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Abstract: This study examined patient unpunctuality’s effect on patient appointment scheduling in
the ultrasound department of a hospital. The study created a simulation system incorporating the
formulated F3 distribution to describe patient unpunctuality. After the simulation model passed
verification and validation processes, what-if scenarios were conducted under two policies: The
preempt policy and the wait policy. A comparison of the total cost of each policy showed that the
preempt policy performed better than the wait policy in the presence of unpunctuality. The study
used sensitivity analyses to identify the different effects of patient unpunctuality on the system. The
weights of the cost coefficient of both radiological technician’s idle time and patient waiting time
must be equal in order to achieve a lower cost. The patient’s inter-arrival time must be close to
the average total time in the system to achieve lower costs. Moreover, utilization decreases as the
patient’s inter-arrival increases. Therefore, the patient’s inter-arrival time should be higher than, but
close to, the service time to ensure less radiological technician’s idle time and patient waiting time.

Keywords: patient appointment scheduling problem; unpunctual patient; simulation; preempt
policy; wait policy

1. Introduction

Healthcare has grown into one of the major industries in the world, with the purpose
of providing patients the best and most cost-effective care possible [1]. Today, healthcare
services are working to be more patient-centered than provider-centered [2,3]. Scheduling
practices in this sector differ in terms of the type of service offered, whether for an emer-
gency, outpatient, inpatient, or specialty care. These scheduling methods appoint patients
to various time slots through appointment scheduling policies [4–6].

In healthcare, appointment systems aim to bring balance between capacity and de-
mand by improving operational efficiency and client satisfaction via decreasing the uncer-
tainty in patient’s arrival and regulating patient demand [7]. Poor appointment policies
may result in longer patient waiting times and low provider utilization [8–10]. As the
need for healthcare services continues to grow, the problems that providers face are also
increasing. Most clinics and hospitals want to minimize overtime and/or idle time of their
resources while patients do not want to wait long hours to get their desired service [5].
This situation has attracted the attention of researchers. Furthermore, researchers have inte-
grated appointment policies with patients’ behaviors (such as unpunctuality or no-show
patients) for exploring the patient appointment scheduling policies [11,12].

Patient unpunctuality is generally defined as the difference between the time the
patient arrived and the start of his or her scheduled appointment time, regardless of
whether the patient arrives late or early for the appointment [13,14]. If the patient arrives
before the appointment time, the early patient will wait until the appointment time to
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receive the service or receive the available service. This will depend on appointment
policies. If a patient arrives after the appointment time, the doctor (i.e., the service provider)
will be not sure whether to preempt the early patient or wait for the missing patient. This
will also depend on appointment policies. For the preempt and wait policies, Samorani and
Ganguly [15] created an analytical method to determine the intervals for when it is optimal
to wait and when it is optimal to preempt. They assumed that appointment slots have
the same length as the mean service time and are given to one patient only [16]; they also
assumed that walk-ins are not allowed. Their analytical results show that preempting is not
always the solution for unpunctuality, especially for a clinic with long consultation times.
In fact, the service provider should wait for the missing patient even if there is another
patient waiting.

Deceuninck et al. [17] extended Samorani and Ganguly’s [15] study to construct
their own mathematical model for solving this dilemma. In their study, they considered
stochastic consultation times and scheduled patients with increasing consultation time
variability. Their finding shows that the doctor should stay idle and wait for the missing
patient to arrive, supporting the results of Samorani and Ganguly [15]. Moreover, they
found that Samorani and Ganguly’s [15] analytical method was only applicable for solving
the wait–preempt dilemma when a medical practice faced a low overtime cost, a high
probability of no-shows, and long consultation times.

In the current study, the researchers investigated a hospital’s ultrasound department
that contained multiple scanning rooms. The service time for each patient varies as different
body parts are examined. Furthermore, both outpatient and inpatient were considered and
were randomly assigned in the rooms in the hospital. The researchers focused on testing
different scenarios using system simulation incorporating two traditional policies—namely,
preempt and wait policies—to determine how early, on-time, and late patients affect the
performance of patient appointment scheduling.

The objective of this study is to investigate the impact of patient unpunctuality on
the performance of patient appointment scheduling problems using system simulation.
The research procedures of this study are as follows: (1) Create a model that represents
the real system; (2) generate a probability distribution of patient behavior; (3) create wait
and preempt policies for patient unpunctuality; (4) compare and choose the best among
the created policies; and (5) use the chosen policy to conduct sensitivity analyses in order
to determine the impact of patient unpunctuality on the performance of the system. This
study can be used as a tool for hospital managers when making decisions regarding which
sequential rule to implement. The study was conducted in an ultrasound department with
many rooms, and only patients with appointments were included.

The next section reviews the relevant literature. Section 3 presents the research pro-
cedure. The results are presented in Section 4. Section 5 offers discussions and Section 6
presents our conclusions.

2. Literature Review

Previous researchers have scrutinized appointment scheduling in order to determine
the optimal policy that is feasible to be implemented in healthcare systems. The first
research study that focused on the patient appointment scheduling problem was Bailey’s
rule [18,19], a traditional rule that appointed two patients in the first time slot. Individual
patients were scheduled for the subsequent time slots at a fixed interval [7,13,18]. The
majority of patient appointment scheduling policies created have been correlated with and
assessed using Bailey’s rule. Patient appointment scheduling policies that have been shown
to perform better than Bailey’s rule include increasing interval and clustering rules [13],
which group patients with short patient appointment intervals in the first half of the session
and those with long appointment intervals in second half of the session. This plateau dome
policy [13,20] schedules the number of slots in the first and last slots of a time interval while
patient appointments that have the same time slot are scheduled in the middle of a time
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interval using the dome rule [7]. According to this rule, appointment intervals increase in
length toward the middle of the session and decrease toward the end of the session.

