, resulting in a root mean squared error (RMSE) of 1.32 bpm. The DSST was then
performed on filtered data obtained from the vertical movement of the weighted centroid
in the torso region, which mimics inhalation and exhalation, resulting in an RMSE of
0.87 bpm. Therefore, the analysis of data from the torso-weighted centroid resulted in a
more accurate respiration rate. When employing the DSST for heart rate estimation, an
RMSE of 5.55 bpm was obtained, which was significantly higher than the results achieved
for respiratory rate estimation. This suggests that [53] demonstrated superior performance
in detecting the respiratory rate compared with heart rate detection.

The health of the participants in each study can influence the accuracy of the outcomes.
Those with histories of cardiac or respiratory illnesses or sleep disorders may skew the
accuracy, often resulting in lower results compared with studies with healthy subjects.
The study completed by Kortelainen et al. [60] included subjects with sleep problems and
arrhythmias. The authors found that when considering only the healthy subjects, the heart
rate’s mean absolute error (MAE) was 0.4% with coverage of 88%. However, including
unhealthy subjects increased the MAE to 1.8% with coverage of 80%. This might indicate
that studies that include either healthy and unhealthy subjects or just unhealthy subjects
are susceptible to lower accuracy rates.

Seven of the 15 articles estimated both the respiratory rate and heart rate [12,14,50,53,56,60,61],
but only [50] reported the results in a consistent format for comparison. From this, the MAE
relating to the respiratory rate was slightly lower than that of the heart rate, indicating that
it may be easier to correctly detect the respiratory rate from smart mats or bedsheets than
the heart rate.

Figure 2a highlights the MAEs of four out of the nine articles on respiratory rate
estimation using smart mats or bedsheets [50,55,58,59]. Similarly, 3 of the 12 heart rate
articles investigated the MAEs of their smart mats or bed sheets [50,51,54], shown in
Figure 2b. The black dashed lines represent the average MAE and number of subjects of
all included studies. It should be noted that the vertical black dashed line in Figure 2a is
skewed to the higher end of the number of subjects due to the large sample size in [59]. The
gray region shows the region of interest, which has a large sample size and low MAE values.

The minimum MAE relating to the respiratory rate was from [58], with an MAE value
of 0.18 breaths per minute. However, this article also included the smallest sample size
of only five subjects. Though [50] did not fall within the gray region of Figure 2a, it was
the closest study to this region due to the low MAE value of 0.38 breaths per minute and the
second highest sample size of 10 subjects. Meanwhile, [59] consisted of the largest sample size
with 80 subjects but also achieved the highest MAE of 4.57 breaths per minute. The minimum
MAE relating to the heart rate was achieved in [50], with an MAE value of 0.55 beats per
minute and the largest sample size of 10 subjects, falling within the gray region of Figure 2b.
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By comparison, the study in [54] achieved an MAE over six times greater than that in [50]
with the same sample size. Tables 3 and 4 summarize the articles reviewed in this section.
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Figure 2. MAE comparison between studies that captured (a) respiratory rate and (b) heart
rate [50,51,54,55,58,59].

Table 3. Studies for detecting the respiration rate. The order is from latest to oldest articles.

