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Abstract: The emergence of the COVID-19 pandemic in Wuhan in 2019 led to the discovery of a novel
coronavirus. The World Health Organization (WHO) designated it as a global pandemic on 11 March
2020 due to its rapid and widespread transmission. Its impact has had profound implications, particu-
larly in the realm of public health. Extensive scientific endeavors have been directed towards devising
effective treatment strategies and vaccines. Within the healthcare and medical imaging domain, the
application of artificial intelligence (AI) has brought significant advantages. This study delves into
peer-reviewed research articles spanning the years 2020 to 2022, focusing on AI-driven methodologies
for the analysis and screening of COVID-19 through chest CT scan data. We assess the efficacy of deep
learning algorithms in facilitating decision making processes. Our exploration encompasses various
facets, including data collection, systematic contributions, emerging techniques, and encountered
challenges. However, the comparison of outcomes between 2020 and 2022 proves intricate due to
shifts in dataset magnitudes over time. The initiatives aimed at developing AI-powered tools for the
detection, localization, and segmentation of COVID-19 cases are primarily centered on educational
and training contexts. We deliberate on their merits and constraints, particularly in the context of
necessitating cross-population train/test models. Our analysis encompassed a review of 231 research
publications, bolstered by a meta-analysis employing search keywords (COVID-19 OR Coronavirus)
AND chest CT AND (deep learning OR artificial intelligence OR medical imaging) on both the PubMed
Central Repository and Web of Science platforms.

Keywords: COVID-19; chest CT; deep structured learning; medical imaging

1. Introduction

As a result of severe acute respiratory syndrome coronavirus 2, the novel coronavirus
(nCov), or simply COVID-19, emerged from Wuhan province, China (SARS-CoV-2) [1].
At the beginning of March 2020, the World Health Organization (WHO) classified it as a
pandemic, and since then, the extent of the threat has been documented through confirmed
cases and fatalities [2,3]. Following previous work [4], the spread of the COVID-19 virus can be
expressed using the following transmission model, zi, b = Ai, b Ki, b (Zi, b − 2− Zi, b − 8)ω̂,
where zi, b represents the total number of infections in a country i, for a date b. Ki, b gives the
population ratio still unaffected by COVID-19. Ai, b shows the transmitting rate and Zi, b is
the cumulative number of subjects who have shown symptoms by the date b. The ω allows
the rate of COVID-19 increase to be less than proportionate. This is only possible if ω < 1.
The average serial interval is predicted to be around 4.5 days, given that interaction with
infected people has remained constant throughout the interval [5,6]. Cough, headache,
fever, muscle aches, shortness of breath, and dizziness are the most common symptoms of
COVID-19 [7,8]. Symptoms may or may not be evident in some cases. The virus quickly
weakens the subject’s immune system, resulting in death [9]. The WHO recommends
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the reverse-transcription polymerase chain reaction (RT-PCR) test, one of the numerous
diagnostic procedures [10]. It is, however, time-consuming (typically taking 4–8 h) and
costly. Artificial intelligence (AI)-guided tools can help speed up the screening process,
particularly in areas with limited resources [11–13]. Since the beginning of 2020, several
CADx systems have been proposed to use image data from chest X-rays (CXRs) and
computed tomography (CT) scans to identify patients with COVID-19 infection. Apart from
preventive approaches that use intelligent healthcare equipment [14,15], a few solutions
have been presented to aid in diagnosing COVID-19 [16,17]. X-rays and chest CT scans are
two common imaging modalities used for screening COVID-19 patients as they deliver
consistent manifestations of COVID-19 [18–20] (see Figure 1).
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Throughout the pandemic, numerous researchers have dedicated their endeavors
towards the classification and detection of COVID-19 using CT scans and X-rays. While
both modalities possess their respective advantages and disadvantages, there has been a
prevailing inclination among authors toward CT scans. CT scans offer heightened sensitiv-
ity and visualization capabilities, albeit with the tradeoff of increased radiation exposure.
The incorporation of deep learning (DL) algorithms has significantly streamlined clinical
assessment and expert interpretation, rendering computer-aided diagnosis (CADx) models
pivotal as supportive diagnostic tools in COVID-19 detection. Consequently, CADx imag-
ing tools have garnered trust and now play a crucial role in COVID-19 screening. Within
this study, our primary focus centered on CT scans, and the noteworthy contributions can
be succinctly outlined as follows:

• Providing an account of accessible CT datasets and their utilization in deep learning
(DL) for the classification of COVID-19;

• Conducting a performance evaluation that contrasts existing DL models through
dataset utilization and methodological approaches;

• Implementing transfer learning (TF) and data augmentation (DA) techniques in the
development of DL models;

• Proposing prospective directives for DL investigations within this particularly sensi-
tive domain.
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The remainder of the paper is organized as follows: Section 2 provides an overview of
significance of the COVID-19 virus. The research scope and criteria for selecting articles
are discussed in Section 3. Section 4 focuses on AI-guided medical imaging and presents
a summary of COVID-19 screening investigations. This includes discussions on data
collections and their sources (Section 4.1); the most used CT imaging tools (Section 4.2);
the methodological contributions of DL-based methods/models in the years 2020, 2021,
and 2022 (Section 4.3); performance comparisons (Section 4.4); dataset sizes (Section 4.5);
transfer learning (Section 4.6); and data augmentation (Section 4.7). Finally, in Section 5, we
conclude the paper and provide future guidelines.

2. COVID-19: Background and Its Relevance

Schalk and Hawn [21] identified an ostensibly new respiratory illness in chicks in
1931 (between 2 days and 3 weeks old). We refer to a few papers, such as Frabricant
(1998) [22] and Cook et al., for more specific progress on infectious bronchitis investigations
(2021) [23]. SARS-CoV [24] was discovered in China between 2002 and 2003. Approxi-
mately 8000 people were infected during these years, with a 9.5% fatality rate. Bats or civet
cats were suspected of being the cause of the disease [25]. MERS-CoV—a version of the
coronavirus—was discovered in 2012 in Saudi Arabia [26]. In 2019, we had approximately
2500 MERS-CoV infections, with a 30% death rate [27]. The transmission agents were
thought to be camels this time (dromedaries) [28]. SARS-CoV-2 is one of the oldest known
viruses, infecting humans through a common cold. The virus is transmitted via inhalation
or ingestion of droplets produced by coughing and sneezing. The viral structure comprises
roughly 30,000 nucleotides and contains four structural proteins: spike, membrane, enve-
lope, nucleocapsid [29–31], and various nonstructural proteins. N-protein (viral positive
strand RNA) is also found in the protein shell or capsid. This strand acts as a parasite in
human cells that proceeds to replication and transcription. Lung screening for nCoV looks
like influenza-associated pneumonia in terms of analysis [32,33].

3. Study Scope and Selection Criteria

Before commencing our review, let us adhere to a systematic workflow delineating
multiple stages, including identification, screening, eligibility, and inclusion criteria, as
illustrated in Figure 2. To identify relevant studies, we employed search keywords (COVID-
19 OR Coronavirus) AND chest CT AND (deep learning OR artificial intelligence OR medical
imaging) on both the PubMed Central Repository and Web of Science platforms. Following
this, duplicate entries were eliminated. Specifically, we focused on experiment-based
research publications utilizing deep learning (DL) models/algorithms, limited to the year
2020 for publication. To ensure rigor, we excluded preprint articles from arXiv, medRxiv,
and TechRxiv due to their non-peer-reviewed status. Our assessment encompassed diverse
aspects, such as dataset characteristics (size and source), technical intricacies (DL models),
and corresponding performance metrics, enhancing the potential for comprehensive meta-
analysis. Our primary objective is not solely to delineate performance rankings among
research articles, but rather to gauge the progress achieved since the onset of the pandemic.
Furthermore, our evaluation extends to critical considerations like dataset scale, data
augmentation techniques, and the applicability of transfer learning methodologies.
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4. AI for Medical Imaging for COVID-19

By extracting distinctive features, AI-guided technologies can streamline complex
data representations, making decision making achievable. They lead to a wide range of
applications, including drug discovery [35], innovative healthcare [36], biomedicine [37],
and medical image analysis [38]. Deep learning algorithms are prevalent in all cases [39,40].
However, we still have challenges in developing a clinical screening tool that considers
various variables. Recent studies have discussed the value of artificial intelligence (AI)
in the prognostication and diagnosis of medical images [41,42]. According to the WHO,
COVID-19 is a global public health emergency and the most significant test we currently
face [43–45]. Research on supervised algorithms for COVID-19 identification (classification)
and segmentation has been the primary focus since the first quarter of 2020 [46–48]. Few
promising investigations concentrate on dual-sampling attention networks [49]. Inter-
estingly, approaches that fall under the purview of unsupervised learning outperform
supervised ones, even though most rely on supervised techniques [50–52]. In what follows,
we first provide CT scan datasets and their respective sources. The research articles that
used CT scans are then reviewed for their methodological contributions. Although we
acknowledge thousands of research articles published in the year 2020 and 2021, our study
is limited only to experiment-based (with DL models), peer-reviewed articles other than
preprints: medRxiv, TechRiv, and arxiv by using exact search keywords in PubMed Central
Repository and Web of Science (Section 3).

4.1. Dataset and Availability

Plenty of CT scan-based datasets are available in the literature to identify COVID-
19. Almost all the previously stated peer-reviewed studies employed various datasets
in their setup and system designs. Before training/validating their systems, the general
concept is to acquire datasets (private or public access) from internet sources or prepare
with their method. Therefore, understanding and determining the best approaches from
the available reports is physically challenging. Data unavailability is a widespread issue
for computational scientists as many datasets are required for their machine/deep learning
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model. Unlike other established infectious diseases, the absence of clinically annotated
data is still present for COVID-19. However, as the number of COVID-19 cases grows, the
datasets are regularly updated (see Table 1).

C1. The COVID-CT dataset consists of 746 CT scans, 349 of which are COVID-19-positive cases.
C2. The COVID-19 dataset contains 829 CT scans, of which 373 are COVID-19-positive cases.
C3. Large COVID-19 CT scan dataset comprises 2282 COVID-19-positive CT scans and
12,058 CT scans.
C4. SARS-CoV-2 dataset has 2482 CT scans with 1252 COVID-19-positive cases.
C5. COVID-19 open research dataset (CORD-19) consists of 3439 CT scan images, 98 of
which are COVID-19-positive cases.
C6. SIRM COVID-19 database contains 100 CT scans.
C7. COVID-19 BSTI imaging dataset details are not available.
C8. Radiopaedia dataset consists of 36,559 CT scans, where 3520 are COVID-19-positive
cases. It is the largest dataset.
C9. MosMeddata dataset is composed of 1110 CT scans.
C10. COVID-19 dataset contains 521 CT scans, where 48 are COVID-19-positive cases.
C11. COVID-CS dataset contains 3855 CXRs, where 200 are COVID-19-positive cases.
C12. Medical imaging databank in the Valencia region medical image bank (BIMCV)
COVID-19 dataset consists of 1311 COVID-19-positive CT scans and 6687 CT scans.
C13. COVID-19-CT-CXR dataset contains 1327 CT scans, and the author has not disclosed
the number of positive cases.
C14. Larxel dataset is composed of 20 COVID-19-positive CT scans.
C15. Large COVID-19 CT scan slice dataset consists of 7593 COVID-19 positive CT scans
and a total of 17,102.
C16. Extensive COVID-19 X-Ray and CT Chest images dataset has 17,099 CT scans, includ-
ing 5427 COVID-19-positive cases.
C17. CF dataset contributes 19,685 images with 4001 COVID-19-positive cases.
C18. COVID-19 image dataset contains 22,873 CT scans, where 3520 are COVID-19-positive.
C19. China consortium of chest CT image investigation (CC-CCII) Dataset comprises
4178 CT scans, 1544 of which are COVID-19-positive.
C20. COVID-CT-MD dataset is private.
C21. Deep Covid dataset consists of 5000 CT scans. They have not disclosed the number of
positive cases.
C22. CT scan for COVID-19 dataset contains 13,980 CT scans, where 4001 are COVID-19-
positive cases.
C23. Covid Chest Xray and CT images dataset consist of 144 CT scans, where 118 are
COVID-19-positive cases.
C24. Harvard dataverse dataset contains 4172 CT scans with 2167 COVID-19-positive cases.
C25. COVIDx CT is the largest dataset with 431,205 CT scans, including 316,774 COVID-19-
positive cases.

Table 1. Different CT datasets according to COVID-19-positive cases.