Several studies have assumed that appointed patients are punctual when practices
formulate their appointment scheduling policies. In addition, several patient appointment
scheduling policies consider constant patient arrival time at constant time intervals, such
as individual-block/fixed-interval rule [7] and constant arrival policy [5]. Chen et al. [5]
also considered constant patient arrival policy, plateau dome policy, and the mixed patient
arrival policy. The latter policy includes two models (M1 and M2). In M1, more patients
are booked in the first slot rather than the second slot; in M2, more patients are booked in
the second slot rather than the first slot. Chen et al. [5] formulated a patient appointment
scheduling policy that was called the three-section pattern arrival policy, which depended
on the length of the patient interval. This policy divided the time interval into early morning,
midday, and late afternoon. Long patient appointment intervals were scheduled for midday,
while short patient appointment intervals were scheduled in the early morning and late
afternoon. The dome rule [7], increasing interval, and clustering rule policies [13] were
similar to the three-section pattern arrival policy [5] in terms of the patient appointment
interval.

Patient unpunctuality negatively impacts the performance of patient appointment
scheduling systems [13,21], although it is not an unusual event in real-life healthcare set-
tings. Few patient appointment scheduling studies have considered patient unpunctuality
using simulation optimization [13,15,17]. Previous researchers have shown that patients
are likely to show up earlier than the patient scheduled before them, arriving on average
17 min early [15,16].

A few studies about patient unpunctuality are available in the literature [17,21–27].
Several published studies adopted data-fitting methods to determine appropriate prob-
ability distributions without considering patient arrival pattern characteristics, such as
constant variability, skewness, and leptokurtic patterns [14,17,28–31]. Due to the complex
data-fitting methods, they tend to assume that all patients are punctual. In order to fit the
data with patient unpunctuality, Tai and Williams [31] formulated a hybrid distribution
modeling technique called F3. In their model, they used an asymmetrical frequency prob-
ability distribution of data wherein they determined three modes and then grouped the
original data into n datasets. They compared the F3 distribution with normal and Pearson
VII distributions; based on the F3 distribution’s graphical probability plots, they confirmed
that F3 has the most accurate fitting.

Although researchers have studied different characteristics of patient appointment
scheduling problems, the majority of these studies have focused on the allocation of patients
using a single-server or one doctor only [7,13,17,32]. Some existing multiple server and
multistage studies did not tackle the effects of patient unpunctuality [33–35], but instead
developed a scheduling approach to deal with the patient appointment scheduling prob-
lem [2,8,36]. Furthermore, researchers have applied mathematical models [37,38], system
simulations [5,6,39,40], and heuristic or meta-heuristic algorithms [41–43] to solve patient
appointment scheduling problems. In order to deal with a complex (i.e., random and un-
certain) patient appointment system, most researchers have used system simulation as the
methodology for solving patient appointment scheduling problems [5,6,39,40]. Therefore,
this study uses system simulation to investigate the impact of patient unpunctuality in a
multi-scanning room environment, which belongs to a multi-server system, thereby filling
this research gap. This is the motivation of the study.

3. Methodology
3.1. Problem Statement

Patient unpunctuality is defined as the time when a patient arrives early or late for
the scheduled appointment. Commonly, the hospital has multiple scanning rooms, thus
multiple patients can be served simultaneously. Most rooms are multi-purpose in order to
provide patients with any type of service necessary. The preempt or wait policy is applied
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when the scheduled patient is late or an early patient is present. This approach aims to
ensure that the flow of service is not interrupted. However, patient unpunctuality interferes
with the appointment scheduling policy.

The case hospital provided 6 months of data, including the patient type and gender,
scanned body position, check-in time, appointment time, and start and end times of
scanning and imaging. These data were based on the current appointment scheduling
policy used by the case hospital. In this study, only patients with scheduled appointments
were considered, including outpatients and inpatients. Outpatients are patients who receive
service or treatment without staying in the hospital overnight. Inpatients are patients who
receive service and treatment while staying in the hospital for a 2 days or weeks.

The current appointment scheduling policy of the case hospital uses the constant
arrival policy, wherein each patient is scheduled for 20 min of scan time. Outpatients and
inpatients are scheduled for eight and six types of ultrasound scans, respectively. Figure 1
explains how the system works in the hospital. As observed in the figure, a patient goes to
the hospital on 1 June to make an appointment for 9:10 am on 7 June. The patient returns
to the hospital for the scheduled appointment on 7 June. Upon arrival, the check-in time of
the patient is recorded; the check-in time can be earlier (i.e., 9:00 am) or later (i.e., 9:15 am)
than the appointment time depending on the patient’s arrival. If the patient arrival time is
9:00 am (i.e., early patient) and the scanning room is available at 9:20 am, the total patient
waiting time is denoted by (a), which is 20 min. If the patient arrival time is 9:15 am (i.e.,
late patient) and the scanning room is available at 9:20 am, the total patient waiting time
is denoted by (c), which is 5 min. The patient’s scan time starts when the patient enters
the scanning room at 9:20 am and continues until the final upload of the scan image is
conducted at 9:45 am. Therefore, the total time of patients in the scanning room is denoted
by (b), which is 25 min. The total service scan time includes the preparation time (i.e., 5 min
denoted by (d)) and the service time (i.e., 20 min denoted by (e)).

Healthcare 2022, , x 4 of 20 

3. Methodology
3.1. Problem Statement

Patient unpunctuality is defined as the time when a patient arrives early or late for 
the scheduled appointment. Commonly, the hospital has multiple scanning rooms, thus 
multiple patients can be served simultaneously. Most rooms are multi-purpose in order 
to provide patients with any type of service necessary. The preempt or wait policy is ap-
plied when the scheduled patient is late or an early patient is present. This approach aims 
to ensure that the flow of service is not interrupted. However, patient unpunctuality in-
terferes with the appointment scheduling policy. 

The case hospital provided 6 months of data, including the patient type and gender, 
scanned body position, check-in time, appointment time, and start and end times of 
scanning and imaging. These data were based on the current appointment scheduling 
policy used by the case hospital. In this study, only patients with scheduled appoint-
ments were considered, including outpatients and inpatients. Outpatients are patients 
who receive service or treatment without staying in the hospital overnight. Inpatients are 
patients who receive service and treatment while staying in the hospital for a 2 days or 
weeks. 