Year Ref. #Sub. Testing
Condition

Type and
#Sensor Algorithm Coverage Performance

2023 [55] 5 Simulated 13 sensing
elements Peak Detection N/A MAE 12: 0.65 bpm 13

2021 [53] 15 Simulated
2016 pressure

sensors

DSST 14 shoulder blade N/A RMSE 15: 1.32 bpm

DSST with
weighted centroid N/A RMSE: 0.87 bpm

2021 [56] 10 Clinical Plastic optical fiber Peak detection N/A RE 16: 6.7%

2020 [12] 10 Clinical Microbend fiber
optic sensor

Wavelet analysis
and EMD N/A NMAE 17: 11.42% ± 2.62

2019 [14] 10 Simulated 18 piezoelectric
ceramic sensors

Wavelet analysis

N/A

ACC 18: 98.95%

EMD ACC: 95.12%

DS ACC: 96.06%

2019 [59] 80 Clinical Microbend FOS 19

MODWT 76.62% MAE: 4.57 ± 6.89 bpm

HNM 20 76.62% MAE: 6.29 ± 8.14 bpm

CLIE 21 76.62% MAE: 8.71 ± 8.37 bpm

2018 [50] 10 Simulated FOS sensors Peak detection N/A MAE: 0.38 ± 0.32 bpm

2016 [61] 4 Clinical 4 load cells Peak detection 84.25% MAE: 2.66%

2015 [58] 5 Clinical 5 load cells Peak detection N/A MAE: 0.18 bpm

2012 [60] 6 Clinical Emfit sensors and
8PVDF 22 PCA model 23 90.00% MAE: 1.5%

MAE 12 = mean absolute error, bpm 13 = breaths per minute, DSST 14 = de-shape synchrosqueezing trans-
form, RMSE 15 = root mean squared error, RE 16 = relative error, NMAE 17 = normalized mean absolute error,
ACC 18 = accuracy, FOS 19 = fiber optic sensor, HNM 20 = harmonic plus noise model, CLIE 21 = continuous local
interval estimation, PVDF 22 = polyvinylidene fluoride, and PCA model 23 = principal component analysis model.

3.3. Sleep Monitoring Using a Smart Mat or Bedsheet

Combining the body posture and movement detection as well as physiological data
can assist with diagnosing sleep apnea and determining the sleep quality of a person.

Sleep apnea is a sleep condition that affects many individuals and is related to health
complications. PSG is the gold standard for assessing and diagnosing sleep apnea [62]. PSG
uses breathing sensors to detect nasal-oral airflow amplitude and blood oxygen saturation
(SaO2) levels [63]. PSG also monitors electroencephalogram (EEG) signals to measure brain
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activity, electrooculogram (EOG) signals to measure eye movement, electromyography
(EMG) signals to measure muscle activity, and electrocardiogram (ECG) signals to measure
the heart rate [64]. This test must occur overnight and can be intrusive and disruptive to
the patient’s sleep [62]. Additionally, PSG data require manual scoring of apneic events
and thus can be time-consuming and require special training [63]. PSG devices are also
expensive and cannot be used in a person’s home [20]. Therefore, a smart mat that can detect
and diagnose sleep apnea is a viable alternative that makes this process more affordable
and accessible to all.

Table 4. Heart rate studies’ details. The order is from latest to oldest articles.

Year Ref. #Sub. Testing
Condition

Type and
#Sensor Algorithm Coverage Performance

2021 [53] 15 Simulated 2016 pressure sensors DSST N/A RMSE 24: 5.55 bpm

2021 [54] 10 Simulated 4 fiber Bragg grating
sensor arrays

Template
matching N/A MAE: 3.31 ± 1.26 bpm

2021 [56] 10 Clinical Plastic optical fiber Peak detection N/A RE: 2.4%

2020 [12] 10 Clinical Microbend fiber optic Wavelet analysis
and EMD N/A NMAE: 5.42% ± 0.57

2019 [14] 10 Simulated 18 piezoelectric ceramic

Wavelet analysis

N/A

ACC: 98.11%

EMD ACC: 96.19%

DS ACC: 95.08%

2018 [51] 6 Simulated FOS

Cepstrum

N/A

MAE: 4.62 ± 1.68 bpm

MODWT MAE: 6.87 ± 1.94 bpm

CEEMDAN MAE: 7.85 ± 4.34 bpm

Clustering MAE: 2.76 ± 9.53 bpm

2018 [50] 10 Simulated FOS MODWT N/A MAE: 0.55 ± 0.59 bpm

2016 [61] 4 Clinical 4 load cells Peak detection 73.79% MAE: 2.55%

2015 [15]
2 Simulated

Clinical
Capacitive sensors R-peak detection

98.70% MNE 25: 0.28%

7 97.80% MNE: 0.15%

2012 [60] 28 Clinical Emfit sensors and
8 PVDF Cepstrum 80.00% MAE: 1.8%

2012 [57] 4 Clinical 8 embroidered
textile electrodes R-peak detection 94.90% RMSE: 0.27 bpm

2012 [52] 4 Simulated Hydraulic bed sensor k-means
clustering 97.90% N/A

bpm 24 = beats per minute and MNE 25 = mean normalized error.