Sl.
No Dataset Area of

Utilization
Total Size

(#Positive Cases) Availability (accessed on 2 June 2023)

C1 Covid-CT Classification 746 (#349) https://arxiv.org/abs/2003.13865
C2 COVID-19 CT Segmentation 829 (#373) http://medicalsegmentation.com/COVID-19
C3 Large COVID-19 CT scan Classification 12,058(#2282) https://github.com/mr7495/COVID-CTset
C4 SARS-CoV-2 Dataset Identification 2482 (#1252) https://www.kaggle.com/plameneduardo/sarscov2-ctscan-dataset

C5 COVID-19 open research
dataset (CORD-19) Identification 3439 (#98) https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge

C6 SIRM COVID-19 database Classification 100(#100) https://www.sirm.org/en/category/articles/COVID-19-database/

C7 COVID-19 BSTI imaging
dataset Classification Not provided https://bit.ly/BSTICovid19_Teaching_Library

C8 Radiopaedia Classification 36,559 (#3520) http://radiopaedia.org/articles/COVID-19-3

https://arxiv.org/abs/2003.13865
http://medicalsegmentation.com/COVID-19
https://github.com/mr7495/COVID-CTset
https://www.kaggle.com/plameneduardo/sarscov2-ctscan-dataset
https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge
https://www.sirm.org/en/category/articles/COVID-19-database/
https://bit.ly/BSTICovid19_Teaching_Library
http://radiopaedia.org/articles/COVID-19-3
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Table 1. Cont.

Sl.
No Dataset Area of

Utilization
Total Size

(#Positive Cases) Availability (accessed on 2 June 2023)

C9 MosMeddata Classification 1110 (#1110) http://mosmed.ai/datasets/COVID-19_1110
C10 COVID-19 Classification 521 (#48) https://github.com/KevinHuRunWen/COVID-19

C11 COVID-CS Classification and
Segmentation 3855 (#200) https://github.com/yuhuan-wu/JCS

C12 BIMCV-COVID-19 Detection 6687(#1311) https://github.com/BIMCV-CSUSP/BIMCV-COVID-19

C13 COVID-19-CT-CXR
(classification) Classification 1327 (not provided) https://github.com/ncbi-nlp/COVID-19-CT-CXR

C14 Larxel dataset Segmentation 20(#20) https://www.kaggle.com/andrewmvd/COVID-19-ct-scans
C15 Large COVID-19 CT scan Classification 17,102 (#7593) https://www.kaggle.com/maedemaftouni/large-COVID-19-ct-slice-dataset

C16 Extensive COVID-19 X-Ray
and CT Chest Images Dataset Classification 17,099 (5427) https://data.mendeley.com/datasets/8h65ywd2jr/3

C17 CF data Detection 19,685 (4001) http://ictcf.biocuckoo.cn/HUST-19.php
C18 Covid19 Image dataset Classification 22,873 (#3520) https://arxiv.org/abs/2003.11597
C19 CC-CCII Classification 4178 (#1544) http://ncov-ai.big.ac.cn/download
C20 COVID-CT-MD Classification Private https://figshare.com/s/c20215f3d42c98f09ad0
C21 Deep Covid Classification 5000(#Not given) https://github.com/shervinmin/DeepCovid/tree/master/
C22 CT scan for COVID-19 Classification 13,980 (#4001) https://www.kaggle.com/azaemon/preprocessed-ct-scans-for-COVID-19

C23 Covid Chest Xray
and CT images Classification 144 (#118) https://github.com/ieee8023/covid-chestxray-dataset

C24 Harvard Dataverse Classification 4172 (#2167) https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:
10.7910/DVN/SZDUQX

C25 COVIDx CT Classification 431,205 (#316774) https://www.kaggle.com/datasets/hgunraj/covidxct

Table 1 lists 25 CT scan datasets utilized for COVID-19 screening. Out of these datasets, 19 are employed for
classification purposes, 3 for segmentation tasks, and 2 for identification and detection purposes, respectively.

4.2. CT Imaging Tools

DenseNet is a new convolution network architecture proposed by G. Huang, Z. Liu,
and K. Weinberger in the paper “Densely Connected Convolutional Networks” [53]. They
reported that the proposed architecture achieved high performance with four benchmark
tasks: CIFAR-10, CIFAR-100, SVHN, and ImageNet.

The VGG network is a convolution neural network model implemented by K. Si-
monyan and A. Zisserman in the paper “very deep convolutional networks for large-scale
image recognition” [54]. This architecture was beneficial for classification accuracy, and
the highest performance accuracy was archived with 14 million images belonging to
1000 classes.

InceptionNet is a deep convolution neural network architecture proposed by C.
Szegedy and others in the paper “Going deeper with convolutions” [55]. This proposed
approach was experimentally verified on the ILSVRC 2014 classification and detection
challenges, significantly outperforming the current state of the art.

A.G. Howard proposed MobileNets architecture in the paper “MobileNets: Efficient
Convolutional Neural Networks for Mobile Vision Applications” [56]. This architecture
based on depth-wise separable convolutions, and it provided an effective result for a wide
variety of tasks.

ResNet is a residual learning framework proposed by K. He and others in the paper
“Deep Residual Learning for Image Recognition” [57]. This architecture is easy to train as
compared to the deep neural network. The result came from this architecture winning 1st
place on the ILSVRC 2015 classification task.

Y. Le Cel proposed a CNN architecture in the paper “Backpropagation Applied to
Handwritten Zip Code Recognition” [58]. This architecture is flexible to network design
and is used in image classification.

UNet: O. Ronneberger introduced UNet architecture in the paper “U-Net: Convolution
Networks for Biomedical Image Segmentation” [59]. This architecture achieved excellent
performance on different biomedical segmentation applications.

4.3. Identification of COVID-19 Using CT Imaging Tools (2020–2022)

In this particular context, our focus has been on investigating the practical application
of CT imaging as a valuable diagnostic tool for accurately detecting instances of COVID-19.
This investigation has been concentrated on the timeframe spanning from 2020 to 2022 (See
Table 2).

http://mosmed.ai/datasets/COVID-19_1110
https://github.com/KevinHuRunWen/COVID-19
https://github.com/yuhuan-wu/JCS
https://github.com/BIMCV-CSUSP/BIMCV-COVID-19
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https://arxiv.org/abs/2003.11597
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Table 2. Chest CT imaging tools, dataset, and their performance are measured in terms of accuracy
(ACC), specificity (SPEC), sensitivity (SEN), and area under the curve (AUC) for 2020.

Authors [Ref] Methods
Dataset

Collection
Performance (%)

ACC SPEC SEN AUC

Ni et al. [60] MVP-Net and 3D UNet Private Per lobe—83
Per patient—94 - 96

100
86.54
86.08

Hu et al. [61] DenseNet169 C1 86.00 - - 94.00
Loey et al. [62] ResNet50 C1 82.91 87.62 77.66 -
Song et al. [63] BigBiGAN (DNN) Private - 91 92 97

Chaganti et al. [64] DenseUNet Private - - - -
Singh et al. [65] Mode-based CNN Private 93.5 ∼90 ∼90 -
Ning et al. [66] CNN C17 - - - 89.6

Jaiswal et al. [67] DenseNet201 C4 96.25 96 96 -
Babukarthik et al. [68] * GDCNN C23 98.84 97.0 100 -
Mohammed et al. [69] RenNext+ C19 77.6 79.3 85.5 -

Han et al. [70] AD3D-MIL Private 97.9 - - 99
Jiang et al. [71] UNet C2 - - - -

Gunraj et al. [72] COVIDNet-CT C3 99.1 99.9 97.3 -

Fan et al. [47] Inf-Net
Semi Inf-Net C2 - 97.4

97.7
87.0
86.5 -

Mishra et al. [73] Deep CNN based decision fusion C1 86 - - 88.3
Javor et al. [74] ResNet50 Private - 93.3 84.4 95.6
Silva et al. [75] EfficientCovidNet C1, C4 87.68 - - -

Pathak et al. [76] * ResNet50 C1 93.0 91.4 94.7 -
Wu et al. [77] ResNet50 Private 76.0 61.5 81.1 81.9

Peng et al. [78] * DenseNet121 C13 - - 78.0 89.1
Qian et al. [79] 2D-CNN Private - 97.49 98.99 99.93

Li et al. [80] CovNet private - - - 96.0
Lessmann et al. [81] * CO-RADS Private - 89.8 85.7 95

Jin et al. [82] * ResNet152 C9, C20 94.98 95.76 90.19 97.71
Jamshidi et al. [83] * DCNN C1, C16, C25 98.49 - - -

wang et al. [84] * DeCoVNet Private 90.1 - - 95.9
Zhang et al. [85] CoVNet Private - - - 95.9

Lai et al. [86] DCNN Private - - - 91
Liu et al. [87] DenseNet C1, C17 - - - 76.09

Panwar et al. [88] * VGG19 C4, C25 95.61 97.22 76 -
Misztal et al. [89] CNNs C1, C19 - - - -
Amyar et al. [90] UNet C1, C2 94.67 92 96 -

Polsinelli et al. [91] CNNs C6 85.03 81.95 87.55 -
Ko et al. [92] * ResNet50 C6 96.97 100 99.58 -

El-Bana et al. [93] * InceptionV3 Private 99.5 99.2 99.8 -
Wang et al. [94] 3D ResNet Private 93.3 - 95.5 97.3
Deng et al. [95] VGG16 C25 75 - - -
Hu et al. [96] NTS-NET Private 87.1 91.23 80.83 90.6
Li et al. [80] CoVNet Private - 96 90 96
Xu et al. [97] CNN Private 86.7 - - -

Wang et al. [98] Covid19Net Private 85.00 79.35 71.43 90.11

Kang et al. [99] Multiview representation learning
(Vnet + NN) private 95.5 96.6 93.2 -

Chen et al. [100] UNet++ Private 98.85 99.16 94.34 -
Bai et al. [101] DNN Efficient Net B4 Private 96 93.2 95 95
Zhu et al. [102] VGG16 C25 - - - -

Benbrahim et al. [103] InceptionV3 and ResNet Private 99.01 100 72 -
Sharma et al. [104] * ResNet C1, C9 91 - -

* Other data collections were also used.

4.3.1. 2020

Ni et al. [60] used the DL approach to diagnose COVID-19, and 96 positive cases were
considered in training. Their AI-based system performance was compared with radiologist
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residents based on per-lobe lung- and per-patient-level. They reported that the sensitiv-
ity was superior to the AI model for per-lobe lung and per-patient levels, respectively.
Hu et al. [61] introduced a self-trans network to identify COVID-19 where DenseNet169
architecture was used. They compared the model performance with ResNet50 and the
self-trans approach, and 86% accuracy was reported. Loey et al. [62] used five DL mod-
els, namely AlexNet, VGGNet16, VGGNet19, GoogleNet, and ResNet50, to differentiate
between COVID-19 and non-COVID-19 patients. They reported that ResNet50 outper-
forms others with an accuracy of 82.91%. Song et al. [63] developed a BigBiGAN model to
identify COVID-19 pneumonia from other pneumonia with 93 positive cases. The model
performance was estimated using the AUC value with internal tests and external validation.
They reported an AUC value of 85% for external validation and 97% for internal testing.
Chaganti et al. [64] conducted a retrospective study to determine CT abnormalities and
severity scores based on the DL model. A total of 901 CT scans with 431 positive cases
were used. Three measurement indices, such as Pearson and Kendall’s correlation and
chi-square, helped identify the severity.

Singh et al. [65] proposed a mode-based CNN and competitive model to classify
COVID-19-infected patients as positive vs. negative. The model performance was com-
pared with three N, CNN: ANN. They reported that the proposed model outperforms
with a good accuracy rate. Ning et al. [66] used the DL algorithm to discriminate between
negative mild and severe cases of COVID-19. They reported the AUCs of 0.944, 0.860, and
0.884 for each class. Jaiswal et al. [67] implemented the DenseNet201 model and compared
the performance with three different DL models. They reported that the maximum accuracy
of 99.82% was achieved using DenseNet201. Babukarthik et al. [68] implemented a model
based on the GDCNN algorithm to classify normal vs. COVID-19. The proposed model’s
performance was compared with five different DL models. They reported that the pro-
posed model outperforms other models with an accuracy of 98.84%. Mohammed et al. [69]
developed the RestNet+ model to classify COVID-19 vs. other pneumonia. They reported
proposed model accuracy of 77.6%. Han et al. [70] proposed attention-based deep 3D
multi-instance learning (AD3D-MIL), compared it with traditional multi-instance learning,
and reported the proposed model accuracy of 97.9%. Jiang et al. [71] used AI models for
the diagnosis of COVID-19 by use of a cGAN structure image that can generate realistic
city images with two types of infections: ground-glass opacity and consolidation. They
reported that the model achieved an accuracy of 98.37% for COVID19+ vs. COVID-19−.
Gunraj et al. [72] introduced the COVIDx-CT model to identify COVID-19 vs. normal
vs. pneumonia. The proposed model performance was compared with the ResNet50,
NASNet-A-Mobile, and EfficientNetB0 models. They reported that the model achieved an
accuracy of 99.1%.