The current appointment scheduling policy of the case hospital uses the constant 
arrival policy, wherein each patient is scheduled for 20 min of scan time. Outpatients and 
inpatients are scheduled for eight and six types of ultrasound scans, respectively. Figure 
1 explains how the system works in the hospital. As observed in the figure, a patient goes 
to the hospital on 1 June to make an appointment for 9:10 am on 7 June. The patient re-
turns to the hospital for the scheduled appointment on 7 June. Upon arrival, the check-in 
time of the patient is recorded; the check-in time can be earlier (i.e., 9:00 am) or later (i.e., 
9:15 am) than the appointment time depending on the patient’s arrival. If the patient ar-
rival time is 9:00 am (i.e., early patient) and the scanning room is available at 9:20 am, the 
total patient waiting time is denoted by (a), which is 20 min. If the patient arrival time is 
9:15 am (i.e., late patient) and the scanning room is available at 9:20 am, the total patient 
waiting time is denoted by (c), which is 5 min. The patient’s scan time starts when the 
patient enters the scanning room at 9:20 am and continues until the final upload of the 
scan image is conducted at 9:45 am. Therefore, the total time of patients in the scanning 
room is denoted by (b), which is 25 min. The total service scan time includes the prepa-
ration time (i.e., 5 min denoted by (d)) and the service time (i.e., 20 min denoted by (e)). 

Make an
appointment

time

Check-in
time

at 9:00 am

Appointment
time 

at 9:10 am

Check-in
time

at 9:15 am

Enter a 
scan room 
at 9:20 am

First image
uploaded 

at 9:25 am

Last image
uploaded

at 9:45 am

(a) (b)

(c) (d) (e)

(June 1) (June 7)

Figure 1. An example of the recorded time for a patient’s scanning appointment procedures at the 
case hospital. 

Figure 1. An example of the recorded time for a patient’s scanning appointment procedures at the
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3.2. Data Collection

Patient unpunctuality time, expressed in minutes, is the time between the check-in time
and appointment time of outpatients and inpatients. Patient unpunctuality time was used
for the data-fitting procedure to determine the probability distribution for unpunctuality of
each type of patient. It was used as the basis to determine whether a patient is early, on
time, or late. A patient with 0-min unpunctuality time is considered on time.

Six months of data include outpatients, inpatients, and emergent patients. Emergent
patients were excluded since walk-ins without appointments were not considered in this
study. Both outpatients and inpatients had outliers. Outliers that are three standard
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deviations from the mean were removed. Outpatients whose unpunctuality time was less
than −50 min or more than 20 min were removed; inpatients whose unpunctuality time
was less than −15 min or more than 10 min were also removed. Here, a patient with a
−50-min unpunctuality time means that the patient arrived 50 min before the scheduled
appointment time.

Service time is the difference between the first and last upload of the scanned image.
Service times that took more than 1 day to finish were deleted since these data were incor-
rectly measured, which can cause abnormalities and inaccuracy in the system. Furthermore,
service times that were less than 1 min or more than 40 min were deleted based on the
definition of service time outliers. After deleting wrong data and outliers, the remaining
data were used for the data-fitting procedure. The data-fitting results are introduced in the
following section.

3.3. Data Fitting

All outpatient and inpatient data were fitted using the input analyzer toolbox of
Arena simulation software (Rockwell Automation, Coraopolis, PA, USA). The results show
that the best fit for outpatients is a normal distribution while for inpatients it is a beta
distribution. However, both distributions failed in the Chi-square test as their p-values
were less than 0.05. Tai and Williams’s F3 distribution model [31], the so-called hybrid
distribution, was applied. The data were divided into subsets based on the results in fitting
each subset to get a probability distribution.

Tables 1–4 show the F3 distributions for early outpatients, late outpatients, early
inpatients, and late inpatients, respectively. Based on the data-fitting results, the overall
probability density function for early outpatients, late outpatients, early inpatients, and
late inpatients are presented in Equation (1), Equation (2), Equation (3), and Equation (4),
respectively.

Table 1. F3 distribution for early outpatients.

Range of Patient Waiting Time (Minutes)
Percentage (%) Cumulative

Percentage (%) Probability Distribution
Lower Limit Upper Limit

−50 −46 1.78 1.78 −50.5 + 8 × BETA (1.120, 0.918)
−45 −36 5.37 7.15 −45.5 + 8 × BETA (1.440, 1.030)
−37 −34 4.40 11.55 −37.5 + 4 × BETA (1.050, 0.903)
−33 −30 4.38 15.93 −33.5 + 4 × BETA (1.540, 1.430)
−29 −20 20.07 36.00 −29.5 + 10 × BETA (1.130, 0.822)
−19 −1 64.00 100.00 −19.5 + 19 × BETA (0.981, 0.922)

Table 2. F3 distribution for late outpatients.

Range of Patient Waiting Time (Minutes)
Percentage (%) Cumulative

Percentage (%) Probability Distribution
Lower Limit Upper Limit

1 12 83.27 83.27 0.5 + 12 × BETA (0.699, 1.390)
13 20 16.73 100.00 12.5 + 8 × BETA (0.754, 1.060)

Table 3. F3 distribution for early inpatients.

Range of Patient Waiting Time (Minutes)
Percentage (%) Cumulative

Percentage (%) Probability Distribution
Lower Limit Upper Limit

−15 −9 27.70 27.70 −15.5 + 7 × BETA (1.560, 0.776)
−8 −1 72.30 100.00 −8.5 + 8 × BETA (1.020, 1.130)
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Table 4. Probability distribution for late inpatients.