The quality of sleep, rather than the quantity, is associated with health [13]. Therefore,
sleep quality analysis is becoming important to study and being used to identify a variety
of health challenges. According to The American Academy of Sleep Medicine (AASM), a
typical sleep cycle consists of non-rapid eye movement (REM) sleep, meaning deep sleep,
and REM sleep, meaning light sleep [13]. This pattern repeats cyclically throughout the
night. In healthy adults, an average sleep cycle lasts between 90 and 100 min, beginning
with three stages of non-REM sleep followed by REM sleep. REM sleep comprises about
20–25% of total sleep in typical healthy adults. Generally, the longer the non-REM sleep
episode, the better the quality of sleep [13]. This cyclic pattern of the non-REM and REM
stages is altered for subjects with sleep disorders and other illnesses due to wakefulness
throughout the night [13]. Therefore, sleep cycle analysis can generate information about
people’s sleep quality, specifically those suffering from sleep disorders.
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We reviewed six academic papers related to sleep apnea and five concerning sleep
quality. Almost all studies were conducted in a clinical environment to better detect apneic and
sleep cycle events. These studies used either pressure or force sensors, similar to body posture
and physiological data detection. They all used machine learning algorithms and peak detection
since the data included body movement, the respiratory rate, and the heart rate.

The study conducted by Wang et al. [20] included the maximum number of subjects
(136) compared with other studies. They tested 41 subjects with no diagnosis of sleep apnea,
23 subjects with mild sleep apnea, 34 subjects with moderate sleep apnea, and 38 subjects
with severe sleep apnea.

It was reported that the sleep mat resulted in 95.1%, 91.3%, 94.1%, and 94.7% detection
accuracy values for no, mild, moderate, and severe sleep apnea, respectively, using an
SVM machine learning model. The study conducted by Hwang et al. [63] consisted of
4 subjects with no diagnosis of sleep apnea, 10 subjects with mild sleep apnea, 7 subjects
with moderate sleep apnea, and 10 subjects with severe sleep apnea. Through conducting
the same study on all these subjects overnight, it was found that the sleep mat resulted in
95.4%, 88.4%, 82.9%, and 80% accuracy detection for detecting no, mild, moderate, and
severe sleep apnea, respectively [63].

The studies in [12,50] only examined the accuracy of detecting apneic events in subjects
with OSA. The authors of [12] detected apneic events using derived respiratory signals
via a sliding window of 60 s and 30 s, resulting in an accuracy of 49.96% and 54.33%,
respectively. The authors of [50] detected apneic events in 10 subjects: 4 with diagnosed
moderate sleep apnea and 6 with severe sleep apnea. The obtained sensitivity of 24.24%
indicates the correctly identified apneic events, whereas the specificity of 85.88% correlates
to the correctly identified non-apneic events [50]. Similarly, the study in [65] detected
the possibility of apneic episodes during 3 consecutive nights in 2 healthy subjects and
7 subjects diagnosed with OSA, resulting in an accuracy of 71.9%.

The study conducted by Jung et al. [66] evaluated the sleep quality of 20 subjects:
10 subjects with no medical concerns or sleep disorders and 10 with OSA. The nighttime
wakefulness (awakening after sleep onset) was estimated by a polyvinylidene fluoride
(PVDF) film sensor with an accuracy of 97.4% in the healthy subjects and 96.5% in the
patients with OSA. The sleep efficiency was estimated with 1.08% and 1.44% errors for the
healthy subjects and patients with OSA, respectively.

Studies conducted by Samy et al., Laurino et al., and Kortelainen et al. evaluated
the detection rates of their systems considering wakefulness, non-REM sleep, and REM
sleep [13,67,68]. Samy et al. [13] detected the episodes of wakefulness, non-REM sleep, and
REM sleep with 55.9%, 100%, and 38.2% accuracy, respectively. Laurino et al. [67] reported
an accuracy of 83% for detection of the wakefulness episodes, 83% for non-REM sleep
and 79% for REM sleep. Laurino et al. [67] also examined the possibility of detecting no
bed occupancy, which resulted in an accuracy of 99%. Kortelainen et al. [68] reported an
accuracy of 81% for detection of the wakefulness episodes, 75% for non-REM sleep, and
80% for REM sleep. Kortelainen et al. [68] also examined sleep efficiency, resulting in an
overall detection accuracy of 84%.

