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Abstract: The COVID-19 pandemic has led to a global health crisis with significant morbidity, mortal-
ity, and socioeconomic disruptions. Understanding and predicting the dynamics of COVID-19 are
crucial for public health interventions, resource allocation, and policy decisions. By developing accu-
rate models, informed public health strategies can be devised, resource allocation can be optimized,
and virus transmission can be reduced. Various mathematical and computational models have been
developed to estimate transmission dynamics and forecast the pandemic’s trajectories. However,
the evolving nature of COVID-19 demands innovative approaches to enhance prediction accuracy.
The machine learning technique, particularly the deep neural networks (DNNs), offers promising
solutions by leveraging diverse data sources to improve prevalence predictions. In this study, three
typical DNNs, including the Long Short-Term Memory (LSTM) network, Physics-informed Neural
Network (PINN), and Deep Operator Network (DeepONet), are employed to model and forecast
COVID-19 spread. The training and testing data used in this work are the global COVID-19 cases
in the year of 2021 from the Center for Systems Science and Engineering (CSSE) at Johns Hopkins
University. A seven-day moving average as well as the normalization techniques are employed to
stabilize the training of deep learning models. We systematically investigate the effect of the number
of training data on the predicted accuracy as well as the capability of long-term forecast in each
model. Based on the relative L2 errors between the predictions from deep learning models and the
reference solutions, the DeepONet, which is capable of learning hidden physics given the training
data, outperforms the other two approaches in all test cases, making it a reliable tool for accurate
forecasting the dynamics of COVID-19.

Keywords: COVID-19; infectious prediction; deep learning; deep neural network

1. Introduction

The coronavirus disease 2019 (COVID-19) pandemic [1], caused by the severe acute
respiratory syndrome coronavirus-2 (SARS-CoV-2), has resulted in an unprecedented
global health crisis with substantial morbidity and mortality rates, as well as profound
socioeconomic disruptions [2–6]. Since its initial emergence in Wuhan, China in December
2019, COVID-19 has swept across the globe, with over 200 million confirmed cases and
millions of fatalities reported worldwide by 2021. Unfortunately, many variants of the
COVID-19 virus have been recently detected worldwide, and the disease still appears in
multiple waves. Therefore, this pandemic has underscored the urgency of understanding
and predicting the dynamics of COVID-19 to inform public health interventions, resource
allocation, and policy decisions in the pursuit of mitigating its impact on societies [7,8].

The SARS-CoV-2 virus is primarily transmitted through respiratory droplets, aerosols,
and contaminated surfaces, with an incubation period ranging between 2 and 14 days.
The broad spectrum of COVID-19 clinical manifestations includes asymptomatic and
mild cases, as well as severe respiratory distress and multi-organ failure, leading to hos-
pitalizations and fatalities. The elderly, individuals with underlying health conditions,
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and immunocompromised patients represent the most vulnerable populations to severe
outcomes [9–12]. The number of infections needs to be monitored and predicted, which is
critical for developing prevention and care plans [6,8,13,14].

Predicting the prevalence of COVID-19 infections is essential to inform targeted and
timely interventions, optimize resource allocation, and enable effective communication to
the public. These predictions can guide decision-makers in implementing strategies such
as social distancing measures, mass testing, contact tracing, and vaccination campaigns,
ultimately reducing the spread of the virus and saving lives [7,15,16]. Furthermore, accurate
predictions can facilitate the evaluation and adjustment of implemented interventions in
response to changing epidemic conditions, allowing for more adaptable and efficient
management of the pandemic.