Range of Patient Waiting Time (Minutes)
Percentage (%) Cumulative

Percentage (%) Probability Distribution
Lower Limit Upper Limit

1 10 100.00 100.00 0.5 + 10 × BETA (0.747, 1.530)

The overall probability density function using the F3 distribution for early outpatients
is expressed by:

f (x) = [0.0178 × (−50.5 + 8 × BETA (1.120, 0.918))]
+ [0.0537 × (−45.5 + 8 × BETA (1.440, 1.030))]
+ [0.0440 × (−37.5 + 4 × BETA (1.050, 0.903))]
+ [ 0.0438 × (−33.5 + 4 × BETA (1.540, 1.430))]
+ [0.2007 × (−29.5 + 10 × BETA (1.130, 0.822))]
+ [0.6400 × (−19.5 + 19 × BETA (0.981, 0.922))]

(1)

The overall probability density function using the F3 distribution for late outpatients
is expressed by:

f (x) = [0.8327 × (0.5 + 12 × BETA (0.699, 1.390))] + [0.1673 × (12.5 + 8 × BETA (0.754, 1.060))] (2)

The overall probability density function using the F3 distribution for early inpatients
is expressed by:

f (x) = [0.2770 × (−15.5 + 7 × BETA (1.560, 0.776))] + [0.7230× (−8.5 + 8 × BETA (1.020, 1.130))] (3)

The overall probability density function using the F3 distribution for late inpatients is
expressed by:

f (x) = 0.5 + 10 × BETA (0.747, 1.530) (4)

3.4. Simulation Model Assumptions

The following list of assumptions was developed when constructing the simulation
model:

• This study considered patients with a scheduled appointment at the case hospital.
Only outpatients and inpatients were included. Emergent patients were excluded
since they are considered walk-in patients.

• Patients may arrive unpunctually. Patients who arrived exactly at their appointment
time were considered on-time patients. When a radiological technician is ready to
serve the next ultrasound scan, the radiological technician will call the patient’s name
(or patient’s appointment number). If the patient does not show up within 1 min,
the radiological technician will call the next patient’s name. Therefore, patients who
arrived 1 min earlier or 1 min later were considered unpunctual in this study.

• The case hospital’s scanning rooms for inpatients and outpatients operate Monday to
Friday, from 9:00 am to 3:00 pm, with a 1-h break from 12:00 pm to 1:00 pm. Therefore,
the scanning rooms operate 5 h per day for inpatients and outpatients.

• The case hospital has six rooms (rooms 5, 6, 7, 8, 9, and 10) that can provide any type of
service to the patients. Six radiological technicians provide services. One radiological
technician is assigned to each room. Eight types of services are provided to outpatients:
Shoulder, scrotum, neck, prostate, thyroid, urotract, EXT DVT, and abdomen. Six types
of services are provided to inpatients: EXT DVT, liver, prostate, urotract, thyroid, and
abdomen.

• Patients’ walking times were not considered due to the adjacent locations between the
check-in counter and scanning rooms. The probability distribution of the service time
is given per body part based on the results of the data-fitting procedures.

• Patients were assumed to undergo the proper procedure when receiving the service.



Healthcare 2023, 11, 231 7 of 18

• A constant arrival policy of 20 min was applied as the appointment scheduling policy
used in the simulation system.

In determining the warm-up period used in the study, the simulation model operated
for 12,000 min to determine the utilization rate of the six scanning rooms under steady-state
conditions. When the simulation model reached 6000 min, no substantial fluctuations had
occurred in the utilization rate. Therefore, the warm-up period applied in the simulation
model was set to 6000 min.

Replication length was the total minutes per day multiplied by the number of simula-
tion days plus the warm-up period in minutes, as shown in Equation (5). The total minutes
per day was 300 min, and the number of simulation days was 5 days. Therefore, the
replication length of the simulation model was 6000 + (300 × 5) = 7500 min.

Replication length = warm-up period + (minutes per day × number of days) (5)

In determining the number of replications in the study, Kelton et al.’s [42] method
was applied. Equation (6) was used to calculate the required number of replications to be
applied in the simulation model using the half-width value at the 95% confidence interval
as follows:

n ≈ n0 ×
h2

0
h2 (6)

where n was the required number of replications, n0 was the number of initial replications,
h was the prespecified desired value of half-width, and h0 was the result of running the
model under n0.

The number of replications was set to 30, and the total number of outpatients and
inpatients entering the system was used to determine the required number of replications
to be applied in the study. Table 5 shows the values of the average number of outpatients
and inpatients (x), the half-width (h) at the 95% confidence interval, and h/x. As the values
of h/x for both outpatients and inpatients were less than 1%, these values were within an
acceptable range. Therefore, the number of replications was set to 30.

Table 5. Number of patients entering the system in 5 days after 30 replications.

Patient Type Average Number of Patients (x) Half-Width at 95%
Confidence Interval (h)

Half-Width/Average Number
of Patients (h/x) in %

Outpatients 262.63 0.46 0.18
Inpatients 50.07 0.28 0.56

3.5. Verification and Validation of the Simulation Model

For the simulation model, the outpatients and inpatients were created and arrived
at the hospital according to the F3 distribution applied, which represented the patient
unpunctuality behavior. The percentages and known probability distribution of the scan
time per body part assigned the patient to get their respective scan service. Thereafter, the
patients were assigned to one of the six scanning rooms.

Regarding the logic of the simulation system, the simulation model would pass the
verification test if it was ensured that the model behaved according to the researchers’
intention. After running the model, the researchers checked and agreed that the simulation
model ran correspondingly. Therefore, the model was verified.

For simulation validation, this study was validated by comparing the actual average
values to the simulated average values from the results of running the simulation model in
a span of 5 days. This step ensured that the created simulation model behaved similarly
or close to the actual system. Therefore, the model could be used to represent the real
system and was good to be studied in the research. Using the half-width value at the 95%
confidence interval, the allowable minimum and maximum range was acquired for use as
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an indicator that, if a given result lies within the range of the 95% confidence interval, it
will have no significant difference, indicating that the result passed the validation [5,44,45].

Table 6 summarizes the actual and simulated average number of outpatients to be
validated. As the focus of the study was to determine the impact of patient unpunctu-
ality, the researchers divided the data according to patient behavior. For on-time and
late outpatients, the average values of arriving outpatients were within the range of the
95% confidence interval of the simulated model. Only for early outpatients was the av-
erage value not in the range of the 95% confidence interval of the simulated model. For
further analysis [46], the researchers referred to Lyu et al.’s [46] research. In their study,
the average value of four performance indicators were also not in the range of the 95%
confidence interval of the simulated model. The simulated-to-actual gap percentage of
the four performance indicators was 10.97%, 13.44%, 9.87%, and 10.85%, respectively.
The formula for the simulated-to-actual gap percentage is shown in Equation (7). Al-
though the values of the simulated-to-actual gap percentage in their simulation model
were close to or above 10%, their simulated model was still viewed as passing valida-
tion. In this case, the researchers calculated the simulated-to-actual gap percentage for
the early outpatients. The simulated-to-actual gap percentage for the early outpatients
was 2.48% (=|224.65−219.07|/224.65 × 100%). Due to the small simulated-to-actual gap
percentage, the results for early outpatients were acceptable in this case. Therefore, the
average number of early, on-time, and late outpatients entering the system was validated.