A further comparison of sleep apnea detection studies and sleep quality evaluation
studies along with their associated algorithms is shown in Tables 5 and 6, respectively. It is
worth mentioning that it was difficult to conclude which signals, sensors, and algorithms
are best to use as these characteristics were different between each study. For example, two
studies [50,69] utilized the same signals (respiratory rate, heart rate, and body movement),
and both included peak detection. However, the study in [69], which involved 96 patients
with sleep apnea ranging from none to severe and used piezoelectric sensors, achieved a
notably higher sensitivity rate of 88%. In contrast, the study in [50] involved only 10 patients,
all with moderate or severe sleep apnea, and used a fiber optic sensor for a 30 min study,
resulting in a sensitivity of 24.24%. Therefore, although these two studies captured the same
signals and used similar detection algorithms, the variation in the patient population and
types of sensors makes it difficult to conclude which method is better. Another example is [20],
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which obtained the highest performance regarding sleep apnea detection with an accuracy
of 97.57% while utilizing a combination of respiratory and heart rate signals from a large
number of subjects (136). This method utilized a micro-movement-sensitive mattress and a
random forest machine learning algorithm to detect sleep apnea events. In [66], the authors
achieved the highest performance regarding sleep quality monitoring by combining heart rate
and body movement signals from 20 participants, resulting in an accuracy of 96.95%. They
used a polyvinyl fluoride film sensor and a peak detection algorithm. However, more recent
research, such as [70], achieved a slightly lower accuracy of 90.9% using data from 25 subjects
with only body movement signals and a hidden Markov model but with the advantages of a
larger sample size and the use of pressure sensors.

Table 5. Sleep apnea studies. The order is from latest to oldest articles.

Year Ref. #Sub. Testing
Condition Signal Used Type of Sensor Algorithm Performance

2020 [12] 10 Clinical RR 26 Microbend fiber
optic sensor

Wavelet analysis
and EMD ACC: 54.33%

2018 [50] 10 Simulated RR, HR 27, BM 28 FOS Peak detection and
MODWT

Sen 29: 24.24%
Spec 30: 85.88%

2017 [20] 136 Clinical RR, HR
Micro-movement-

sensitive
mattress

Peak detection ACC: 93.2%

KNN ACC: 95.05%

SVM ACC: 93.02%

Random forest ACC: 97.57%

2017 [65] 9 Clinical RR, BM Strain gauges Naive Bayes ACC: 71.9%

2016 [69] 96 Clinical RR, HR, BM
Piezoelectric

Peak detection
Sen: 88%

sensors Spec: 89%

2014 [63] 31 Clinical RR, BM PVDF-based sensors PCA ACC: 86.68%

RR 26 = respiratory rate, HR 27 = heart rate, BM 28 = body movement, Sen 29 = sensitivity, and Spec 30 = specificity.

Table 6. Sleep quality studies. The order is from latest to oldest articles.

Year Ref. #Sub. Testing
Condition Data Type of Sensor Algorithm Performance

2020 [67] 5 Clinical RR, BM Piezoresistive sensors ANN ACC: 86%

2019 [70] 25 Clinical BM 4 pressure sensors HMM ACC: 90.9%

2014 [13] 7 Clinical RR, BM Piezoresistive sensors

KNN ACC: 67.12%

SVM ACC: 70.33%

NB 31 ACC: 72.2%

2014 [66] 20 Clinical HR, BM PVDF film sensor Peak detection ACC: 96.95%

2010 [68] 9 Clinical HR, BM Emfit foil electrodes HMM ACC: 78.67%

NB 31 = naïve Bayes.

3.4. Commercial Smart Mats or Bedsheets

Five commercial products along with associated validation studies have been reviewed
to evaluate smart mat products available for purchase that can detect either body posture
and movement or physiological signals.

3.4.1. Withings Sleep Tracking Mat

The Withings Sleep Tracking Mat shown in Figure 3a is owned by Withings with the
headquarters located in Issy-les-Moulineaux, France, however, provides services globally.
This smart mat is placed underneath the mattress at torso level to analyze the respiratory
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rate, heart rate, and body movement via pneumatic pressure sensors. It can also detect
snoring and the cessation of breathing via sound sensors. Combining these parameters
allows this sleep mat to monitor the sleep duration, sleep onset, time to wake, sleep cycle,
continuous and average heart rate, and snoring duration. The data collected from the mat
can be viewed in an app available on both Android and IOS phones. This sleep mat appears
to be a popular choice and costs CAD 127.87 [71].