Fan et al. [47] developed the Inf-Net (covid lung CT infection segmentation) and
semi-Inf-Net model (cutting-edge segmentation). These models could detect objects with
low-intensity contrast between infected and normal tissues. They reported specificity and
sensitivity of 97.55% and 86.75%, respectively. Mishra et al. [73] applied a deep CNN-
based approach including five models: VGG16, InceptionV3, ResNet50, DenseNet121, and
DenseNet201 decision and developed a new model. They reported a model AUC value
of 88.3%. Javor et al. [74] devised a DL model based on the ResNet50 model architecture
to classify covid patients with 6868 CT images. They reported an AUC value of 95.6%.
Silva et al. [75] devised a model, Efficient Covid Net, along with a voting-based approach
and cross-dataset analysis. The proposed model achieved an accuracy of 87.68%. Pathak
et al. [76] used ResNet50 architecture to identify COVID-19 and reported an accuracy of
93.01%. Wu et al. [77] conducted a multicenter study with 294 COVID-19-positive cases.
They designed a model using a DL network trained using multi-view images, and 76%
accuracy was reported. Peng et al. [78], DenseNet121 was pretrained on ImageNet to create
a classification model. They reported that the model achieved the highest performance of
89.1 in AUC. Qian et al. [79] used 2D-CNN architecture to design a DL model to classify
COVID-19 patients. They reported that the model performed well. Li et al. [80] used the
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DL model to detect COVID-19 accurately and reported that the model achieved an AUC of
96%. They claimed this proposed model could also detect community-acquired pneumonia
and other lung diseases from COVID-19 cases. Lessmann et al. [81] used AI techniques to
identify COVID-19, and diagnosis performance was compared with the radiologic observer.
The proposed model obtained an AUC score of 95% and claimed that their proposed model
could easily assess the severity of the disease.

Jin et al. [82] proposed an AI system for rapidly identifying COVID-19 from influenza
A/B, nonviral community-acquired pneumonia (CAP), and non-pneumonia subjects. They
used 2D deep CNN, whose backbone was ResNet152, and the reported accuracy was
94.98%. Jamshidi et al. [83] introduced a deep CNN network to identify COVID-19 patients.
They reported that the proposed network achieved an accuracy of 98.49%. Wang et al. [84]
devised the 3D-DeCoVNet model to identify COVID-19, and the proposed model reported
90.01% accuracy. Zhang et al. [85] proposed the CoVNet model based on 3D CNN, and
an AUC value of 95.9% was reported. Lai et al. [86] used DCNN architecture to identify
COVID-19-NCIP. They reported that the proposed model achieved an AUC value of
91%. Liu et al. [87] used four DL models: DenseNet121, DenseNet169, DenseNet201,
and the baseline model VGG19. They compared the model performance in weighted
vs. unweighted form. The average weighted and unweighted AUC values for the DL
models were 76.09% and 72.77%, respectively. Panwar et al. [88] used CNN architecture
to detect COVID-19 vs. normal vs. pneumonia. They reported an accuracy of 95.61% for
classification between COVID-19 vs. normal. Misztal et al. [89] used five pretrained DL
models, ResNet18, ResNet50, DenseNet169, wideResNet50, and DenseNet121, to classify
NC vs. COVID-19 vs. bacterial pneumonia vs. viral pneumonia. The authors created a
new dataset named radiograph image data stock to increase the efficiency of COVID-19
identification. They concluded that the newly designed dataset performed better with
binary and multiclass classifiers. Amyar et al. [90] devised a multitask DL model and
compared it with CNNs like UNet. They reported that the model obtained an accuracy
of 94.67%, and 88% accuracy was reported for the segmentation task. Polsinelli et al. [91]
proposed a CNN design based on the model of the SqueezeNet to classify COVID-19. They
compared the model performance with the original SqueezeNet and 85. 03% accuracy was
obtained via the proposed model.

In [92], Ko et al. implemented the FCONet model based on ResNet50 architecture to
diagnose COVID-19 pneumonia. They compared the model performance with Xception,
InceptionV3, and VGG16. Of all, the ResNet50-based model achieved maximum accuracy
of 96.97%. El-Bana et al. [93] introduced a new DL model named TL InceptionV3 to identify
COVID-19 and compared it with seven states of art approaches for two classes. They
reported that TL InceptionV3 attained maximum performance with an accuracy of 99.5%.
Wang et al. [94] proposed 3D-Unet model to classify COVID-19 vs. viral pneumonia vs.
normal. They reported that the model obtained an accuracy of 93.3% for the classification
tasks. Deng et al. [95] formulated the Keras-related DL approach for COVID-19 detection.
They used SVM and CNN algorithms to compare the classification performance. Finally,
75% accuracy was obtained by the proposed model (PTVGG16). Hu et al. [96] designed
NTS-NET model to identify COVID-19 vs. NP vs. CAP. They reported that the proposed
model achieved an accuracy of 84.3% for COVID-19 Identification. Li et al. [80] developed a
3D deep learning framework called COVNET. The proposed model provided an AUC value
of 96% for detecting COVID-19 vs. CAP vs. NP. Xu et al. [97] used ResNet architecture
to differentiate COVID-19 vs. IAVP vs. healthy cases. They reported that 87% accuracy
was obtained for classification. Wang et al. [98] introduced a model named as Covid19Net
based on DenseNet architecture and reported an 85% AUC score. Kang et al. [99] applied
multi-view representation learning to identify the relationship between COVID-19 vs.
CAP. They reported an accuracy of 95.5% achieved by the proposed approach. Chen
et al. [100] deployed UNet++ architecture and designed a model to identify COVID-19.
They reported that the proposed model achieved an accuracy of 98.85%. Bai et al. [101]
devised a system based on DNN Efficient NetB4 architecture, and 96% accuracy was
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reported. Zhu et al. [102] proposed a model to assess the disease severity using VGG16
network architecture. Benbrahim et al. [103] used InceptionV3 and ResNet50 architecture
to identify normal vs. COVID-19 patients. The model has attained an accuracy of 99.01%.
Sharma et al. [104] proposed a model based on ResNet architecture and Grad-cam, which
achieved an accuracy of 87.6%.

In 2020, we found 47 articles for identifying COVID-19 using different types of datasets,
where 23 worked on the private dataset. Most authors used CNN, ResNet, DenseNet, Ale-
and xNet, and DCNN architectures and compared results with available DL methodology.
A few of them modified the existing structure of DL architecture and proposed a new
model with different names like Covid19Net, CoVNet, DecoVNet, and so on. In addition
to these, we found a few articles where authors also concentrated on classifying and seg-
menting COVID-19 patients from influenza, nonviral community-acquired pneumonia,
and nonpneumonia diseases.

4.3.2. 2021

Ibrahim et al. [105] used four deep learning architectures, namely VGG19-CNN,
ResNet152V2, ResNet152V2 + GRU, and ResNet + Bi-GRU, to classify COVID-19 vs. nor-
mal. The maximum accuracy of 98.05% was achieved by the VGG19-CNN model. The
authors claimed this model could also identify lung cancer and pneumonia, the first deep
learning model in the literature. Goncharov et al. [106] implemented a multitask spatial-1
model to identify COVID-19 vs. normal class using severity score. The model outper-
forms other approaches and achieved an AUC score of 0.97 ± 0.01 between COVID-19 and
healthy control. Additionally, the Spearman correlation method was used to find severity
quantification. Zhang et al. [107] devised a new five-layer DCNN model with 3CB + 2FCBs
for COVID-19 diagnosis. The implemented method was compared with six deep learning
algorithms: RBFNN, K-ELM, ELM-BA, 6L-CNN-F, GoogleNet, and ResNet18. A model
accuracy of 93.64% was obtained with stochastic pooling, providing better performance
than average and max pooling. Song et al. [108] implemented the DRE-Net model to
identify COVID-19 vs. healthy people among 274 patients. They compared their model
performance with three DL models, namely VGG16, DenseNet, and ResNet. The maximum
accuracy of 86% was achieved by DRE-Net. Additionally, this model could also identify
bacterial pneumonia patients due to covid with 93% accuracy. Yao et al. [109] conducted a
retrospective multicenter study to identify mild COVID-19 pneumonia by implementing
CNN-based DL model. They also compared the model performance with the radiologist.
The overall sensitivity and specificity were 91.5% and 90.5%. Acar et al. [110] used nine DL
models, namely VGG16, VGG19, Xception, ResNet50, ResNet50V2, InceptionV3, Inception-
ResNetV2, DenseNet121, and DenseNet169. They used internal and external datasets to
access each model’s performance with normal and augmented datasets. Finally, accuracy
was improved from 3% to 9% for each DL model. Ravi et al. [111] used a stacked ensemble
meta-classifier and deep learning-based feature fusion approach in CXR and CT images
to classify COVID-19 vs. non-COVID-19 samples. They performed a comparison study
with existing available pertained CNN models. Finally, a maximum accuracy of 99% was
reported using CT data.

Chen et al. [112] used different ResNet architectures to classify normal vs. COVID-19
vs. other pneumonia. Of all, ResNet50 provided the best classification accuracy of 91.21%.
They also compared their result with the radiologist, and the proposed model achieved an
overall accuracy of 89.01%. Huang et al. [113] implemented a FaNet network to classify
normal vs. COVID-19 with 416 samples. They compared the result with six different models:
AlexNet, ResNet, MobileNet, VGG, SENet, and DenseNet. Finally, 98.28% accuracy was
reported for diagnosis assessment via FANet. The authors also claimed that their proposed
model could assess the severity of COVID-19 with an accuracy of 94.83%. Jangam et al. [114]
utilized stack ensemble techniques to develop an automatic COVID-19 detection system
and compared the performance with four pretrained DL models. They reported 84.73%,
99%, and 90.75% accuracy for three different datasets. Singh et al. [115] implemented a
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MobileNet model that takes lesser time for covid classification. They compared their model
performance with three DL model architectures: the proposed model reported an accuracy
of 96.40%. Alirr et al. [116] devised FCN using Unet architecture for COVID-19 infection
vs. lung segmentation that was evaluated qualitatively and quantitatively with a diverse
dataset. They reported that the proposed model has a sensitivity and specificity of 82.2%
and 95.1%, respectively. Kundu et al. [117] established a fully automated DL model for
differentiating COVID-19 vs. non-COVID-19 patients. The proposed model performance
was compared with three DL models: InceptionV3, ResNet34, and DenseNet201. They
reported a proposed model accuracy of 97.81%. Saad et al. [118] implemented DFC model
to identify COVID-19 vs. non-COVID-19 samples. The model performance was compared
by 14 other different methods. They reported a model accuracy of 98.9%. Fung et al. [119]
implemented an SSInfNet model that utilized DL to support rapid COVID-19 diagnosis
and reported an AUC of 98.66%. Tan et al. [120] implemented the VGG16 model to classify
COVID-19 with an accuracy of 98%. Lascu et al. [121] utilized ResNet101 architecture to
classify COVID-19 among four class labels. They reported an accuracy of 94.9%. Lassau
et al. [122] built an AI model to determine the severity score to diagnose severe evolution
for COVID-19. They compared their proposed approach to an existing severity score of 11,
and performance improvement was reported. Pan et al. [123] determined the correlation
between the conventional CT scoring system and the proposed DL-based quantification.
They reported that the proposed DL quantification correlated with conventional CT scoring
and demonstrated a potential benefit in estimating COVID-19 severity. Yan et al. [124]
developed a Fast.AI ResNet framework to differentiate COVID-19 vs. pneumonia vs.
normal. The authors compared the model performance with three DL models: VGG16,
DenseNet121, and ResNet152. Finally, the maximum accuracy was achieved by ResNet50
with Fast. AI. Shalbaf et al. [125] used 15 pretrained CNN architectures and developed an
ensemble model using majority voting criteria. Rahimzadeh et al. [126] proposed a new
feature pyramid network with the ResNet50V2 model to classify COVID-19. The model
performance was compared with two DL models: Xception and Resnet50V2. The proposed
model’s accuracy of 98.49% was reported. Lee et al. [127] devised the DeteCT model to
automatically predict COVID-19+ from COVID-19-, pneumonia, and normal controls. They
reported that the proposed model AUC value is more than 80% on most test sides. Mishra
et al. [128] used a deep learning algorithm to diagnose COVID-19. The authors also worked
on finding ANN’s severity index of covid infection. They reported an accuracy of 99%.
Zhang et al. [129] proposed an improved segmentation model called the residual attention
U-shaped Network. The model was evaluated using 100 scan datasets resulting in mIoU
and dice coefficient values of 84.5% and 73.4%, respectively.