Due to the urgent need for accurate prediction models to inform public health inter-
ventions, resource allocation, and policy decisions, a number of mathematical and compu-
tational models have been developed to estimate the transmission dynamics and forecast
the short- and long-term trajectories of the pandemic [17–19]. However, the complex and
rapidly evolving nature of the COVID-19 pandemic requires innovative approaches to
enhance the accuracy and applicability of these predictions [8]. Machine learning (ML),
a subset of artificial intelligence (AI) that enables computers to learn from and analyze
data [20,21], offers a promising solution to this challenge by incorporating large-scale,
diverse data sources and providing data-driven insights to improve COVID-19 prevalence
predictions. In the realm of data prediction, the deep neural networks (DNNs) have demon-
strated unparalleled effectiveness in various domains, ranging from natural language
processing and image recognition to financial forecasting and medical diagnostics [22–25].
These advancements have, in turn, fueled the development of novel applications and
techniques that can address complex challenges, such as predicting the spread of infectious
diseases, including the COVID-19 pandemic.

Considering that the COVID-19 cases are time series data similar as those in financial
forecasting and medical diagnostics, the DNNs have also been utilized for the COVID-19
predictions. In particular, the long-short-term-memory (LSTM) networks [26] as well
as its variants [27] are widely employed for COVID-19 forecast due to its capability for
providing accurate long-term predictions. Just to name a few related examples, Chimmula
et al., employed the LSTM model to predict the daily confirmed cases in various countries,
demonstrating accurate predictions on a short-term basis [28]. Furthermore, Yang et al.,
utilized the LSTM in conjunction with other machine learning techniques to model the
spatial-temporal patterns of the pandemic, providing a useful tool for guiding public health
interventions [29].

It is worth mentioning that the LSTM is a purely data-driven method, which is risky for
very long-term predictions [30]. The recently developed physics-informed neural networks
(PINNs) [31,32], which can encode the physical laws in DNNs, is able to achieve better
accuracy especially in extrapolations compared to the purely data-driven deep learning
models since the predictions follow the physics after training. The PINNs have also
been applied to investigations of the spread of COVID-19 [33,34]. As reported in [33,35],
the PINN can provide more accurate results in long-term predictions than the purely data-
driven deep learning model by encoding the partially known physics in the DNNs. We
note that the accuracy of PINNs strongly depends on the the physical laws or mathematical
models encoded in the DNNs. We may not be able to obtain good results if the mathematical
model is misspecified in PINNs. Developing accurate mathematical models for describing
the dynamics of COVID-19 remains challenging, which limits the further improvements to
the accuracy of PINNs for COVID-19 forecast.

Most recently, the deep operator networks (DeepONets) have been proposed to learn
the hidden physics represented by the training data [36,37]. Theoretical work has shown
that the DeepONet is a universal approximator to any nonlinear operator [36]. Unlike
PINNs, DeepONets do not require to explicitly encode the physical laws or mathematical
model in the DNNs. The inherent physics can be directly learned given sufficient data.
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Some studies have leveraged this property to predict time series using DeepONet, such as
forecasting the state-of-charge of the solar system [38], which shown that DeepONet out-
performs the LSTM in these specific cases. To the best of our knowledge, the effectiveness
of DeepONet for COVID-19 forecast has not been justified yet.

Despite various deep learning approaches have been developed and employed for
COVID-19 forecast, how to select the most suitable DNN models for predicting the preva-
lence of COVID-19 infections remains an open question. In the present study, we will
conduct a comprehensive comparative study on the performance of different deep learning
models for COVID-19 forecast. Particularly, we will test the performance of three types of
deep learning models, i.e., the data-driven, physics-informed and the operator learning
models. The findings will help future researchers choose most suitable DNN models for
predicting how COVID-19 would transmit.

The rest of this work is organized as follows: In Section 2, we discuss the detailed
problem setup as well as the deep learning models employed in this study. The numerical
results are presented in Section 3, and the present study is consluded in Section 4.

2. Methods
2.1. Problem Setup

In this work, we utilize the COVID-19 global cases throughout the year of 2021, which
are obtained from the Center for Systems Science and Engineering (CSSE) at Johns Hopkins
University [39]. On 1 January 2021, at the beginning of our analysis window, the worldwide
count of newly reported cases had contributed to an overall tally of 84,332,767 cases. On
31 December 2021, at the end of our window, the total case count had surged to
288,631,129 cases. In summary, the reporting window revealed three pronounced waves.
At the beginning, the daily new cases exhibited an upward and subsequent downward
oscillation within the first month, reaching its trough around mid-February 2021 with
a daily addition of approximately 280,000 cases. The second wave of infections peaked
around May 2021, reaching about 900,000 new cases. It then decreased significantly, reach
the bottom with around 30,000 daily additions by late June 2021. Then, about four months
after the previous high point, in mid-August, it surged again and reached another peak.
This was followed by a decline, reaching another low point about four months after the
previous nadir.