Two validation studies were conducted on the Withings Sleep Tracking Mat to verify
the accuracy in detection of the respiratory rate, heart rate, and sleep apnea [9]. An
overnight study was conducted in 2019 on 40 different subjects, where 24 of these subjects
(6 healthy and 18 patients) were studied to determine the accuracy of the respiratory
rate detection and 37 subjects (6 healthy and 31 patients) were studied to determine the
accuracy of the heart rate detection. All data were compared to a PSG machine to validate
the accuracy. It was concluded that the Withings Sleep Tracking Mat produced an accuracy
of 69.6% and 40% for estimating the respiratory rate and the heart rate, respectively [9]. A
recent overnight study was completed in 2021 to determine whether the Withings Sleep
Tracking Mat could be used to diagnose sleep apnea in which 118 subjects were studied,
ranging from having no sleep apnea to severe sleep apnea. All data were compared to a PSG
machine to validate the accuracy. It was determined that the Withings Sleep Tracking Mat
can detect subjects with no sleep apnea with an accuracy of 75%, subjects with mild sleep
apnea with 47.83% accuracy, subjects with moderate sleep apnea with 51.52% accuracy, and
subjects with severe sleep apnea with 86% accuracy [72].

3.4.2. Beddit Sleep Monitoring Mat

The Beddit Sleep Monitoring Mat shown in Figure 3b is an Apple Inc.-owned product,
with the headquarters located in San Jose, CA, USA, however, is a global company. This
sleep monitoring mat is placed under the mattress to analyze the respiratory rate, heart rate,
body movement, and snoring via piezo force sensors, capacitive touch sensors, humidity
sensors, temperature sensors, and the microphone of an iPhone. Using these techniques, the
sleep mat can monitor the sleep time, bedtime, time to fall asleep, time awake, time away
from bed, wake up time, sleep efficiency, snoring time, average, high, and low heart rates,
and average breathing time. Additionally, the Beddit mat pairs with an app on iPhones
and Apple Watches to visualize the analyzed data. This sleep mat costs CAD 155.46 but
does not appear to be available for purchase on the Apple website at this time [73].

One validation study was completed in 2019 to determine the legitimacy of the Beddit
Sleep Monitoring Mat with respect to sleep cycle monitoring. This study was completed
over 2 non-consecutive nights with 10 young and healthy subjects. All data were compared
to a PSG machine to validate the accuracy. It was determined that this mat had 42.1%
accuracy for detecting wakefulness, 55.6% accuracy for detecting the REM state, and 37.5%
accuracy for detecting the non-REM state. This mat would overestimate the total sleep time
by 10.53% and sleep efficiency by 8.73%, and it would underestimate the wakefulness after
sleep onset (WASO) by 29.28% [72].

3.4.3. Emfit

The Emfit sleep monitoring mat shown in Figure 3c is owned by Emfit with headquar-
ters located in San Marcos, TX, USA and Vaajakoski, Finland, and serves globally. This
sleep monitoring mat is placed under the mattress to analyze the heart rate, respiratory
rate, and body movement via patented quazi-piezoelectric sensors. Utilizing these tools,
this sleep mat analyzes the sleep time, sleep classes, average, high, and resting heart rate,
high, average, and low breathing rate, movement activity (tossing and turning), and bed
occupancy and exit. This sleep mat pairs with an app on Android and IOS phones to view
the collected data. The Emfit sleep monitoring mat has a subscription service that costs
CAD 24.39/month and requires a minimum of a 6 month commitment [74].

Two validation studies were completed on the Emfit sleep monitoring mat that exam-
ined the accuracy of the heart rate and respiratory rate detection [74,75]. A 2019 overnight
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home study was conducted on 20 healthy subjects to determine the accuracy of the heart
rate detection of the Emfit sleep monitoring mat. All data were compared to a Firstbeat
Bodyguard 2 heart rate monitor. It was concluded that this sleep mat has a root mean
square error (RMSE) of 2.4 bpm when detecting the heart rate [75]. A second overnight
study was conducted in the same year to validate the accuracy of heart rate and respira-
tory rate estimation in which 34 subjects were recruited: 8 with obstructive sleep apnea,
9 with prolonged partial obstruction, 6 with periodic limb movement disorder, and 1 with
narcolepsy. All data were compared to a PSG machine to validate the accuracy. It was
determined that the Emfit sleep monitoring mat had an accuracy of 98.7% for heart rate
estimation and 97.6% for respiratory rate estimation [76].