Barbosa et al. [130] conducted a retrospective study to differentiate between COVID-19
vs. non-COVID-19 patients. They concluded that the CNN-trained model achieved an
expert level of accuracy in quantifying COVID-19 airspace disease. Zhao et al. [131] devel-
oped a new approach, an image deformation-based segmentation model, SP-V-Netbased.
They reported that the model achieved an accuracy of 94.60% for COVID-19 classification.
Jadhav et al. [132] proposed a COVID-19-view by incorporating a novel DL method to
classify the patients into positive and negative COVID-19 cases. This model can also be
used for lung segmentation, lesion localization, and detection. They reported an accu-
racy of 95.2%. Guiot et al. [133] developed a detection model on 181 COVID-19+ cases
using VGG16 architecture. They reported the proposed model accuracy of 85.18%. Yao
et al. [134] devised a model named as CSGBBNet for the classification of COVID-19 and
reported an accuracy of 98.49%. Singh et al. [135] designed a DL-based model for detecting
COVID-19. The model performance was compared with four DL models: Gen-ProtoPNet,
NP-ProtoPNet, ProtoPNet, and VGG16. They reported that the proposed model outper-
formed with an accuracy of 99.29%. Zhu et al. [136] used ResNet50 to classify normal vs.
COVID-19 by 1357 confirmed positive cases. The model performance was compared with
VGG19 +GoogleNet architecture-based DL model. They reported that the model achieved
an accuracy of 93%, which is better than other DL models. Kuchana et al. [137] developed a
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model based on UNet architecture for two segmentation tasks: lung spaces and COVID-19
anomalies. The model performance was compared with standard UNet and attention
UNet. They reported that the proposed model obtained a F1 score of 97.31%. Khalifa
et al. [138] used DL semantic segmentation architecture for COVID-19 lesion detection.
The model consists of an encoder and decoder component. They reported that the model
achieved 99.3% accuracy. Bhuyan et al. [139] developed a model to detect COVID-19,
classification, and segmentation. The model performance was compared with and without
mass segmentation via different kth validation techniques. They reported that the proposed
model (FrCN) accuracy was optimal with mass segmentation and fourth-fold validation
techniques. Heidarian et al. [140] proposed a COVID-Fast model based on CNN to detect
COVID-19 and non-COVID-19 cases. They reported the proposed model accuracy of 90.82%
for COVID-19 identification. Ahsan et al. [141] implemented six deep CNN models: VGG16,
MobileNetV2, InceptionResNetV2, ResNet50, ResNet101, and VGG19 with 400 CT images.
They reported that MobileNetV2 outperforms with an accuracy of 98.5%. Zhang et al. [142]
implemented a GARCD model to classify COVID-19+ and normal. The performance was
compared with four models: ResNet, GADCD, VGG19, and DenseNet. They reported
GARCD model achieved an optimal AUC value of 98.7%. Chaddad et al. [143] used deep
CNN architecture (AlexNet, DenseNet, GoogleNet, NASNet-Mobile, ResNet18, and Dark-
Net) to classify COVID-19 vs. normal. The proposed model has achieved an accuracy of
82%. They also claimed that the proposed model could classify COVID-19+ or COVID-19-
from X-ray images. Yousefzadeh et al. [144] implemented a deep learning-based covid
classification model named ai-corona. They reported proposed model performed well, and
the average AUC was 98%. Chen et al. [145] proposed a model based on few-shot learn-
ing in ResNet50 architecture to classify COVID-19 vs. non-COVID-19 with few samples.
The performance of the new algorithm-based model was compared with three different
methods: ResNet152, DenseNet161, and VGG16. They reported accuracy and AUC value
of 86.8% and 93.1%, respectively. Munusamy et al. [146] developed a FractalCovNet model
consist of UNet architecture to classify COVID-19. They compared the model performance
with ResNet50, Xception, InceptionResNetV2, VGG16, and DenseNet. They reported the
proposed model accuracy of 99%.

Wang et al. [147] developed a CCSHNet model based on a DCFDCA algorithm to
classify COVID-19. The proposed model performance was compared with 12 existing
models. They reported that the model outperformed. Jiang et al. [148] used five CNN
models, namely DenseNet169, InceptionResNetV2, InceptionV3, ResNet50, and VGG16,
to identify the effectiveness of the dataset. They reported that a maximum accuracy of
96% was obtained using synthetic data. Hu et al. [149] proposed DSN-SAAL model, and
performance was compared with seven models: VGG16, ResNet50, DenseNet169, Self-
Trans, contrastive COVIDNet, transfer CheXNet, and cross-dataset analysis. They reported
that the proposed model outperforms all used datasets. The achieved average accuracy
of the proposed model is 95.43%. Jingxin et al. [150] used the DL approach based on
ResNet50 and compared it with Mark R-CNN, UNet. They reported an accuracy of 97.83%
via Ours-SP. Balaha et al. [151] developed a covid detection model named CovH2SD based
on VGG16 architecture. A total of nine experiments were performed (ResNet50, ResNet101,
VGG16, VGG19, Xception, MobileNetV1, MobileNetV2, DenseNet121, and DenseNet169)
on CT images. Of all, the best result was achieved by VGG16. Turkoglu et al. [152] proposed
a model named as MKs-ELM-DNN based on DenseNet201 architecture. They compared
the performance of six models (AlexNet, GoogleNet, VGG16, MobileNetV2, ResNet18,
and InceptionV3). The maximum accuracy of 98.36% was achieved by DenseNet201.
Ahamed et al. [153] proposed a model based on a modified ResNet50V2 architecture to
differentiate between COVID-19, normal controls, and viral and bacterial pneumonia. The
model performance was compared with nine pre-trained CNN models and reported an
accuracy of 99.99% for two-class cases (COVID-19/normal). Pathan et al. [154] devised
a COVID-19 classification model that deployed an ensemble of five CNNs architecture
for feature extraction, and extracted features were again selected by a binary grey wolf
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optimizer. Model performance was compared with four existing studies, and 96% accuracy
was reported. Cruz et al. [155] implemented a model based on an ensemble method using
six pretrained DL models: VGG16, ResNet50, wideResNet50-2, DenseNet161, DenseNet169,
and InceptionV3. They compared the model performance with eight different models. The
maximum accuracy of 86.70% was achieved by the proposed ensemble method. Hasan
et al. [156] designed a model based on two fundamental deep learning models, VGG16
and VGG19, for the classification of COVID-19. The model performance was compared
between original vs. modified images. They reported that 87.37% accuracy was achieved
using original images, whereas 90.14% accuracy was reported for modified images. Basset
et al. [157] devised a model to classify COVID-19 based on lung area infection segmentation.
They compared their model performance against other studies: R2UNet, CE-Net, and
CPFNet. The proposed model outperforms with 96.80% accuracy.

Fu et al. [158] designed and compared a classification model named DenseAnet with
seven models. They reported that the maximum accuracy of 90.27% was achieved using
DenseAnet. Aslan et al. [159] proposed a hybrid model based on mAlexNet+ BiLSTM
architecture, and 98.70% accuracy was reported. Kundu et al. [160] used the Sugeno fuzzy
integral ensemble of four pretrained deep learning models, namely VGG11, GoogleNet,
SqueezeNet v1.1, and wideResNet50-2. The proposed model achieved an accuracy of
98.93%. Müller et al. [161] used 3D UNet architecture to classify COVID-19+ and normal
slices, and the performance was estimated using the DSC score. They reported that the
proposed model performed well compared with existing studies. Li et al. [162] developed
a deep learning model called CheXNet and evaluated their proposed method with other
existing methods. Finally, maximum accuracy was achieved by the proposed DL model
with an accuracy of 87%. Zhang et al. [163] created an end-to-end multiple-input deep
convolutional attention network based on a convolution attention module. The model
provided better outcomes than eight state-of-the-art approaches. They reported that the
model obtained an accuracy of 98.02%. Xu et al. [164] proposed two models: CARes-
UNet and semi-CARes-UNet. They compared the model’s performance with nine existing
models, and the semi-CARes-UNet model provided the best outcome close to ground
truth. Mondal et al. [165] proposed a DL model, namely CO-IRv2, to classify COVID-19.
They used three optimizers and achieved 96.18% accuracy for binary classification. Chen
et al. [166] developed an ensemble CNN (covid-CNN) model based on five pretrained
DL architectures: VGG19, ResNet101, DenseNet201, InceptionV3, and InceptionResNetV2.
They compared the proposed model’s performance with the existing CNN model. Covid-
CNN obtained the maximum accuracy of 96.7%. Alshazly et al. [167] considered seven CNN
networks: SqueezeNet, Inception, ResNet, ResNeXt, Xception, ShuffleNet, and DenseNet,
and their performance was compared. ResNet101 and DenseNet201 performed best, with
an accuracy of 99.4% and 92.9%, respectively.

Voulodimos et al. [168] proposed a few-shot UNet model and compared it with the
conventional UNet model. They observed that the proposed model F1 score was improved
by 5.394 ± 3.015% and the increment of precision and recall value by 1.162 ±2.137% and
4.409 ± 4.790%, respectively. Khan et al. [169] proposed a model MC-SVM along with
optimal deep model features. They reported that the proposed model achieved an accuracy
of 98%. Rajasekar et al. [170] designed a hybrid learning model to identify COVID-19.
They used CNN for feature extraction, and MLP was employed for classification. The
model showed an accuracy of 94.89% compared with conventional MLP and CNN, where
86.95% and 80.77% accuracy were noted, respectively. Xie et al. [171] designed a CNN-
based DL model to identify COVID-19 from other suspected ones. They used UNet and
COVIDNet architecture for segmentation, whereas the ResNet50 network was deployed
for classification. Sethy et al. [172] devised three approaches: VGG19 + SVM, VGG19, and
LBP feature + quadratic SVM to identify COVID-19 patients. They used 13 pretrained DL
models to compare the proposed approach. The average accuracy was 77.28%, whereas
the maximum accuracy of 85.7% was achieved by LBP feature + quadratic SVM approach.
Özyurt et al. [173] used shuffleNet CNN architecture to classify COVID-19 patients and
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reported an accuracy of 98.99%. Garain et al. [174] designed a three-layer DCSNN to screen
for COVID-19. They developed two variants: spike train-based, and potential-based, and
the performance was compared with three DL architectures. Of all, the potential-based
model provided the optimal outcome with an accuracy of 99.51%.

Elghamrawy et al. [175] implemented a COVID-19 classification model, AIMDP based
on CNN architecture. They compared the model performance with five existing DL models,
and the designed model achieved an accuracy of 98%. The authors also used WOA
optimization techniques to select the most relevant patient sign. Sen et al. [176] used
CNN to extract the features and the bi-stage feature selection method to identify the
most relevant feature for identifying COVID-19. Finally, the SVM classification algorithm
reported 90% and 98.39% accuracy for two datasets. Teodoro et al. [177] applied pretrained
CNNs with three classification algorithms: KNN, SVM, and DNN. Among all, CNN
EfficientNetB0 performed best along with the SVM-RBF kernel. They reported that the
proposed approach achieved an average performance of 98.56%. Yasar et al. [178] used
24-layer CNN architecture with and without local binary pattern CT images for COVID-19
vs. normal. They reported that the maximum efficiency of 94.56% was obtained using no
pipeline approaches instead of pipeline approaches. Brahim et al. [179] proposed a DL
model named COV-CAF, and the performance was compared with four preexisting COVID-
19 classification models and reported an accuracy of 97.59%. Afshar et al. [180] introduced
a new COVID-19 dataset named COVID-CT-MD and applied DL and ML algorithms to
check the effectiveness of the dataset. They reported that 93% accuracy was obtained by
introducing the dataset and underlying studies. Liu et al. [181] specially developed an
automated classification model, COVIDNet, to distinguish between COVID-19 and seven
other types of pneumonia. They reported that the model achieved an accuracy of 94.3%.
Kundu et al. [182] devised an ensemble model based on three CNN architectures: VGG11,
wideResNet50-2, and InceptionV3. They reported an average accuracy of 98.86%, which
was better than other DL architecture. Pal et al. [183] used two CNN architectures: VGG16
and InceptionV3, to classify COVID-19. They reported an accuracy of 84%, which was
achieved using individual CNN models.

Biswas et al. [184] initially used three CNN architectures: VGG16, ResNet50, and
Xception. The authors introduced a stacked model (VGG16 + ResNet50+ Xception) via an
ensemble learning technique, and 98.79% accuracy was reported. Helwan et al. [185] used
three DL models, namely ResNet18, ResNet50, and DenseNet201. Of all, DenseNet201 per-
formed best, with an accuracy of 98.7%. Castiglione et al. [186] proposed the ADECO-CNN
approach and compared it with pretrained CNN models, namely VGG19, GoogleNet, and
ResNet. They reported that the proposed approach-based model achieved an accuracy of
99.99%. Yan et al. [187] performed a quantitative analysis and designed a DL model named
CovidSegNet to segment COVID-19 infections. The model performance was compared
with the preexisting FCN, UNet, VNet, and UNet++ networks. Finally, the CovidSegNet
model provided the best performance with a dice coefficient of 72.6% for COVID-19 seg-
mentation. Suri et al. [188] presented a COVLIAS 1.0 system that consists of two hybrid DLs
for COVID-19 segmentation. They compared the model performance with the conventional
NIH model.