Simulated− to− actual gap percentage
= |Actual Average − Simulated Average|

Actual Average × 100%
(7)

Table 6. Outpatient actual average number of arrivals and simulated average number of arrivals in
5 days.

Patient Type Actual Average
Number of Patients

Simulated Average
Number of Patients

Range at 95% Confidence Interval of
Simulated Model

Minimum Maximum

Early Outpatients 224.65 * 219.07 216.52 221.62
On-time Outpatients 8.22 8.23 7.05 9.41

Late Outpatients 41.01 38.70 36.28 41.12

* A simulated-to-actual gap percentage computation is needed to support this validation.

Similarly, Table 7 summarizes the actual and simulated average number of inpatients
to be validated. For early, on-time, and late inpatients, the average values of arriving
inpatients were within the range of the 95% confidence interval of the simulated model.
Therefore, the average number of early, on-time, and late inpatients entering the system
was also validated.

Table 7. Inpatient actual average number of arrivals and simulated average number of arrivals in
5 days.

Patient Type Actual Average
Number of Patients

Simulated Average
Number of Patients

Range at 95% Confidence Interval of
Simulated Model

Minimum Minimum

Early Inpatients 38.33 39.37 38.09 40.65
On-time Inpatients 2.33 2.53 1.92 3.14

Late Inpatients 9.30 9.10 7.90 10.30

The researchers also included the formulated F3 distribution in validating the simula-
tion model to determine whether the F3 distribution could correctly represent the earliness
and lateness behaviors of each patient. The summary of the values used for the validation
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is shown in Table 8 (outpatients) and Table 9 (inpatients). Only for the early inpatients
was the average value of arriving inpatients not in the range of the 95% confidence inter-
val of the simulated model. For these patients, the simulated-to-actual gap percentage
calculated using Equation (7) was 2.80% (=|6.43−6.25|/6.43 × 100%). Due to the small
simulated-to-actual gap percentage, the results for early inpatients were acceptable in
this case.

Table 8. Actual and simulated average number of outpatient arrivals based on probability distribution.

Patient Type Actual Average
Number of Patients

Simulated Average
Number of Patients

Range at 95% Confidence Interval

Minimum Minimum

Early Outpatients 17.02 17.06 16.89 17.23
Late Outpatients 6.50 6.60 6.33 6.87

Table 9. Actual and simulated average number of inpatient arrivals based on probability distribution.

Patient Type Actual Average
Number of Patients

Simulated Average
Number of Patients

Range at 95% Confidence Interval

Minimum Minimum

Early Inpatients 6.43 * 6.25 6.10 6.40
Late Inpatients 3.79 3.66 2.87 4.45

* A simulated-to-actual gap percentage computation is needed to support this validation.

3.6. What-If Scenarios

To determine the impact of patient unpunctuality on these two traditional policies
(preempt and wait policies), the researchers tested different scenarios. To explain the
scenario clearly, each scenario was considered using two different examples: The first with
a constant service time and the second with a variable service time. The assumptions for
the numerical examples are listed below:

1. The hospital opens at 9:00 am, at which point patients can wait inside for their ap-
pointment time.

2. The example hospital only has two rooms, which means that two patients are booked
for each appointment slot.

3. The arrival time of each patient is independent.

3.6.1. Preempt Policy

Samorani and Ganguly [13] defined preemption as a service provider seeing the early
patient as soon as the provider becomes idle. When a scheduled patient is not present
at the scheduled time, service providers tend to preempt the available patient waiting
in order to prevent idle time, which is the “always-preempt” policy [34]. However, this
causes most patients to arrive earlier than their appointment time as they anticipate that
they can get service immediately. To solve this dilemma, Cayirli et al. [14] suggested a
first-scheduled-first-served policy. Preemption will be carried out, but the person to be
preempted is decided based on the scheduled appointment order. On-time patients are
always the priority. If a scheduled patient is present at the scheduled time, the patient will
receive treatment immediately. Early and late patients will be queued and can be preempted
based on their appointment schedule within the day. In this study, the researchers adapted
Cayirli et al.’s [14] first-scheduled-first-served policy as the preempt policy. To further
discuss the policy, two examples were considered: Constant service time (Figure 2 and
Table 10) and variable service time (Figure 3 and Table 11).
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Table 10. Preempt policy with constant service time.

Patient Appointment
Time Arrival Time Early, Late,

or On-Time
Start of

Service Time
End of

Service Time
Waiting Time

(Minutes) Room No.

P1 9:00 9:00 On-time 9:00 9:20 0 1
P3 9:20 8:50 Early 9:00 9:20 10 2
P2 9:00 9:08 Late 9:20 9:40 12 1
P4 9:20 9:15 Early 9:20 9:40 5 2
P5 9:40 9:08 Early 9:40 10:00 32 1
P6 9:40 9:40 On-time 9:40 10:00 0 2
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Table 11. Preempt policy with variable service time.

Patient Appointment
Time Arrival Time Early, Late,

or On-Time
Start of

Service Time
End of

Service Time
Waiting Time

(Minutes) Room No.