3.4.4. Studio 1 Labs Bed Sheet Monitor

The Studio 1 Labs bed sheet monitoring system is shown in Figure 3d, with head-
quarters in Markham, ON, Canada, serving the Canadian population. This bed sheet is
composed of a pressure-sensing fabric that monitors falls, pressures ulcers, and abnormal
breathing patterns. This sheet does not appear to have an associated app but does connect
to a computer to view the collected data. Pricing begins at CAD 704.64, but it does not
appear to be available for purchase at this time [77].

A single validation study was conducted in 2018 to determine the legitimacy of the
Studio 1 Labs bed sheet for respiratory rate estimation. This study was conducted on 21 young
and healthy subjects for an 8 h overnight study. All data were compared to a manual counting
respiration rate and wrist pulse oximeter to validate the accuracy. It was determined that the
Studio 1 Labs bed sheet has an accuracy of 84% when estimating the respiratory rate [19].

3.4.5. EarlySense

The EarlySense monitoring system shown in Figure 3e is owned by Baxter Interna-
tional, with headquarters inRamat Gan, Illinois, USA, however, provides services globally.
This monitoring system is placed underneath the mattress and measures the heart rate,
respiratory waveforms, and movement via piezoelectric sensors. The EarlySense system
is only available for medical use, in long-term care homes, and in rehabilitation centers.
Therefore, it cannot be purchased for personal use at home [78].

Two studies were conducted on the EarlySense monitoring system to validate the
machine with respect to the heart rate, respiratory rate, and sleep cycle. A 2017 study was
conducted overnight using the EarlySense monitoring system on 63 subjects. All data were
compared to a PSG machine. It was concluded that the EarlySense system has an accuracy
of 96.1% when estimating the heart rate and 93.3% when estimating the respiratory rate [79].
Another overnight validation was conducted on 28 children with suspected sleep-disordered
breathing. The EarlySense system provided an 89.1% accuracy for determining whether a
subject was asleep, 87.9% accuracy for detecting wakefulness, 79.6% for detecting non-REM
sleep, and 48.8% for detecting REM sleep [80]. Table 7 describes a complete summary of all
the validation studies completed on the commercial products mentioned above.
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Table 7. A summary of all validation studies completed on the described commercial products.

Year Ref. #Sub. Testing
Condition

Signal
Monitored Sleep Mat Performance

2021 [19] 118 Clinical Sleep apnea detection Withings mat Average ACC: 65.09%

2019 [9]
24

Clinical
RR

Withings mat
ACC: 69.6%

37 HR ACC: 40%

2019 [72] 10 Clinical Sleep cycle Beddit mat Average ACC: 45.07%

2019 [75] 20 Clinical HR Emfit mat RMSE: 2.4 bpm

2019 [76] 34 Clinical
HR

Emfit mat
ACC: 98.7%

RR ACC: 97.6%

2018 [81] 21 Clinical RR Studio 1 Labs mat ACC: 84%

2017 [79] 63 Clinical
HR

EarlySense
ACC: 96.1%

RR ACC: 93.3%

2017 [80] 28 Clinical Sleep cycle EarlySense Average ACC: 72.1%

4. Discussion

This paper reviewed 29 papers about body posture and movement, 15 papers about
physiological data monitoring, and 11 papers about sleep apnea and sleep quality detection.
Five commercial products were also reviewed with associated validation studies, totaling
eight papers.

Sleep monitoring mats that detect body postures and movements have been studied
for many years, longer than the time span parameter of this literature review, allowing
improvement and for high-accuracy data to be published. Out of the 29 articles that were
reviewed, only 7 studies were evaluated in a clinically based testing environment, meaning
that these studies were conducted for over 1 h or overnight where the subjects had control
over their sleeping positions, simulating a realistic sleeping environment. The 22 other
studies were conducted in a simulated setting where the subjects were instructed on which
position to lie in with minimal allowance for leg and arm alterations. It is important to
note this limitation, as the accuracy of body posture detection of these 22 articles would
likely be lowered if they were studied in a clinical environment. Twenty-five of the studies
reviewed had a small sample size (<20 subjects), indicating that the accuracy achieved by
those studies could have been affected if more subjects were tested.