Nair et al. [189] proposed the CoRNet DL model and compared it with five existing
DL models: AlexNet, VGG16, SqueezeNet, VGG19, and ResNet50. CoRNet achieved high
performance with an AUC value of 95%. Wan et al. [190] designed a modified AlexNet
architecture and compared it with LBP + SVM, and deep feature + SVM, where AlexNet
performed well with an accuracy of 94.75%. Guo et al. [191] proposed a model based
on a modified version of ResNet18 to diagnose COVID-19. They reported 98.88% and
99.80% model accuracy for two- and fivefold cv. Xia et al. [192] proposed a rapid screening
classifier to diagnose COVID-19. The classifier provided the best outcome with CXR and
clinical features, whereas CT-based diagnosis outperformed severe cases of COVID-19.
Polat et al. [193] used a CNN to identify COVID-19 and all balanced datasets. The accuracy
of the proposed model was 93.26%. Li et al. [194] developed VGG16 deep learning model
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to classify COVID-19 vs. CP vs. NC. They reported an accuracy of 93.57%, which was
achieved using a newly designed model. Owais et al. [195] proposed the DAL-Net model
and compared the model performance with seven DL models: VGG16, VGG19, UNet, FCN,
DeepLabV3+, MobileNetV2, and ResNet. They reported an AUC of 97.80%, which was
better than others. Jia et al. [196] proposed a modified ResNet to classify COVID-19 vs.
non-COVID-19 infections vs. normal control. Five CNN architectures (VGG, Inception,
DenseNet, SqueezeNet, MobileNet) and two specific detection models (COVID net and
CovidNet-CT) were used for comparative studies. They reported that the proposed model
achieved an accuracy of 99.3%. He et al. [197] proposed multitasking multi-instance UNet
to identify the severity assessment of COVID-19 and the segment of the lung lobe. They
reported an accuracy of 98.5% for the assessment of COVID-19 severity. Murugan et al. [198]
applied a whale optimization algorithm to ResNet50 to optimize DL architecture and built
a WOANet model to classify COVID-19. The proposed architecture achieved an accuracy
of 98.78%, providing a better outcome than the nonoptimized ResNet50. Naeem et al. [199]
introduced a new DL model named CNN-LSTM and compared it with conventional DL
models such as VGG16 and VGG19. The proposed model achieved an average accuracy
of 90.98. Kalane et al. [200] proposed a UNet architecture to classify COVID-19; overall,
94.10% accuracy was reported. Fouladi et al. [201] used ResNet50, VGG16, CNN, CAENN,
and machine learning approaches (NN, SVM, RF, SGD LR, and MLP) to classify COVID-
19 where NN achieved high performance with an accuracy of 94%. On the other hand,
the classification accuracies of ResNet50, VGG16, CNN, and CAENN were obtained as
92.24%, 94.07%, 93.84%, and 93.04%, respectively. Wang et al. [202] developed a new
approach based on a deep feature fusion combination of an improved CNN model. This
model performed better than the other 15 DL models, with an average accuracy of 96.66%
reported. Yu et al. [203] proposed three models, ResNet101-C, NNet-C, and ResGNet-C,
to classify pneumonia caused by COVID-19 vs. normal. The ResGNet-C model provided
better performance with an accuracy of 96.62%. Gao et al. [204] proposed DCN for COVID-
19 diagnosis that can be achieved from an individual classification level. They used internal
and external datasets to evaluate this proposed model by comparing five DL models. The
proposed model outperforms by attaining 96.74% and 92.87% accuracy for internal and
external datasets, respectively. Sahoo et al. [205] implemented the COVIDCon model and
compared it with other state-of-the-art algorithms. They reported that the proposed model
attained an accuracy of 99.06% with the CT scan dataset. Lacerda et al. [206] built an AI
model based on optimized VGG16 and compared it with the baseline model of VGG16.
They reported that the optimized model attained an accuracy of 88%, whereas 87% accuracy
was reported for the baseline model.

Siddiqui et al. [207] introduced the ID2S-COVID19-DL system to classify COVID-
19, and 98.11% system accuracy was reported. Haikel et al. [208] produced a DL model
named EfficienNet-B3-GAP-ensemble and applied it to two datasets. They reported that the
proposed model achieved an accuracy of 99.72% and 88.18%, respectively. Bekhet et al. [209]
proposed a fully automated hybrid CNN model to classify COVID-19. They reported that
the proposed model attained accuracy of 92.02%. Kaushik et al. [210] developed the VGG16
model and compared the proposed model performance with three DL models: CNN,
DenseNet, and XceptionNet. The authors reported that the VGG16 model outperformed
with an accuracy of 95.26%. El-Shafai et al. [211] built an automated COVID-19 detection
model named SR-GAN and compared the model accuracy of 99.05% with 13 DL models.
Masud et al. [212] proposed a CNN model and compared it with three DL architectures:
MobileNetV2, InceptionV3, and Xception. They reported that the proposed model achieved
an accuracy of 96%. El-Shafai et al. [213] used CNN architecture and studied optimizers
with different batch sizes and constant learning rates. Finally, a comparative study was
presented using optimizer and activation functions. They reported that the proposed model
achieved 100% accuracy.

Kassania et al. [214] proposed a method based on DenseNet121 + Bagging, and 99%
accuracy was achieved by this method for the detection of COVID-19. Wang et al. [215]
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proposed a model based on f 3D UNet++–ResNet50 architecture for the classification and
segmentation of COVID-19. They reported that the model attained an AUC score of 99.1%.
Ahuja et al. [216] implemented a DL model based on ResNet18 architecture that attained
99.4% accuracy. Pu et al. [217] used the UNet network and BER algorithm to identify
COVID-19 severity and progression. They reported that the proposed model performed
well, with a sensitivity of 95%. Maghdid et al. [218] developed a model based on AlexNet
architecture with an accuracy of 94.1%. Kumar et al. [219] used a deep neural network to
detect COVID-19, and 98.4% accuracy was reported. Wang et al. [220] applied a modified
Inception transfer learning model with 1065 positive COVID-19 cases. The model attained
an accuracy of 79.03% on the external testing dataset.

In 2021, we found 116 articles and 36 that worked based on the private datasets to
identify COVID-19. Most authors utilized CNN, ResNet-XX, VGG-XX, DenseNet-XX, and
UNet architecture, and some authors introduced new models such as FewShot, Fractal-
CovNet, CCSHNet, COVIDCon, and CovH2SD. Later, the authors applied an optimization
approach to their proposed model and compared their model performance with existing
models. All details are documented in Table 3.

Table 3. Chest CT imaging tools, dataset, and their performance are measured in terms of accuracy
(ACC), specificity (SPEC), sensitivity (SEN), and area under the curve (AUC) for 2021.

Authors [Ref] Methods
Data

Collections
Performance (%)

ACC SPEC SEN AUC

Ibrahim et al. [105] * VGG19 + CNN C6 98.05 99.5 - 99.66
Goncharov et al. [106] * Multitask spatial-1 C2 - - - 0.97 ± 0.01

Zhang et al. [107] 5L-DCNN-SP-C Private 93.64 ± 1.42 94.00 ± 1.56 93.28 ± 1.50 -

Song et al. [108] DRE-Net
(ResNet50) Private 86 77 - 95

Yao et al. [109] CNN Private - 90.5 91.5 95.5
Acar et al. [110] CNNs C2, C1 - - - -

Ravi et al. [111] * EfficientNet-CNN C16 99 - - -
Chen et al. [112] * ResNet50 private 91.21 88.46 94.87 -

Huang et al. [113] * FaNet Private 98.28 - - -
Jangam et al. [114] * VGG19 + DenseNet169 C1, C3, C4 91.49 - - -

Singh et al. [115] MobileNetV2 C4 96.40 - 98 99.5
Alirr et al. [116] UNet (FCN) C2, C6 - 95.1 82.2 -

Kundu et al. [117] Bagging of VNNs (ET-NET) C4 97.81 97.77 97.81 -
Saad et al. [118] CNN (DFC) C16 98.9 - - -
Fung et al. [119] SSInfNet C2 - - - 98.66
Tan et al. [120] SRGAN +VGG16 C1 98 94.9 99 -

Lascu et al. [121] * ResNet101 C1 94.9 - - -
Lassau et al. [122] NN Private - - - -

Pan et al. [123] CNN Private - - - -
Yan et al. [124] ResNet50 C4 96.3 - - -

Shalbaf et al. [125]

The majority voting of five
deep transfer learning

architecture (EfficientNetB0,
EfficientNetB3,
EfficientNetB5,

InceptionResNetV2,
Xception)

C1 85 - 85 -

Rahimzadeh et al. [126] ResNet50V2 C3 98.49 - 94.96 -
Lee et al. [127] CNN C5 - - - 80

Mishra et al. [128] * CNN C1 99 - - 98.6
Zhang et al. [129] ResAUNet Private - - - -

Barbosa et al. [130] * CNN Private - - -
Zhao et al. [131] SP-V-Net Private 94.60 92.70 96.70 94.70

Jadhav et al. [132] Covid-View Private 95.2 94.9 95.3 98.5
Guiot et al. [133] * VGG16 Private 85.18 91.63 69.52 88.2

Yao et al. [134] CSGBBNet C1, C5 98.49 97.95 99.0 -
Singh et al. [135] Ps-ProtoPNet C20 99.29 - - -
Zhu et al. [136] * ResNet50 C1 93 92 93 -

Kuchana et al. [137] UNet C14, C2 - - - -
Khalifa et al. [138] CNN C8, C14 99.3 95 98.12 -
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Table 3. Cont.

Authors [Ref] Methods
Data

Collections
Performance (%)

ACC SPEC SEN AUC

Bhuyan et al. [139] * FrCN (CNN) C2 99 99.41 96.66 -
Heidarian et al. [140] COVID-FACT C22 90.82 86.04 94.55 98.0
Ahsan et al. [141] * MobileNetV2 Private 98.5 - - 81.6
Zhang et al. [142] GARCD C4 - 91.16 96.97 98.7

Chaddad et al. [143] * Deep CNNs Private 82.80 88.16
Yousefzadeh et al. [144] * Ai-Corona (CNN) C20, C9, - 92.7 94.5 95.6

Chen et al. [145] ResNet50 C1, C6, C2 86.8 - - 93.1
Munusamy et al. [146] FractalCovNet C2 99 - - -

Wang et al. [147] * CCSHNet Private - - 96.25 -
Jiang et al. [148] CNNs C1 96 - - 98.89
Hu et al. [149] DSN-SAAL C1, C3, C2 95.43 - - -

Jingxin et al. [150] * Ours-SP
(ResNet50) C1, C19 97.83 - 96.89 -

Balaha et al. [151] CovH2SD (VGG19) C1, C3, C24 99.33 - - -
Turkoglu et al. [152] MKs-ELM-DNN C1 98.36 98.44 98.28 98.36
Ahamed et al. [153] * ResNet50V2 C15 99.99 - - -

Pathan et al. [154] CNN C1 96 96 97 -
Cruz et al. [155] CNNs C1 86.70 - 89.52 90.82

Hasan et al. [156] * Deep CNN C4, C1 90.14 88.59 - 94.60
Basset et al. [157] * U -Net C22 96.80 - - 98.86

Fu et al. [158] DenseANet C3 90.27 88.77 92.26 95.64
Aslan et al. [159] * mAlexNet-BiLSTM (CNN) C19 98.70 - - 99
Kundu et al. [160] CNNs C3 98.93 98.93 98.93 -

Müller et al. [161] * 3D UNet C25 - - - -
Li et al. [162] CheXNet C1 87 - - 75

Zhang et al. [163] MIDCAN Private 98.02 97.95 98.10 -
Xu et al. [164] * Semi-CARes-UNet C2 96.1 - 78.6 -

Mondal et al. [165] CO-IRv2 C2, C4 96.18 97.96 - -
Chen et al. [166] Covid-CNN C10 96.7 - 95.6 -

Alshazly et al. [167] Deep CNNs C1, C4 96.15 96.75 95.9 -
Voulodimos et al. [168] * Few-shot UNet C2, C8 - - - -

Khan et al. [169] MC-SVM + AlexNet +
VGG16 C8 98 - - 99

Rajasekar et al. [170] CNN + MLP C3 94.89 95 - -
Xie et al. [171] * CNN Private - 80.0 83.6 90.6

Sethy et al. [172] * VGG19 Private 64.80 - - -
Özyurt et al. [173] * ShuffleNet C25 99.98 - - -
Garain et al. [174] DCSNN C1 99.51 100 98.96 -

Elghamrawy et al. [175] CNNs Private 98 - 98.8 96
Sen et al. [176] CNN C4, C1 94.19 - - 95.5

Teodoro et al. [177] EfficientNetB0 C4 - 98.53 98.53 -
Yasar et al. [178] CNN C1, C4, C3 95.16 94.01 97.54 99.06

Brahim et al. [179] COV-CAF C9 97.67 98.41 97.57 -
Afshar et al. [180] DNN Private 93 - - -
Liu et al. [181] * COVIDNet Private 94.3 88.50 91.12 98

Kundu et al. [182] CNNs C4, C26 98.86 98.86 98.87 -
Pal et al. [183] * CNN C1 84 - - -

Biswas et al. [184] Stacked model (VGG16 +
Xception + ResNet50) C4 98.79 - - 98.80

Helwan et al. [185] DCNN Private 98.7 97.3 98.1 -
Castiglione et al. [186] ADECO-CNN C4 99.99 99.97 99.92 -

Yan et al. [187] COVID-SegNet Private - - 75.1 -
Suri et al. [188] COVLIAS 1.0 Private - - - 96.75
Nair et al. [189] CorNet C4 - 96 90 95
Wan et al. [190] Modified AlexNet Private 94.75 96.69 93.22 -
Guo et al. [191] Modified ResNet Private 99.34 - - -
Xia et al. [192] DNN Private 96.15 81.2 94.2 -

Polat et al. [193] * CNN C6 93.26 93.24 92.37 -
Li et al. [194] VGG19 C20 93.57 94.21 93.93 -
Owais [195] * DAL-Net C2, C9 - 85.68 99.4 97.80

Jia et al. [196] * Modified ResNet C25 99.30 - - -
He et al. [197] M2U-Net Private 98.50 - - 99.1

Murugan et al. [198] Optimized ResNet50 C4 98.78 99.19 98.37 -
Naeem et al. [199] * CNN + LSTM C4, C6 90.98 - - -
Kalane et al. [200] UNet C1, C6 94.10 93.47 94.86 -
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Table 3. Cont.