P1 9:00 9:00 On-time 9:00 9:18 0 1
P3 9:20 8:50 Early 9:00 9:15 10 2
P2 9:00 9:10 Late 9:15 9:31 5 2
P5 9:40 9:08 Early 9:18 9:38 10 1
P4 9:20 9:20 On-time 9:31 9:46 11 2
P6 9:40 9:40 On-time 9:40 9:57 0 1

3.6.2. Examples of the Preempt Policy with Constant Service Time

For the constant service time example, all patients’ service time is assumed to be
20 min, and two scanning rooms are scheduled. For notations, Pi is the arrival time of
the ith patient, and Ai is the scheduled appointment time of the ith patient. In Figure 2,
P3, who has an appointment time at 9:20 am, arrives at 8:50 am; P1 then arrives at exactly
9:00 am (i.e., the scheduled appointment time), which means that P1 is on time. As P2 has
not arrived yet and there is still one room available, P3 is preempted. At 9:08 am, P2 and
P5 arrive; after 7 min, P4 arrives. Since the service starts at 9:20 am and P4’s scheduled
appointment time is 9:20 am, P4 receives the service at the scheduled appointment time. P2
also receives the service at 9:20 am given the patient’s earlier scheduled appointment than
P5, even though P2 is late and P5 is early. In this case, P5 receives the service at 9:40 am
(i.e., the scheduled appointment time), as well as P6 since P6 is on time. The details of
appointment time, arrival time, start of service time, end of service time, and waiting time
for each patient are summarized in Table 11.

3.6.3. Examples of the Preempt Policy with Variable Service Time

For the variable service time example, patients’ service time is assumed to be between
10 and 20 min, and two scanning rooms are scheduled. Except for Pi and Ai, Ei is the end
of the service time of the ith patient. Figure 3 shows the example for the preempt policy
with variable service time wherein P3, an early patient, receives the service at 9:00 am
since P2 has not arrived yet. At 9:08 am, P5, who has an appointment at 9:40 am, arrives,
followed by the late patient P2 at 9:10 am. P3’s service ends at 9:15 am, meaning that the
service provider is now available. Two patients, P2 and P5, are already in the queue. As
the first-scheduled-first-served rule is being applied in this policy, P2 receives the service
first even though P5 arrived first. P5 receives the service at 9:18 am, when P1’s service time
ends. Since P5 has been preempted, there is no room available for the on-time patient P4.
Therefore, P4 receives the service at the end of P2’s service, which occurs at 9:31 am. P5’s
service ends at 9:38 am. Since P6 has not arrived yet, the service provider (i.e., Room 1)
will be idle for 2 min. At 9:40 am, P6 will immediately receive the service. The details of
appointment time, arrival time, start of service time, end of service time, and waiting time
for each patient are summarized in Table 11.

Unpunctual patients will only be preempted if a scheduled patient missed the ap-
pointment time. The patient who will be preempted is based on who has the earliest
scheduled appointment (first-scheduled-first-served policy). This policy was based on
Cayirli et al.’s [14] paper, which issued the appointment schedule as the basis when pre-
empting patients.

3.6.4. Wait Policy

The wait policy also considers Deceuninck et al.’s [15] definition, where the appoint-
ment order is strictly followed. This means that the provider has to wait for the scheduled
patient and remain idle until the scheduled patient arrives. Samorani and Ganguly [13] sup-
ported this type of policy by stating that, under some environmental parameters, waiting
is beneficial. In this case, only early patients have to wait for their appointment schedule
regardless of showing up earlier than the scheduled patient. However, for late patients, the
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researchers used one penalty policy developed in Klassen and Yoogalingam’s [11] paper.
In their study, they tested four penalties: No penalty, late patients wait until the physician
is idle, late patients are placed at the end of the existing queue, and late patients are placed
at the end of the session. Among the four penalties, they found that late patients placed
at the end of the existing queue outperformed the other policies. In this policy, on-time
patients are still prioritized even if there is a patient in the waiting room. Therefore, in the
current study, the researchers placed late patients at the end of the existing queue as the
wait policy.

4. Results
4.1. Preempt and Wait Policies

Preempt and wait policies were carried out into the current model in order to determine
which policy performs better with regard to patient unpunctuality. The researchers used
the output analyzer in Arena Simulation Software to compare these two policies. The
researchers computed the cost of patients’ waiting time and the radiological technicians’
idle time when dealing with patient unpunctuality. The formulas used to compute for the
total cost were similar to the model of Zhu et al. [21]. Total cost was the main basis for
comparing the policies, using the hypotheses and the 95% confidence interval.

H0: No significant difference exists between the mean of total cost of the preempt
policy and the mean of total cost of the wait policy (µ1 − µ2 = 0).

H1: A significant difference exists between the mean of total cost of the preempt policy
and the mean of total cost of the wait policy (µ1 − µ2 6= 0).

The results show that the null hypothesis (H0) at the 95% confidence interval was
rejected. This means that a significant difference existed between the mean of total cost of
the preempt policy and the wait policy. Since this difference (i.e., the mean of total cost of
the preempt policy minus the mean of total cost of the wait policy) is negative, the total cost
of the preempt policy is less than the total cost of the wait policy. With this, the preempt
policy performs better with regard to the patient unpunctuality.

Both policies were able to serve all patients in 1 day. In the preempt policy, available
early patients had a higher tendency to get service whenever the scheduled patient was
not present at the scheduled time since early patients could be preempted, resulting in
lower average waiting time and number of patients waiting compared to the wait policy,
where early patients were forced to wait for their appointment time regardless of how early
they entered the system. Idle time for the wait policy was higher than the preempt policy
since it disregarded early patients even when the radiological technician and room were
available but the scheduled patient was not present at that moment, resulting in more idle
time. As the waiting time and idle time of the preempt policy were lower than those times
of the wait policy, the waiting time cost and idle cost in the preempt policy would also be
lower than the wait policy. Table 12 shows that the preempt policy indeed has lower costs
than the wait policy. Please note that the cost of waiting for the patient is different from the
radiological technician. The assumptions of (ci, cw) = (0.5, 0.5) do not expect these costs
to be the same. They are the weightings between radiological technician’s idle time cost
and patient waiting time cost in the system. The weightings are decided by the level of
importance of the costs in the system.

Table 12. Cost analysis of the preempt policy and the wait policy.

Cost Preempt Policy Wait Policy

Radiological Technician’s Idle Time Cost NT 5809.97 NT 5872.74
Patient Waiting Time Cost NT 888.87 NT 916.95

Total Cost NT 3349.41 NT 3394.85
Note: Total Cost = 0.5 × Radiological Technician’s Idle Time Cost + 0.5 × Patient Waiting Time Cost. Here, (ci, cw)
= (0.5, 0.5). Here, NT represent New Taiwan dollars.
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These results support the study of Samorani and Ganguly [15]. According to their
study, the preempt policy is the best policy for services with a short service time (i.e.,
5–30 min) since it is easy to implement and has a small effect on waiting time; this finding
can be applied in the current study as well, where the average service time of patients was
10 to 20 min.