As observed, there are significant fluctuations in the raw data. we then utilize a sliding
window to generate smooth training and testing data, with the seven-day moving average,
which is illustrated in Figure 1. Further, we normalize the new cases as follows to make the
training of deep learning models more stable.

n =
n− nmin

nmax − nmin
× 0.3, (1)

where nmin and nmax are the minimum and maximum values of the total initial data,
respectively. We note that the data used in the current study has also been employed
in [33]. Also, the seven-day moving average is also utilized to stabilize the training of
neural networks.

In particular, we will employ three different deep learning models for forecasting of
the new cases, i.e., LSTM, PINN, and DeepONet. To be more specific, the LSTM, PINNs,
and DeepONets are utilized as the representative for the data-driven, physics-informed
and the operator learning deep learning models, respectively. As mentioned, the LSTM
is a widely used deep learning model for time series forecasting; the PINN is capable
of leveraging both data and the partially known physics, which generally leads to more
accurate extrapolations in time series forecasting; and the DeepONet which is capable of
learning the hidden operators represented by the training data, which is also promising
in providing accurate predictions for time series forecasting. The objective of the present
study is to conduct a comprehensive comparison on the computational accuracy of the
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three aforementioned deep learning models for COVID-19 forecasting. Specifically, we will
consider the following cases:

• Case A: we study the effect of the size of sliding windows in LSTM and DeepONet,
laying the foundation for selecting window size in subsequent work;

• Case B: We employ the daily new COVID-19 cases in the first 240 days of 2021 as
training data, and forecast the new COVID-19 cases in the remaining 120 days, which
is referred to as the standard case in this study for comparing the results of these three
methods;

• Case C: The effect of of different numbers of training data on the predicted accuracy
is investigated. Particularly, we use the first 220, 240, and 260 days’ new COVID-19
cases as the training data, respectively; and predict the new cases in the remaining
days of 2021;

• Case D: This case focuses on the performance of long-term extrapolation in different
methods. We employ the COVID-19 cases in the first 220 days of 2021 as the training
data, and predict the new cases in the following 180 days rather than 120 days in Case A.

Figure 1. Normalized daily new COVID-19 cases worldwide in 2021.

In the present study, we use the relative L2 error between the predictions and the
reference solutions as the evaluation metric to evaluate the predicted accuracy of each
model, which is defined as

E =

√
∑ND

j=1(Φ(dj)−ΦNN(dj))2√
∑ND

j=1 Φ(dj)2
, (2)

where Φ is the public data for new infections of COVID-19, ΦNN is the prediction results,
and ND is the total number of days in the prediction window. A smaller value of E indicates
better predicted accuracy. We note that the L2 error has also been employed as a metric in
previous studies [31,40–43].

2.2. Deep Learning Models

We present the details for the three deep learning models, i.e., LSTM, PINNs, and Deep-
ONet, in this section.

2.2.1. Long Short-Term Memory Model

The LSTM model is a type of recurrent neural network (RNN) architecture developed
by Hochreiter and Schmidhuber in 1997 to address the vanishing gradient problem in
traditional RNNs [26]. The key innovation of LSTM lies in its memory cell, which is
designed to store long-term dependencies in sequences more effectively. This feature
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makes LSTM particularly suitable for a wide range of sequence-based tasks, such as natural
resources and stock forecasting [25,44]. For a standard nerual network unit it only consists
the input activation ai and the output activation bi, while LSTM networks have gating units,
including input, output, and forget gates, that enable selective retention and modification
of information in the memory cell, seen in Figure 2. This selective information flow allows
LSTM to be more robust to noise and irrelevant input features, while also handling variable-
length input sequences [45]. The LSTM has three of these gates to protect and control the
cell state:

fi = σ(bl · ai + bias f ),

ii = σ(bω · ai + biasi),

Ci = tanh(bΦ · ai + biasC),

bi = fi ∗ Ci + ii ∗ Ci.