Authors [Ref] Methods
Data

Collections
Performance (%)

ACC SPEC SEN AUC

Fouladi et al. [201] CNNs C4 93.3 - 87.67 -
Wang et al. [202] FGCNet Private 96.66 - - -

Yu et al. [203] ResGNet-C Private 96.62 95.91 97.33 -
Gao et al. [204] DCN Private 94.80 94.45 95.42 98.17

Sahoo et al. [205] * COVIDCon C20 99.06 - - -
Lacerda et al. [206] * VGG16 C9 88 - 97 -
Siddiqui et al. [207] CNN Private 95.54 97.06 94.38 -

Haikel et al. [208] EfficienNet-B3-
GAP-ensemble C4, C1 99.72 - 99.80 99.99

Bekhet et al. [209] * CNNs Private 92.08 - - -
Kaushik et al. [210] VGG16 C4 95.26 95.10 95.30 -
El-Shafai et al. [211] SR-GAN + TCNN C1, C25, C16 99.05 - - -
Masud et al. [212] CNN C16 96 - - 99

El-Shafai et al. [213] CNN C16 100 - - -
Kassania et al. [214] * DesNet +Bagging C25 99.0 99.0 99.0 -

Wang et al. [215] 3DUNet++–ResNet50 Private - 99.2 97.4 99.1
Ahuja et al. [216] * ResNet18 C1 99.4 98.6 100 99.65

Pu et al. [217] UNet BER algorithm Private - 84 95 -
Maghdid et al. [218] AlexNet (TL) 526 94.1 100 72 -
Kumar et al. [219] DNN C1 98.4 98.3 98.5 -
Wang et al. [220] Modified Inception TL Private 79.30 83 67 -

* Other data collections were also used.

4.3.3. 2022

Khurana and Soni [221] used four DL architectures, namely ResNet50, efficient netB0,
VGG16, and CNN, to detect the presence of COVID-19. Of all, ResNet50 obtained the
highest accuracy of 98.9%. Canayaz et al. [222] proposed two new methods to diagnose
COVID-19 using DL and ML algorithms. Two DL models, ResNet50 and MobileNetV2, are
used for feature extraction along with two classification algorithms, SVM and KNN. The
total experiment was performed in three steps using individual and mixed datasets. The
reported accuracies are 95.79%, 99.06%, and 99.37% for MobileNet, ResNet50 + SVM, and
ResNet50 + KNN, respectively. Subhalakshmi et al. [223] proposed a DLMMF model to
identify COVID-19. The proposed architecture is based on InceptionV4 and VGGNet16,
which are used to extract features from the dataset. The Gaussian naïve Bayes classifier
was deployed as a final classifier for disease detection. Zouch et al. [224] used two DL
architectures, ResNet50 and VGG19, to detect COVID-19. Both models obtained an accuracy
of 99.35% and 96.77%. Balaha et al. [225] introduced a DL framework for early detection and
prognosis of COVID-19. Seven different CNNs architectures are used, and for classification,
maximum accuracy of 99.61% was obtained using EfficientNetB7. The authors also reported
an accuracies of 98.70% and 97.40% obtained by ensemble bagged trees and trees (fine,
medium, and coarse) for the early prognostic phase.

Habib et al. [226] proposed a classification system for COVID-19 with a hybrid feature
extraction approach. Three different architectures, ResNet101, DenseNet201, and weber
local descriptor, were used to classify COVID-19, lung opacity, healthy, and viral pneu-
monia. They reported that the proposed model achieved an accuracy of 99.3%. Montalbo
et al. [227] used six DL architectures, InceptionV3, Xception, ResNet50V2, DenseNet121,
and EfficientNetB0, to classify COVID-19. They compare the performance between trun-
cated models and general models. Of all, the maximum accuracy of 97.41% was obtained
using InceptionResNetV2 with truncated models. Ali et al. [228] devised a model to iden-
tify COVID-19 severity using CNN and KNN. They compared the result with the existing
classification model, and 95.65% accuracy was reported. In the next experiment, modified
CNN achieved an accuracy of 92.80% for detecting pneumonia on mixed data. Pandey
et al. [229] proposed an efficient model to diagnose COVID-19 using three DL architectures
(ResNet50, MobileNet, VGG16). The authors used image segmentation and compared the



Healthcare 2023, 11, 2388 19 of 42

model performance. The maximum accuracies of 99.28% and 83.18% were achieved via
VGG16 along with OTSU segmentation and without segmentation.

Liu et al. [230] introduced a new framework named DCNN + IMPA (internet protocol
marine predator) to diagnose COVID-19. They reported that the model achieved an
accuracy of 97.57%. Luo et al. [231] developed a model to detect COVID-19 vs. normal vs.
CAP using Resenet-50 and UNet. They reported a maximum efficacy of 93.84%, and 92.86%
was achieved in testing and validation set via UNet. Saheb et al. [232] proposed an ADL-
CDF architecture to detect COVID-19. A maximum accuracy of 98.49% was reported. Batra
et al. [233] proposed a model based on the architecture of InceptionV3, and the reported
accuracy was 93%. The authors also worked on X-ray images where the same model
performed best. The model performance was compared with two other models, VGG16
and ResNet50V2. Cao et al. [234] introduced a CNN model to detect COVID-19, and 82.7%
accuracy was achieved. They compared the model performance with three other CNNs:
Goolenet-RI, ResNet50-RI, and GoogleNet-TL. Of all, the top F1 score of 79.1% was obtained
via the proposed model. Yazdani et al. [235] developed a model based on CNN and NN to
detect COVID-19 using low-level and deep features. Local neighborhood difference pattern
was performed to extract handcrafted features, and MobileNetV2 was used to extract deep
features. The optimal accuracy of 99.61% was obtained by combining texture and deep
features using CNN architecture. Bhuyan et al. [139] experimented with classifying COVID-
19 with CNN architecture. The authors compared the model performance with mass
segmentation and without mass segmentation with a fourfold validation technique. They
reported that average accuracy of 99% and 97.75% was achieved with mass segmentation
and without mass segmentation, respectively. Ibrahim et al. [236] used hybrid deep learning
techniques to identify COVID-19. They used three DL architectures, namely, VGGNet, CNN,
high-resolution network with segmented images, and 95% accuracy was reported. Akinyelu
et al. [237] performed a comparative study with 12 DL architectures: VGG16, VGG19,
ResNet50, InceptionV3, Xception, MobileNetV2, ResNet101V2, DenseNet169, DenseNet121,
InceptionResNetV2, NASNetLarge, and densenet201. NASNetLarge, InceptionResNetV2,
and DenseNet169 provided good accuracies of 99.86%, 99.78%, and 99.71%. The authors
also reported that VGG16 and densenet121 produced the highest sensitivity of 99.94%.
Florescu et al. [238] proposed a model based on VGG16 with a federated learning approach
to detect COVID-19. They reported that the model performed well in the training and
validation phase with categorical accuracy of 83.82% and 79.32%, respectively.

Jingxin et al. [150] introduced the DL model for COVID-19 lesion detection and seg-
mentation. They used ResNet50 architecture, and 98.39% accuracy was reported. Baghdadi
et al. [239] devised a model for COVID-19 detection on both two and three classes. Maxi-
mum accuracies of 99.74% and 98% were attained via MobileNetV3Large (two-class) and
SENet154 (three-class), respectively. They also compared the model output with other
CNN models like LeNet5 CNN, covid faster R-CNN, lightCNN, fuzzy + CNN, dynamic
CNN, and optimized CNN. Shaik et al. [240] used various pretrained models such as
VGG16, VGG19, InceptionV3, ResNet50, ResNet50V2, InceptionResNetV2, Xception, and
MobileNet. Further, the authors created a strong ensemble approach using these trained
models to detect COVID-19 infection. The maximum average accuracy of 93.33% was
reported with 5- and 8-clf, respectively. Reis et al. [241] devised a new COVID-DSNet
model to detect COVID-19 along multiclass target labels. The maximum accuracy of 97.60%
was achieved via CT scans where the target labels are COVID-19 vs. normal. The author
further used mixed datasets (X-ray and CT) and proposed three models: COVID-DSNet
+ LSTM, COVID-DSNet +FCC, and COVID-DSNet. The reported average accuracy was
95.64%. Garg et al. [242] devised a DL model based on efficient net-B5 to detect COVID-19.
The model attained an accuracy of 98.45%, and 97.69% accuracy was reported for mul-
ticlass datasets. Fan et al. [243] developed a COVID-19 detection model based on CNN
(ResNet152) architecture and transformer network (Deit-B). The proposed model attained a
maximum accuracy of 96.7%, better than a typical CNN (95.2%).
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A 3D CNN is interesting. Karthik et al. [244] developed a DL framework based on 3D
CNN, and the model performed best. Verma et al. [245] used NNs to train the model to
make a CovCT application for the detection of COVID-19. The developed model attained
an accuracy of 99.58%. Smadi et al. [246] developed a model named SEL-COVIDNET for
the diagnosis of COVID-19, which was tuned with DenseNet121, InceptionResNetV2, and
MobileNetV3Large. The authors experimented with multiclass and binary classification.
They reported that their model obtained an accuracy of 98.79% (COVID-19 vs. normal).
Further, the model achieved an accuracy of 98.52% for X-ray and CT mixed data. Fallahpoor
et al. [247] used seven DL architectures, DenseNet169, DenseNet201, ResNet152, ResNet50,
ResNeXt50, SEResNet152, SEResNeXt50, to identify COVID-19. The maximum accuracy of
82.3% was attained via ResNet50.

Sadik et al. [248] et al. developed a model named P-DenseCOVNet, which can used in
two-class (COVID-19 vs. non-COVID-19) and three-class (COVID-19 vs. pneumonia vs.
healthy). They reported 93.8% and 87.5% accuracy obtained on two- and three-class COVID-
19 detection, respectively. Huang et al. [249] proposed the LightEfficientNetV2 model and
compared the performance with the two best other models, namely MobileNetV2 (without
tuning) and Xception (with tuning). They reported that 97.48% accuracy was attained via
LightEfficientNetV2, which was best compared to two other models. Li et al. [250] proposed
a MultiR-Net, a 3D deep learning model to classify COVID-19 and lesion segmentation.
The proposed model performance was compared with four different models: DenseNet,
Res2Net, Zhou’s, and JCS. They reported that the highest classification accuracy of 92.647%
was achieved using MultiR-Net. Hemalatha et al. [251] used a hybrid random forest deep
learning classifier to detect COVID-19, and 99% accuracy was reported. The authors also
claimed that their proposed methodology is fitted for edge computing with higher detection
accuracy. Wang et al. [252] built an SSA-Net segmentation model, which helps to diagnose
COVID-19, and 70.31% DSC was reported. Qi et al. [253] used a capsule network with
ResNet50 for slice-level prediction, and 93.4% accuracy was reported. Also, the authors
claimed their method achieved 100% accuracy for patient-level prediction.