Sleep monitoring mats that estimate physiological data, such as the respiratory rate
and heart rate, are a newer area of study, as previous medical devices such as a PSG system
and wearable devices were used. Ten out of these 15 papers only consisted of healthy
subjects and subjects with no prior cardiac or respiratory issues or sleep disorders. Four
of these studies only included patients with cardiac issues or sleep apnea. Four studies
included a mixture of healthy and non-healthy subjects but typically would have healthy
subjects as the majority of their subject pool. In these four studies, a distinction was made
between the accuracy of physiological parameter estimation for healthy subjects and non-
healthy subjects, and it was evident that the results from the non-healthy subjects reduced
the average accuracy due to a lower signal-to-noise ratio. Additionally, 13 studies included
a small sample (<20), indicating that the accuracy achieved by each study could have been
affected if more subjects were evaluated. Finally, a direct comparison of these studies was
challenging due to the lack of a uniform performance evaluation method for the models.
As a result, we selected the most frequently used performance metric, which limited our
comparison to just 6 out of the 15 papers.

Sleep monitoring mats detecting sleep apnea and sleep quality usually combined the
information from body movement and the respiratory and heart rates. The six articles
that were reviewed for sleep apnea included a wide range of patient populations, ranging
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from healthy to those with mild, moderate, and severe sleep apnea. Three of the studies
used a sample size ranging from 31 to 136 subjects. Therefore, we can conclude that the
detection accuracy of these studies was properly validated. From the five studies reviewed
involving sleep quality, only one study included healthy subjects and sleep apnea subjects.
Additionally, three of these studies had sample size of less than 10, indicating that the
results are still in the preliminary stage and need further investigation. However, it should
be noted that this is a new field of investigation and has only recently been examined,
which explains the limited research completed.

Almost all the commercial sleep mats that provide heart rate, respiratory rate, and
body movement data are not affordable, with the cheapest product being the Withings
Sleep Tracking Mat at CAD 127.87. The Emfit monitoring system has the highest accuracy
for estimating the respiratory rate and heart rate, with accuracies of 97.6% and 98.7%,
respectively. However, this monitoring system requires a subscription of CAD 24.39/month,
which may not be affordable for most people. The EarlySense system provides the highest
accuracy rates for sleep cycle detection. However, this product is only available to medical
institutions, long-term care homes, and rehabilitation centers. Therefore, although there
are commercial products available for use in the market, they are either not affordable or
require further validation to determine their efficacy.

5. Conclusions

This paper provides a review of smart mats that monitor body position and movement,
physiological data, such as the heart rate and respiratory rate, sleep apnea, and sleep quality.
Although all studies reviewed provided valuable solutions for sleep monitoring, reaching
clear conclusions about the best physiological signals, sensor types, and algorithms for
sleep monitoring has been challenging. This difficulty arises from the wide range of signal,
sensor, and algorithm combinations used in the studies, as well as variations in participant
health conditions and sample sizes. To provide more precise recommendations for a
particular sleep monitoring sensor, future studies could focus on maintaining consistency in
signal type, algorithm type, and participant characteristics while systematically alternating
the sensor technology. Most of the papers reviewed for body posture monitoring were
conducted in a simulated setting where the subjects were told which positions to lie in and
for how long. However, this does not allow the accuracy or statistical data to be transferable
to overnight environments or long-term studies, which is typically where the monitoring
system would be used. Therefore, to ensure that body posture monitoring can be used
in realistic settings, such as sleeping overnight, further research is required to evaluate
the sensors and algorithms that are used in the studies we discussed. Though smart mats
would be an affordable and accessible method for detecting heart and breathing rates
during sleep, when studying the detection of physiological data and sleep quality, many of
these papers did not include subjects that had cardiac, respiratory, or sleep disorders due
to the low-quality signals. Therefore, in the future, studies should consider participants
with similar characteristics as the target user population, such as those with cardiac or
respiratory conditions and those with sleep disorders. The commercial products currently
available on the market are not affordable enough for most people and require further
validation. Therefore, research into more affordable sensors such as flexible transistor
sensor arrays for sleep monitoring and appropriate validation in realistic use cases and
target users is required. Although there has been a great deal of research conducted on
smart mats, most of the smart mats used in these studies have not been available for
practical use in either homes or hospitals.
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