(3)

Figure 2. Schematic of LSTM memory cell with gating units.

2.2.2. Physics-Informed Neural Networks

In recent years, there has been a remarkable surge of interest in the application of the
physics-informed neural networks (PINNs) for predictive modeling. PINNs combine the
power of deep learning with the physical principles encoded in partial differential equations
(PDEs) to solve complex problems in a data-driven manner. By incorporating physical
knowledge into the network architecture, PINNs can effectively capture the underlying
physical laws and learn accurate solutions even from limited or noisy data.

Considering parameterized and nonlinear partial differential equations of a general
form:

ut +N [u; λ] = 0, x ∈ Ω, t ∈ [0, T], (4)

where u(t; x) denotes the solution, N [u; λ] is a nonlinear operator parameterized by λ,
and Ω is a subset of RD. The loss function for training the PINNs is expressed as follows:

MSE = MSEu + MSE f , (5)

where

MSEu =
1

Nu

Nu

∑
i=1
|u(ti

u, xi
u; λ)− ui|2,

MSE f =
1

N f

N f

∑
i=1
| f (ti

f , xi
f ; λ)|2,

(6)
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with f = ut +N [u; λ] denoting the residual of the equation. Various studies have demon-
strated the efficacy of PINNs across diverse fields, including fluid dynamics, material
science, and biomedical engineering, which makes it a promising tool for advancing both
fundamental scientific research and practical applications.

In this work, we employ the equation for modeling a damped harmonic oscillator as
the governing equation for the description of the dynamics for COVID-19 following [33],
which is expressed as follows:

f := ü +
c
m

u̇ +
k
m

u = 0, (7)

where u is the number of infections, seen in Figure 3. In this case we fix the value of the mass
to m = 1, and the remaining parameter k and c are unknown in the equation, which will be
determined given data.

Figure 3. Schematic of PINNs. The governing equation is encoded into the DNN using automatic
differentiation.

2.2.3. Deep Operator Networks

By leveraging the expressive power of deep neural networks, DeepONet can learn
complex mappings between inputs and outputs, making it well-suited for solving high-
dimensional and nonlinear PDEs [36,46]. The DeepONet is essentially a mapping between
two function spaces. As shown in Figure 4, the DeepONet is composed of two sub-networks,
i.e., the Branch Net (BN) and the Trunk Net (TN) (Figure 4). The input for BN is a function,
which is represented by a set of discrete function values at certain locations, i.e., t1, t2, ..., tn,
and the output of BN is a vector [a1, a2, ..., ap]. In addition, TN takes t as input and outputs a
vector [b1, b2, ..., bp]. The output of the DeepONet is the inner product of these two vectors:

u(t) = G(u)(t) =
p

∑
k=1

akbk. (8)

Figure 4. Schematic of DeepONet.
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In LSTM and DeepONet, we use sliding windows based on the historical data to
generate the training data [46,47]. As shown in Figure 5, the LSTM/DeepONet takes the
data in the training window as input, and predict the new cases in the prediction window.
Specifically, we refer to the number of data in the training/prediction window as window
size. Also, the window size of the training and prediction window is the same, and the step
size for sliding the window is kept as 1 in the present study.

Figure 5. Schematic of the sliding window in LSTM and DeepONet. Blue line: training window,
purple line: prediction window.