Oğuz and Yağanoğlu [254] proposed a hybrid method combining in-depth features
extracted from ResNet50, and SVM was used as a final classifier to detect COVID-19.
They used AlexNet, ResNet50, ResNet101, VGG16, VGG19, GoogleNet, SqueezeNet, and
Xception architecture to extract deep features. Five classification algorithms, SVM, RF, KNN,
DT, and NB, were deployed on extracted features. Finally, maximum accuracy of 96.296%
was obtained via the SVM classifier with ResNet50. Ravi et al. [111] used EfficientNet
architecture to predict COVID-19, and 99% accuracy was reported. The model performance
was compared with others pretrained. The authors also used the t-SNE method to visualize
CT test data. Yang et al. [255] proposed the F-EDNC model to recognize COVID-19 and
compared the performance with FC-EDNC, O-EDNC, and CANet. The maximum efficacy
of 97.55% was attained via F-EDNC. Mijares et al. [256] used CNN to diagnose COVID-19,
and 94.89% classification accuracy was reached. Heidari et al. [257] utilized blockchain-
based CNNs to detect COVID-19. They reported that 99.34% and 99.76% accuracy was
attained in the testing phase for four- and two-class classifications. Singh and Kolekar [115]
developed a fine tune model based on MobileNetV2 architecture to diagnose COVID-19.
The model performance was compared with three deep learning models such as VGG19,
DenseNet201, and VGG16. They reported that the proposed model attained an efficacy of
96.40% with ten-times shorter response time. Ortiz et al. [258] devised a prognosis model
for COVID-19, and 91% accuracy was reported. The authors noted that the accuracy label
was improved in CT features, patient demographics, and image segmentation. Sangeetha
et al. [259] deployed two DL architectures, VGG19 and ResNet152V2, to diagnose COVID-
19. They reported that both models achieved an accuracy of 98%. Mohammed et al. [260]
proposed an optimal deep learning model based on ResNet50 architecture to diagnose
COVID-19. A total of 15 DL models were used to compare the performance, and a maximum
of 91.46% accuracy was reached via ResNet50. In contrast, InceptionV3 provided the
lowest performance.
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Joshi et al. [261] introduced the MFL-Net model to recognize COVID-19 using indi-
vidual and combined datasets. They reported an average accuracy of 96.12%, whereas
96.13% was attained via the mixed form. Zhang et al. [262] introduced a DL model based on
VGG19 with globalmaxpool2D to detect COVID-19. They reported that the proposed model
achieved an accuracy of 94.12%, which was best compared to others. Mouhafid et al. [263]
utilized two ensemble learning methods, stacking and weighted average ensemble (WAE),
to combine the performance of three fine-tuned-based learners such as VGG19, ResNet50,
DenseNet201. The result showed that the maximum accuracy of 98.59% and 95.05% was
achieved via WAE. Dara et al. [264] applied ResNet architecture to implement the classifica-
tion algorithms to identify COVID-19. The authors used ResNet18, ResNet50, ResNet101
and compared their performance. Finally, ResNet39 was chosen and used the parameters
obtained from ResNet18, ResNet50, ResNet101. The global and local models achieved an
accuracy of 97.53 and 90.66, respectively. Ozdemir et al. [265] used ResNet50 architecture
and extended it with a feature-wise attention layer to classify COVID-19. They reported
that 95.57% accuracy was obtained via the proposed model. Ahuja et al. [266] devised a
COVID-19 classification model named McS-Net based on ResNet18, and 98.07% accuracy
was reported. Messaoud et al. [267] used VGG19 architecture to identify COVID-19, and
model performance was compared with efficient net-B4 + CLAHE. They reported that
the proposed model achieved an accuracy of 86%. The authors also worked on X-ray and
combined datasets where the model attained accuracies of 97% and 90%, respectively.

As before, Manconi et al. [268] proposed a 3D inception CNN architecture to detect
COVID-19. Especially, 3D InceptionV1 and InceptionV3 models were built and compared
their performance. Further, an ensemble classifier is deployed on CNN models. The
maximum accuracy of 98.21% was reached via InceptionV1 with a voting strategy. Cheng
et al. [269] designed a COVID-19 detection model based on VBNet + LSTM, and 89%
accuracy was reported. Lu et al. [270] introduced a new COVID-19 detection system named
CGNet. The model architecture is based on the combination of ResNet18 and k nearest
neighbors. The proposed model achieved an accuracy of 97.78%, and Grad-CAM provided
visual explanation. Owais et al. [271] proposed DSS-Net to identify COVID-19 and 96.58%
accuracy was reported. Yoo et al. [272] developed the 2D UNet model to classify the
COVID-19 disease. The authors compared their model performance along with internal
and external validation. The Pearson correlation coefficient suggested that the model
performs well between UNet outputs and visual CT scores. Suri et al. [273] proposed
a model combining DL and hybrid DL to track lesion location and segmentation. They
used VGG-SegNet, ResNet-SegNet, VGG-UNet, and ResNet-UNet. The best AI model was
ResNet-UNet, with a 92% correlation coefficient with a prediction time of less than 1 s.
Ghose et al. [274] proposed a DL model based on densenet-169 to recognize COVID-19.
They reported that the proposed model achieved an accuracy of 99.95%. The authors also
worked on X-ray images, and 99.59% accuracy was reached.

Gunraj et al. [275] proposed Covid-Net CT architecture to detect COVID-19. A maxi-
mum accuracy of 99% is reported. Yousefzadeh et al. [276] used UNet architecture for lobe
segmentation, and the KNN classifier was applied to predict the severity of infection due to
COVID-19. They reported that the proposed model has a 71% to 74% dice score. Choudhary
et al. [277] experimented on two DL models, VGG16 and ResNet34, to detect COVID-19.
The optimal accuracy of 95.47% was obtained via resnet34. Chouat et al. [278] used four DL
architectures, namely VGGNet19, ResNet50, InceptionV3, and Xception, to detect COVID-
19. Of all, VGGNet19 and Xception models outperformed with an accuracy of 90.5% and
89.5%, respectively. Dialameh et al. [279] proposed a DL model called Deep CT-Net on
DenseNet121 to detect COVID-19. They reported that the proposed model attained an AUC
of 88.6%. Venkatachalam et al. [280] proposed a CNN model with BBO that helps the layers
selection process. The proposed model performance was compared with existing models,
namely VGG16, InceptionV3, ResNet50, MobileNet. The result showed that the proposed
model outperformed InceptionV3 and ResNet50. The reported accuracy was 98.5% and
97.6% in the test and train phases, respectively. Latif et al. [281] introduced a hybrid method
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using ResNet18 and GoogleNet2000 and the extracted features via SVM. They reported
that the proposed model achieved an accuracy of 99.91%. El-Shafai et al. [282] devised a
CNN framework to detect COVID-19, and 98.49% accuracy was reported. Xue et al. [283]
used CNN architecture to identify COVID-19. The proposed model achieved an accuracy
of 97.67%. El-Shafai et al. [284] proposed a CNN structure to detect COVID-19, and 100%
accuracy was reported.

In 2022, we found 68 articles, and 14 articles worked on a private dataset to identify
COVID-19. Most authors used CNN, ResNet-XX, VGG-XX, DenseNet-XX, and EfficientNet-
XX architecture. A few authors invented hybrid frameworks like SpaSA and CNN,
MOMHTS optimized hybrid random forest deep learning, and ResNet18 + GoogleNet2000
features with SVM. Further, a few authors also worked on X-ray images and combined
their CT data with them. The details are documented in Table 4.

Table 4. Chest CT imaging tools, dataset, and their performance are measured in terms of accuracy
(ACC), specificity (SPEC), sensitivity (SEN), and area under the curve (AUC) for 2022.

Authors [Ref] Methods
Data

Collection
Performance (in %)

ACC SEN (rec) SPEC AUC

Khurana and Soni [221] * ResNet50 C23 98.9 98.6 99.2 -

Canayaz et al. [222] ResNet and MobileNet,
SVM-KNN C1 and C4 95.79,

99.06,99.37 95.83 95.75 -

Subhalakshmi et al. [223] VGGNet16, InceptionV4 +
Gaussian naïve Bayes C1 96.81 96.53 95.81 -

Zouch et al. [224] * ResNet50 and VGG19 C1 98.06 - - -
Balaha et al. [225] EfficientNetB7 C18 99.61 99.62 - 99.98

Habib et al. [226] * ResNet101 + DenseNet201 +
WLD Not provided 99.3 99.1 - -

Montalbo et al. [227] * InceptionResNetV2-Tr C22, C2, C9, C1,
C18 97.41 97.52 - 99.0

Ali et al. [228] * Modified CNN C18 92.80 - - -
Pandey et al. [229] VGG16 C15 99.28 - - -

Liu et al. [230] DCNN-IPMPA C1, C4 97.21 and 97.94 96.21 and 95.22 95.76 and 95.43 -
Luo et al. [231] UNet Private 93.84 93.15 - -

Saheb et al. [232] CNN C3 98.49 96.83 96.83 -
Batra et al. [233] InceptionV3 C1 93 89.81 - -
Cao et al. [234] ResNet50 Private 82.7 79.1 - -

Yazdani et al. [235] CTFDF Private 91.61 - - -
Bhuyan et al. [139] * CNN C1 99 95.82 99.26 -
Ibrahim et al. [236] VGGNet + CDBN + HRNet C1 95 95 96 -

Akinyelu et al. [237] NASNetLarge Private 99.86 99.83 99.90 -
Florescu et al. [238] VGG16FL Private 1.57 - - -
Jingxin et al. [150] ResNet50 C8, C18, C1 98.39 - - -

Baghdadi et al. [239] * Hybrid (SpaSA and CNN) C15 99.73 - - -
Shaik et al. [240] CNNs C1, C4 93.33 93.25 - 93.25
Reis et al. [241] CNNs C4 97.60 100 - -
Garg et al. [242] EfficientNetB5 C4 98.45 96.82 98.83 -
Fan et al. [243] Trans-CNNNet C25 96.73 97.76 96.01 -

Karthik et al. [244] 3D CNN C9 - - - -
Verma et al. [245] EffecientNetB0 99.58 99.69 - -
Smadi et al. [246] CNNs C4 98.79 98.8 98.8 -

Fallahpoor et al. [247] ResNet50 Private 85% - - -
Sadik et al. [248] P-DenseCOVNet C19 93.8 97.5 90.0 -

Huang et al. [249] LightEfficientNetV2 C1, C4 97.48 - - -
Li et al. [250] CNN Private 92.647 93.323 - -

Hemalatha et al. [251] MOMHTS optimized hybrid
random forest deep learning C1 99 99 - -

Wang et al. [252] * ResNet34 C2 - - - -
Qi et al. [253] ResNet50 C19 93.4 - - 87.6

Oğuz and Yağanoğlu [254] ResNet50 + SVM Private 96.29 95.082 - 98.21
Ravi et al. [111] EfficientNet C16 99.00 99.00 - -
Yang et al. [255] CNN C4 97.55 96.41 98.14 -

Mijares et al. [256] CNN C4 94.89 90.43 - -
Heidari et al. [257] CNN private 99.76 99.40 - -
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Table 4. Cont.

Authors [Ref] Methods
Data

Collection
Performance (in %)

ACC SEN (rec) SPEC AUC

Singh and Kolekar [115] MobileNetV2 C4 96 98 - -
Ortiz et al. [258] * InceptionResNetV2 C19 91 33 - 80.0

Sangeetha et al. [259] VGG19 and ResNet152V2 C15 98 - - -
Mohammed et al. [260] ResNet50 C1 91.46 - - -

Joshi et al. [261] CNN C1, and C4 96.13 - - 96.13
Zhang et al. [262] VGG19 Private 94.12 91.40 96.95 97.44

Mouhafid et al. [263] WAE C4, C1 96.82 97.25 - -
Dara et al. [264] ResNet39 C1, C2, C9 97.53 93 - -

Ozdemir et al. [265] ResNet50 C1 95.57 95.71 - -
Ahuja et al. [266] ResNet18 C9 98.07 95.66 98.83 -

Messaoud et al. [267] VGG19 C1 86 79 - -
Manconi et al. [268] InceptionV1 C19 98.21 97.17 99.24 99.72
Cheng et al. [269] VBNet + LSTM Private 89 84 - -

Lu et al. [270] ResNet18 C15 97.78 97.94 97.65 -
Owais et al. [271] DSSNet C3 96.58 - - 98.54

Yoo et al. [272] 2D UNet Private - - - -
Suri et al. [273] ResNet-UNet Private 98 - - 87.00

Ghose et al. [274] DenseNet169TL C22 99.95 - 99.97 -
Gunraj et al. [275] CNNs C25 99 99.1 - -

Yousefzadeh et al. [276] UNet + KNN C9 - - - -
Choudhary et al. [277] ResNet34 C4 95.47 92.16 99.42 -

Chouat et al. [278] * VGGNet19, Xception C11 90.5, 89.5 - - -
Dialameh et al. [279] DenseNet121 C3 - 85.8 - -

Venkatachalam et al. [280] CNN Private 98.5 97 100 -

Latif et al. [281] ResNet18 + GoogleNet2000
features with SVM C19 99.9 - - -

El-Shafai et al. [282] DCNN C1 98.49 - - -
Xue et al. [283] CNN C1 97.67 - - -

El-Shafai et al. [284] CNN C9 100 - - -

* Other data collections were also used.

4.4. Performance Comparison

This section compares the performance of different DL architectures used from 2020 to
2022. There has been substantial research on COVID-19 screening utilizing chest CT scans
from the beginning of 2020. A fair comparison among the authors can only be made when
they have used exact data collection, evaluation protocol, and performance metrics. Unlike
other healthcare issues, in COVID-19, there has been a growing tendency in dataset size
resulting in incremental studies over time. As high-end machine learning methods, such as
deep learning models, require a massive quantity of data, writers have explored the usage
of data collection size. In our study, convolutional neural networks (CNNs) are the most
popular, followed by residual neural network (ResNet). In what follows, we categorized
the authors’ work using the same architecture (see Tables 5–12).

Convolutional neural network (CNN): Eighty-seven authors utilized CNN architecture
to detect COVID-19 from 2020 to 2022. Among them, 22, 48, and 17 articles were identified
in 2020, 2021, and 2022, respectively (see Table 5). Finally, El-Shafai et al. [284] proposed a
model in 2022 that achieved the highest accuracy of 100%.

Table 5. Comparison: COVID-19 detection using CNN architecture according to the year of publication.

Author [Ref] (Year) Dataset Collection
Performance (%)

ACC SPEC SEN AUC

Song et al. [63] (2020) Private - 91 92 97
Singh et al. [65] (2020) Private 93.5 ∼90 ∼90 -
Ning et al. [66] (2020) C17 - - - 89.6

Babukarthik et al. [68] (2020) * C23 98.84 97.0 100 -
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Table 5. Cont.