4.2. Sensitivity Analyses

Sensitivity analyses were utilized on the preempt policy to see what happens to the
system when key parameters were changed to different values. In this study, three key
parameters are the patient’s inter-arrival time, cost coefficient of radiological technician’s
idle time (ci), and cost coefficient of patient waiting time (cw), which were 20 min, 0.5, and
0.5, respectively.

We conducted four sensitivity analyses. First, the patient’s inter-arrival time was
adjusted to ±2 min and ±4 min from the current value (i.e., 20 min). Using Zhu et al.’s [21]
notations, the cost coefficients of radiological technician’s idle time and the patient waiting
time were changed to give more weight to the latter cost coefficient since hospital managers
focused on improving patient satisfaction. Therefore, the parameters of (ci, cw) were (0.4,
0.6), (0.3, 0.7), (0.2, 0.8), and (0.1, 0.9), while the base parameters were (0.5, 0.5).

4.2.1. Base-Parameter Model Analysis

In Table 13, all patients (i.e., 54 patients) were served on the day of their appointment.
The average number of patients waiting as well as the waiting time increased as the inter-
arrival time decreased. The average total time in system and utilization of scanning rooms
were also inversely proportional to the patient’s inter-arrival time. The number of early
patients was lowest at the patient’s inter-arrival time of 24 min, while the number of late
patients was lowest at 18 min. However, the number of on-time patients was highest at
22 min. No trend can be found regarding the number of early, late, and on-time patients
and the patient’s inter-arrival time. Nonetheless, a patient’s inter-arrival time of 22 min
would be preferable as patients tend to be more punctual. Furthermore, the utilization of
scanning rooms was highest at a patient’s inter-arrival time of 18 min.

Table 13. Base-parameter analysis with the pair cost coefficients (0.5, 0.5).

Key Performance Index
Patient’s Inter-Arrival Time (Minutes)

16 18 20 22 24

Radiological Technician’s Idle Time Cost (NT Dollars) 5762.35 5863.52 5809.94 5718.61 5716.29

Patient Waiting Time Cost (NT Dollars) 1623.80 1352.32 888.87 817.28 826.05

Total Cost (NT Dollars) 3693.08 3607.92 3349.41 3267.95 3271.17

No. of Patients Served (Patients) 54 54 54 54 54

Average Number of Patients Waiting (Patients) 0.99 0.84 0.54 0.49 0.49

No. of Early patients (Patients) 44.27 45.07 44.80 44.40 44.13

No. of Late patients (Patients) 8.07 7.20 7.67 7.80 8.13

No. of On-time patients (Patients) 1.66 1.73 1.53 1.80 1.74

Average Waiting Time (Minutes) 12.89 10.73 7.05 6.49 6.56

Average total Time in System (Minutes) 32.93 30.75 27.13 26.33 26.17

Utilization of Scanning Rooms (%) 53.72 53.86 53.72 53.55 52.58

4.2.2. Sensitivity Analysis 1

The cost coefficients of the radiological technician’s idle time and patient waiting time
used in this sensitivity analysis were 0.4 and 0.6, respectively, for the five inter-arrival times.
Table 14 shows the results for the first sensitivity analysis with the patient’s inter-arrival
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time (16, 18, 20, 22, and 24). When the patient’s inter-arrival time decreases (from 24,
22, 20, to 18), the radiological technician’s idle time cost increases. When the patient’s
inter-arrival time decreases (from 22, 20, 18, to 16), the patient waiting time cost increases as
well as the total cost. Although the radiological technician’s idle time cost with a patient’s
inter-arrival time of 16 min is slightly less than a patient’s inter-arrival time of 18 min, the
radiological technician’s idle time cost is inversely proportional to the patient’s inter-arrival
time. Similarly, the patient waiting time cost and total cost are also inversely proportional
to the patient’s inter-arrival time.

Table 14. Sensitivity analysis 1 with the pair cost coefficients (0.4, 0.6).

Key Performance Index
Patient’s Inter-Arrival Time (Minutes)

16 18 20 22 24

Radiological Technician’s Idle Time Cost (NT Dollars) 3457.41 3518.11 3485.98 3431.17 3429.77

Patient Waiting Time Cost (NT Dollars) 649.52 540.93 355.55 326.91 330.42

Total Cost (NT Dollars) 1772.68 1731.80 1607.72 1568.61 1570.16

4.2.3. Sensitivity Analysis 2

In this sensitivity analysis, the radiological technician’s idle time and the cost coeffi-
cients for patient waiting time used were 0.3 and 0.7, respectively, while considering five
inter-arrival times. Table 15 shows the results for the second sensitivity analysis. The results
for the three costs showed a similar trend as in the first sensitivity analysis. Therefore, the
radiological technician’s idle time cost, the patient waiting time cost, and total cost are
inversely proportional to the patient’s inter-arrival time.

Table 15. Sensitivity analysis 2 with the pair cost coefficients (0.3, 0.7).

Key Performance Index
Patient’s Inter-Arrival Time (Minutes)

16 18 20 22 24

Radiological Technician’s Idle Time Cost (NT Dollars) 4033.65 4104.46 4066.98 4003.03 4001.40

Patient Waiting Time Cost (NT Dollars) 487.14 405.70 266.66 245.18 247.82

Total Cost (NT Dollars) 1551.09 1515.33 1406.76 1372.54 1373.89

4.2.4. Sensitivity Analysis 3

In this sensitivity analysis, the cost coefficients for the radiological technician’s idle
time and patient waiting time used were 0.2 and 0.8, while considering five inter-arrival
times. Table 16 shows the results for the third sensitivity analysis. The results for the
radiological technician’s idle time cost, the patient waiting time cost, and total cost showed
a similar trend as in the first and second sensitivity analyses. Therefore, the radiological
technician’s idle time cost, the patient waiting time cost, and total cost are inversely
proportional to the patient’s inter-arrival time.

Table 16. Sensitivity analysis 3 with the pair cost coefficients (0.2, 0.8).