3. Results and Discussion

In this section, we will conduct a comprehensive performance comparison among
three different deep learning models, i.e., the LSTM, PINN, and DeepONet, on COVID-19
forecast. In the following computations, (1) the LSTM has 1 hidden layer with 100 neurons
per layer, (2) for the DeepONet, the branch net has 2 hidden layers with 50 neurons per
layer, and the trunk net also has 2 hidden layers with 50 neuron per layer. The number
of dimensions for the output of the branch/trunk net is 120, and (3) in PINNs, the DNN
has 2 hidden layers with 32 neurons per layer, which is the same as in [33]. In addition,
the hyperbolic function is utilized as the activation functions in all deep learning models.
In each method, we employ the mean-squared error (MSE) between the reference and the
predictions from the deep learning models as the loss functions. The Adam optimizer with
an initial learning rate 10−3 will be used in the training of all deep learning models. We
note that all models are implemented using the deep learning framework Tensorflow.

3.1. Case A: Effect of the Size of Sliding Window in LSTM and DeepONet

We first study the effect of the size of sliding windows in LSTM and DeepONet on the
predicted accuracy, laying the foundation for selecting window size in subsequent work.
In this case the sliding windw size is set to be 60, 100, 120 and 140 for both LSTM and
DeepONet with step sizes fixed at 1. We employ the daily new COVID-19 cases in the first
240 days of 2021 as training data, and forecast the new COVID-19 cases in the remaining
120 days. The results are shown in Figure 6 and Table 1.

Table 1. The prediction error E from LSTM and DeepONet with different sliding windows.

E Size = 60 Size = 100 Size = 120 Size = 140

LSTM 37.1% 10.3% 15.7% 16.3%
DeepONet 17.4% 16.1% 6.2% 17.2%

As observed: (1) the LSTM obtains the most accurate predictions as the window
size is 100, and (2) the DeepONet achieve the best accuracy as the window size is 120.
In general, increasing the size of the slide window is able to provide more information
on the dependency of the time series, which expects to improve the predicted accuracy.
However, a larger prediction window requires the deep learning models to forecast longer
time series, which may decrease the predicted accuracy of the deep learning models.
Therefore, in the following study we set the size of the sliding window as 100 and 120 in
LSTM and DeepONet, respectively.
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Figure 6. Predictions from LSTM and DeepONet with different sliding windows. LSTM: Left column
(a,c,e,g); DeepONet: Right column (b,d,f,h).

3.2. Case B: Standard Case

In this subsection, we employ LSTM, PINNs and DeepONet to forecast the new
COVID-19 infection cases and compare the results of these methods. We note that the
PINN is equipped with the same physical model and similar data as used in [33], which is
served as the baseline for the comparison here. The architectures as well as the training
data of LSTM and DeepONet are the same as in Case A. It is observed in Figure 7 and
Table 2 that: (1) the LSTM is able to fit the training data better than the PINN as well as
DeepONet; (2) the predictions for the remaining 120 days from the LSTM and PINNs are
quite similar. They share the same trends with the reference solutions, but the magnitudes
are quite different from those in the reference solutions; and (3) the DeepONet is capable
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of providing quite accurate predictions for both the trends as well as the numbers of the
new cases.
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(a) (b) (c)

Figure 7. Predictions for the COVID-19 new cases using different deep learning models for Case
A: (a) LSTM, (b) PINNs, (c) DeepONet. Blue circles: Training data, Black solid line: Reference, Red
dashed line: Predictions.

Table 2. The prediction errors (E) of the different deep learning models.

LSTM PINNs DeepONet

E 6.2% 13.0% 10.3%

We would like to discuss here that: (1) the LSTM is a purely data-driven method,
which is expected to obtain better results with more training data; (2) the PINN leverages
both the data and the partially known physics. However, we may also need more data
to identify the unknown physics in order to achieve better accuracy. We will show more
details on the effect of the number of training data on the predicted accuracy for the LSTM
and PINNs in the next section; and (3) the DeepONet is capable of learning the hidden
physics given data in the first 240 days, and hence provides the most accurate predictions
among the three different deep learning models.

3.3. Case C: Effect of Number of Training Data

As mentioned in the previous section, we expect the LSTM as well as PINNs to achieve
better accuracy with more training data. We now conduct a detailed study to address the
effect of the number of training data in the LSTM and PINNs. Specifically, we test the
cases with the new COVID-19 cases in the first 220, 240, and 260 days as the training data,
and forecast the cases in the remaining days of 2021.