Key Performance Index
Patient’s Inter-Arrival Time (Minutes)

16 18 20 22 24

Radiological Technician’s Idle Time Cost (NT Dollars) 4609.88 4690.82 4647.98 4574.89 4573.03

Patient Waiting Time Cost (NT Dollars) 324.76 270.46 177.77 163.46 165.21

Total Cost (NT Dollars) 1181.78 1154.53 1071.81 1045.75 1046.77
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4.2.5. Sensitivity Analysis 4

This sensitivity analysis sets the cost coefficients for radiological technician’s idle
time and patient waiting time to 0.1 and 0.9, while considering five inter-arrival times.
Table 17 shows the results for the third sensitivity analysis. The results for the radiological
technician’s idle time cost, the patient waiting time cost, and total cost showed a similar
trend as in the first and second sensitivity analyses. Therefore, the radiological technician’s
idle time cost, the patient waiting time cost, and total cost are inversely proportional to the
patient’s inter-arrival time.

Table 17. Sensitivity analysis 4 with the pair cost coefficients (0.1, 0.9).

Key Performance Index
Patient’s Inter-Arrival Time (Minutes)

16 18 20 22 24

Radiological Technician’s Idle Time Cost (NT Dollars) 5186.12 5277.17 5228.97 5146.75 5144.66

Patient Waiting Time Cost (NT Dollars) 162.38 135.23 88.89 81.73 82.61

Total Cost (NT Dollars) 664.75 649.42 602.90 588.23 588.82

5. Discussion

According to the four sensitivity analyses, a 24-min patient’s inter-arrival time resulted
in the lowest cost for the radiological technician’s idle time since the average total time in
system of a patient is 26.17 min, which is close to the 24-min interval. The approximate
2.17-min difference between the interval and total time in system means that the radio-
logical technician remains engaged in work and has less idle time. In addition, a 22-min
patient’s inter-arrival time resulted in the lowest cost for patient waiting time. Service time
for each patient usually took approximately 19 to 20 min, meaning that patients had an
extra 2 min before arriving for their scheduled appointment, during which the radiological
technician could prepare for the next appointment. An inter-arrival time of 16 or 18 min
might be preferred to 22 min to ensure that the patient arrives before the previous patient
finishes the service. However, this approach would cause congestion in the waiting room,
making it more crowded and resulting in patient dissatisfaction [13,47].

As the patient’s inter-arrival decreased, the radiological technician’s idle time in-
creased, resulting in a higher idle cost, which greatly affects the total cost as well as the cost
coefficient of patient waiting time. The average number of patients waiting only differs
when the patient’s inter-arrival time is adjusted, yet it remains the same throughout all
cost coefficients since it does not deal with costs. It is apparent that the number of patients
waiting is higher when the patient’s inter-arrival interval is shorter than when it is long.
The same is true with the patients’ average waiting time. Patients incur more waiting
time when the patient’s inter-arrival interval is shorter than when it is long. As previously
mentioned, this result is mainly due to the service time usually taking about 19 to 20 min.
However, if the patient’s inter-arrival is set lower than the service time, patients will arrive
on time while the radiological technician is still working with the prior patient, meaning
that the technician is not ready to provide service to the scheduled patient. When the
patient’s inter-arrival time increases, utilization decreases. When the patient’s inter-arrival
was 24 min, utilization decreased slightly, mainly due to idle time. As service usually takes
about 19 to 20 min, when the patient’s inter-arrival is 24 min, the 4- to 5-min difference will
lead to idle time and low utilization of the scanning rooms.

In the four sensitivity analyses, the results showed that different settings of patient’s
inter-arrival have an impact on the three costs (i.e., radiological technician’s idle time cost,
the patient waiting time cost, and total cost); however, different settings of cost coefficients
for radiological technician’s idle time and patient waiting time did not have an impact
on the three costs. Therefore, the key parameter was the patient’s inter-arrival for patient
unpunctuality.
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Unpunctuality has numerous impacts on the system. All patients are served within
the scheduled day, but they may face waiting and idle times. The waiting and idle times
depend on the patient’s inter-arrival time that is set in the schedule policy and the degree
of patients’ unpunctuality. The sensitivity analyses demonstrated how the system works in
the presence of patient unpunctuality and different scenarios.

6. Conclusions

By comparing the total cost of each policy, the researchers determined that the preempt
policy is better than the wait policy as the total cost of the former is less than the total cost of
the latter. Therefore, the preempt policy performs better than the wait policy in the presence
of patient unpunctuality. These findings support those of Samorani and Ganguly [15], who
concluded that the preempt policy is the best policy for services with a short service time
since it is easy to implement and has a small effect on the waiting time.

In the presence of patient unpunctuality, the weights of the cost coefficients of both
radiological technician’s idle time and patient waiting time must be equal in order to
achieve lower costs. The patient’s inter-arrival time must be close to the average total time
in the system to ensure lower costs. To prevent patient waiting time and congestion in
the waiting room, the patient’s inter-arrival time should be higher than the service time,
but should still be close to it. Moreover, utilization decreases as the patient’s inter-arrival
increases. Therefore, patient’s inter-arrival time should be higher than, but near to, the
service time to ensure lower patient waiting time and radiological technician’s idle time.

The limitations of this study included two factors. First, this research assumed that
there is neither walk-ins (i.e., emergency patients) nor no-show patients for the case study.
However, walk-ins and no-show patients exist for patient appointment scheduling systems.
No-show patients for one-doctor clinics have more impact on patient appointment schedul-
ing systems than those for multi-doctor ones. How to integrate walk-ins and no-show
patients with patient unpunctuality into patient appointment scheduling problems merits
further research. Second, this research used the one-patient in one-time-slot policy with
patient unpunctuality for patient appointment schedules. Although patient service time
can be constant or variable, different patient appointment scheduling policies with patient
unpunctuality also merit further research. Therefore, two future research directions should
be explored. First, researchers could incorporate no-show patients or walk-ins into patient
appointment scheduling problems with patient unpunctuality to investigate the impact
on system performance [11,12,26]. Second, researchers could explore more policies for
patient appointment scheduling problems with patient unpunctuality in order to determine
a better patient appointment scheduling policy [6,48,49].
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