As displayed in Figure 8 and Table 3: (1) both the LSTM and PINN achieve better
accuracy as we increase the number of the training data; (2) the PINN is able to provide the
trends more accurately than the LSTM in all test cases. For instance, the locations of the
peaks and valleys in the prediction window from the PINNs agree better with the reference
solutions than the LSTM, especially for the first case in which we have less training data;
(3) both the PINN and LSTM can obtain good accuracy in the case we use the data in the
first 260 days; and (4) the PINN has better accuracy than the LSTM for the predictions
at t > 0.9 years in these specific cases, which demonstrates that the learned physics can
improve the accuracy for extrapolation.
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Figure 8. Predicted COVID-19 new cases with different training numbers for LSTM [Top row, (a–c)]
and PINNs [Bottom row, (d–f)].

Table 3. The computational errors (E) for LSTM and PINNs.

E N = 220 N = 240 N = 260

LSTM 18.7% 10.3% 8.2%
PINNs 12.9% 13.0% 8.5%

3.4. Case D: Performance for Long-Term Forecast

To further investigate the capability of different deep learning models for long-term
forecast for this specific task, we reduce the number of training data while extending the
model’s prediction time compared to the standard case in Case B. We selected the first
220 days new cases as the training data and generated predictions for the following 180 days.
So the total number of days in this case is 400 days. The red shade indicates the extended
prediction segment, seen in Figure 9. As illustrated in Figure 9 and Table 4: (1) all models
fit the training data well; (2) the DeepONet is the most accurate among the three deep
learning approaches for the long-term forecast, which is smilar as in Case B; and (3) the
computational errors in PINNs are smaller than those in LSTM, which indicates that the
inclusion of the partially known physics is able to improve the predicted accuracy, especially
for extrapolation. We note that the results here are similar as those in Case B and C, which
will not be discussed in detail again.

Table 4. The long-term prediction errors (E) of different deep learning models.

LSTM PINNs DeepONet

E 25.4% 17.6% 14.7%
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(a) (b) (c)

Figure 9. Long-term predictions for COVID-19 new cases using different deep learning models.
(a) LSTM, (b) PINNs, (c) DeepONet.

4. Conclusions

In recent years the application of deep learning to disease prediction has received
increasing interest, especially since the outbreak of COVID-19. A number of deep-learning
models have been developed for forecasting the spreed of COVID-19 with considerable
success. This work present a comparative study on the prediction performance of three
well-established deep learning models, i.e., LSTM, PINN, and DeepONet). Particularly,
(1) the LSTM is a purely data-driven approach, (2) the PINN is able to encode the partially
known physics in the DNNs given training data, and (3) the DeepONet is capable of
learning the hidden physics represented by the training data. The effects of number of
training data as well as the size of sliding window on the predicted accuracy in the deep
learning approaches are investigated.The numerical experiments conducted in the present
study show that the DeepONet outperforms the other two models, and provides a reliable
tool for accurate forecasting the dynamics of COVID-19.

We would like to discuss that deep learning models often lack interpretability. Al-
though some theoretical work has been developed to improve the interpretability of com-
plex models like PINN as well as DeepONet [32,36,37], more rigorous analyses on these
model, e.g., the effect of the neural architecture on the computational accuracy, are not
available yet. In this work, we confirm the effectiveness of the PINN as well as DeepONet
for COVID-19 forecast using the validation data in the prediction window empirically. Fur-
thermore, techniques like the neural architecture search, self-adaptive weights for different
loss terms, may be helpful to improve the predicted accuracy for the deep learning models
employed in this work. The deep learning models employed in the present study are used
to predict the new cases given historical data, which can be useful for the preparation for a
possible second wave. However, they are not able to tell the detailed reasons that cause the
new cases to grow or decrease. A possible way for this issue is to develop mathematical
models to describe the effect of every important factor that affects the spreading of the
COVID-19 and encode them in PINNs. We leave the study of these important topics in
the future.
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