Author [Ref] (Year) Dataset Collection
Performance (%)

ACC SPEC SEN AUC

Han et al. [70] (2020) Private 97.9 - - 99
Gunraj et al. [72] (2020) C3 99.1 99.9 97.3 -

Heidarian et al. [140] (2020) C22 90.82 86.04 94.55 98.0
Mishra et al. [73] (2020) C1 86 - - 88.3
Qian et al. [79] (2020) Private - 97.49 98.99 99.93

Li et al. [80] (2020) Private - - - 96.0
Silva et al. [75] (2020) C1, C4 87.68 - - -
Jin et al. [82] (2020) * C9, C20 94.98 95.76 90.19 97.71

Jamshidi et al. [83] (2020) * C1, C16, C25 98.49 - - -
Zhang et al. [85] (2020) Private - - - 95.9

Owais et al. [195] (2020) * C2, C9 97.60 99.29 90.32 98.65
Misztal et al. [89] (2020) C1, C19 - - - -

Polsinelli et al. [91] (2020) C6 85.03 81.95 87.55 -
Masud et al. [212] (2020) C16 96 - - 99

Hu et al. [96] (2020) Private 87.1 91.23 80.83 90.6
Kang et al. [99] (2020) private 95.5 96.6 93.2 -
Bai et al. [101] (2020) Private 96 93.2 95 95
Zhu et al. [102] (2020) C25 - - - -

Zhang et al. [107] (2021) Private 93.64 ± 1.42 94.00 ± 1.56 93.28 ± 1.50 -
Yao et al. [109] (2021) Private - 90.5 91.5 95.5
Acar et al. [110] (2021) C2, C1 - - - -

Ravi et al. [111] (2021) * C16 99 - - -
Huang et al. [113] (2021) * Private 98.28 - - -
Kundu et al. [117] (2021) C4 97.81 97.77 97.81 -
Saad et al. [118] (2021) C16 98.9 - - -
Lee et al. [127] (2021) C5 - - - 80

Mishra et al. [128] (2021) * C1 99 - - 98.6
Barbosa et al. [130] (2021) * Private - - -

Jadhav et al. [132] (2021) Private 95.2 94.9 95.3 98.5
Yao et al. [134] (2021) C1, C5 98.49 97.95 99.0 -

Khalifa et al. [138] (2021) C8, C14 99.3 95 98.12 -
Bhuyan et al. [139] (2021) * C2 99 99.41 96.66 -

Chaddad et al. [143] (2021) * Private 82.80 88.16
Yousefzadeh et al. [144] (2021) * C20, C9 - 92.7 94.5 95.6

Jiang et al. [148] (2021) C1 96 - - 98.89
Pathan et al. [154] (2021) C1 96 96 97 -
Cruz et al. [155] (2021) C1 86.70 - 89.52 90.82

Basset et al. [157] (2021) * C22 96.80 - - 98.86
Aslan et al. [159] (2021) * C19 98.70 - - 99
Kundu et al. [160] (2021) C3 98.93 98.93 98.93 -
Zhang et al. [163] (2021) Private 98.02 97.95 98.10 -
Chen et al. [166] (2021) C10 96.7 - 95.6 -

Alshazly et al. [167] (2021) C1, C4 96.15 96.75 95.9 -
Rajasekar et al. [170] (2021) C3 94.89 95 - -

Xie et al. [171] (2021) * Private - 80.0 83.6 90.6
Garain et al. [174] (2021) C1 99.51 100 98.96 -

Elghamrawy et al. [175] (2021) Private 98 - 98.8 96
Sen et al. [176] (2021) C4, C1 94.19 - - 95.5

Teodoro et al. [177] (2021) C4 - 98.53 98.53 -
Yasar et al. [178] (2021) C1, C4, C3 95.16 94.01 97.54 99.06

Afshar et al. [180] (2021) Private 93 - -- -
Kundu et al. [182] (2021) C4, C26 98.86 98.86 98.87 -

Pal et al. [183] (2021) * C1 84 - - -
Helwan et al. [185] (2021) Private 98.7 97.3 98.1 -

Castiglione et al. [186] (2021) C4 99.99 99.97 99.92 -
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Table 5. Cont.

Author [Ref] (Year) Dataset Collection
Performance (%)

ACC SPEC SEN AUC

Yan et al. [187] (2021) Private - - 75.1 -
Wan et al. [190] (2021) Private 94.75 96.69 93.22 -

Polat et al. [193] (2021) * C6 93.26 93.24 92.37 -
Naeem et al. [199] (2021) * C4, C6 90.98 - - -
Fouladi et al. [201] (2021) C4 93.3 - 87.67 -
Wang et al. [202] (2021) Private 96.66 - - -

Siddiqui et al. [207] (2021) Private 95.54 97.06 94.38 -
Haikel et al. [208] (2021) C4, C1 99.72 - 99.80 99.99

Bekhet et al. [209] (2021) * Private 92.08 - - -
El-Shafai et al. [211] (2021) C1, C25, C16 99.05 - - -
El-Shafai et al. [213] (2021) C16 100 - - -

Liu et al. [230] (2022) C1, C4 97.21 and 97.94 95.76 and 95.43 96.21 and 95.22 -
Saheb et al. [232] (2022) C3 98.49 96.83 96.83 -

Bhuyan et al. [139] * (2022) C1 99 99.26 95.82 -
Shaik et al. [240] (2022) C1, C4 93.33 - 93.25 93.25
Reis et al. [241] (2022) C4 97.60 - 100 -
Fan et al. [243] (2022) C25 96.73 96.01 97.76 -

Karthik et al. [244] (2022) C9 - - - -
Smadi et al. [246] (2022) C4 98.79 98.8 98.8 -

Li et al. [275] (2022) Private 92.647 - 93.323 -
Yang et al. [255] (2022) C4 97.55 98.14 96.41 -

Mijares et al. [256] (2022) C4 94.89 - 90.43 -
Heidari et al. [257] (2022) Private 99.76 - 99.40 -

Joshi et al. [261] (2022) C1, and C4 96.13 - - 96.13
Gunraj et al. [275] (2022) C25 99 - 99.1 -

Venkatachalam et al. [280] (2022) Private 98.5 100 97 -
Xue et al. [283] (2022) C1 97.67 - - -

El-Shafai et al. [284] (2022) C9 100 - - -

* Other data collections were also used.

Residual neural network (ResNet): Fifty-two authors used ResNet architecture and 12,
21, and 19 papers were documented in 2020, 2021, and 2022, respectively (see Table 6). In
this architecture, fifteen authors preferred private datasets to build their model. Finally,
Ahamed et al. [153] proposed a model that achieved the highest accuracy of 99.99% using
the C15 dataset.

Table 6. Comparison: COVID-19 detection using ResNet architecture according to the year of publication.

Author [Ref] (Year) Dataset Collection
Performance (%)

ACC SPEC SEN AUC

Song et al. [108] (2020) Private 86 77 - 95
Loey et al. [62] (2020) C1 82.91 87.62 77.66 -

Mohammed et al. [69] (2020) C19 77.6 79.3 85.5 -
Chen et al. [100] (2020) C1, C6, C2 86.8 - - 93.1
Javor et al. [74] (2020) Private - 93.3 84.4 95.6

Pathak et al. [76] (2020) * C1 93.0 91.4 94.7 -
Ko et al. [92] (2020) * C6 96.97 100 99.58 -

Wang et al. [94] (2020) 93.3 - 95.5 97.3 -
Jin et al. [82] (2020) * C9, C20 94.98 95.76 90.19 97.71

Sharma et al. [104] (2020) * C1, C9 91 - - -
Li et al. [80] (2020) Private - 96 90 96

Wang et al. [98] (2020) Private 85.00 79.35 71.43 90.11
Goncharov et al. [106] (2021) * C2 - - - 0.97 ± 0.01
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Table 6. Cont.

Author [Ref] (Year) Dataset Collection
Performance (%)

ACC SPEC SEN AUC

Chen et al. [112] (2021) * Private 91.21 88.46 94.87 -
Lascu et al. [121] (2021) * C1 94.9 - - -

Yan et al. [124] (2021) C4 96.3 - - -
Shalbaf et al. [125] (2021) C1 85 - 85 -

Rahimzadeh et al. [126] (2021) C3 98.49 - 94.96 -
Zhu et al. [136] (2021) * C1 93 92 93 -

Wang et al. [147] (2021) * Private - - 96.25 -
Jingxin et al. [150] (2021) * C1, C19 97.83 - 96.89 -

Ahamed et al. [153] (2021) * C15 99.99 - - -
Mondal et al. [165] (2021) C2, C4 96.18 97.96 - -
Biswas et al. [184] (2021) C4 98.79 - - 98.80

Suri et al. [188] (2021) Private - - - 96.75
Nair et al. [189] (2021) C4 - 96 90 95
Guo et al. [191] (2021) Private 99.34 - - -
Jia et al. [196] (2021) * C25 99.3 - - -

Murugan et al. [198] (2021) C4 98.78 99.19 98.37 -
Yu et al. [203] (2021) Private 96.62 95.91 97.33 -

Wang et al. [215] (2021) Private - 99.2 97.4 99.1
Ahuja et al. [216] (2021) * C1 99.4 98.6 100 99.65

Benbrahim et al. [103] (2021) Private 99.01 100 72 -
Khurana and Soni* [221] (2022) C23 98.9 99.2 98.6 -

Canayaz et al. [222] (2022) C1 and C4 95.79 95.75 95.83 -
Zouch et al. [224] (2022) * C1 98.06 - - -
Habib et al. [226] * (2022) Not provided 99.30 - 99.10 -

Cao et al. [234] (2022) Private 82.7 - 79.1 -
Jingxin et al. [150] (2022) C8, C18, C1 98.39 - - -

Fallahpoor et al. [247] (2022) Private 85.00 - - -
Q et al. [252] * (2022) C2 - - - -
Qi et al. [253] (2022) C19 93.4 - - 87.6

Oğuz and Yağanoğlu [254] (2022) Private 96.29 - 95.082 98.21
Sangeetha et al. [259] (2022) C15 98 - - -

Mohammed et al. [260] (2022) C1 91.46 - - -
Dara et al. [264] (2022) C1, C2, C9 97.53 - 93 -

Ozdemir et al. [265] (2022) C1 95.57 - 95.71 -
Ahuja et al. [266] (2022) C9 98.07 98.83 95.66 -

Lu et al. [270] (2022) C15 97.78 97.65 97.94 -
Suri et al. [273] (2022) Private 98 - - 87.00

Choudhary et al. [277] (2022) C4 95.47 99.42 92.16
Latif et al. [281] (2022) C19 99.9 - - -

* Other data collections were also used.

Visual geometry group (VGG): Twenty studies were reported using this network,
where 3, 15, and 9 articles were found in 2020, 2021, and 2022, respectively (see Table 7).
Balaha et al.’s [16] proposed model achieved the highest accuracy of 99.33% using C1, C3,
and C24 datasets. Also, three authors used private datasets.

Table 7. Comparison: COVID-19 detection using VGG architecture according to the year of publication.

Authors [Ref] (Year) Data Collection
Performance (%)

ACC SPEC SEN AUC

Panwar et al. [88] (2020) * C4, C25 95.61 97.22 76 -
Deng et al. [95] (2020) C25 75 - - -
Zhu et al. [102] (2020) C25 - - - -
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Table 7. Cont.

Authors [Ref] (Year) Data Collection
Performance (%)

ACC SPEC SEN AUC

Ibrahim et al. [105] (2021) * C6 98.05 99.5 - 99.66
Jangam et al. [114] (2021) * C1, C3, C4 91.49 - - -

Tan et al. [120] (2021) C1 98 94.9 99 -
Guiot et al. [133] (2021) * Private 85.18 91.63 69.52 88.2
Singh et al. [135] (2021) C20 99.29 - - -

Hu et al. [149] (2021) C1, C3, C2 95.43 - - -
Balaha et al. [151] (2021) C1, C3, C24 99.33 - - -
Khan et al. [169] (2021) C8 98 - - 99

Sethy et al. [172] (2021) * Private 64.80 - - -
Brahim et al. [179] (2021) C9 97.67 98.41 97.57 -
Biswas et al. [184] (2021) C4 98.79 - - 98.80

Suri et al. [188] (2021) Private - - - 96.75
Li et al. [194] (2021) C20 93.57 94.21 93.93 -

Lacerda et al. [206] * (2021) C9 88 - 97 -
Kaushik et al. [210] (2021) C4 95.26 95.10 95.30 -

Subhalakshmi et al. [223] (2022) C1 96.81 95.81 96.53 -
Zouch et al. [224] (2022) * C1 98.06 - - -
Pandey et al. [229] (2022) C15 99.28 - - -
Ibrahim et al. [236] (2022) C1 95 96 95 -
Florescu et al. [238] (2022) Private 1.57 - - -

Sangeetha et al. [259] (2022) C15 98 - - -
Zhang et al. [262] (2022) Private 94.12 96.95 91.40 97.44

Messaoud et al. [267] (2022) C1 86 - 79 -
Chouat et al. [278] * (2022) C11 90.5 - - -

* Other data collections were also used.

Densely connected convolutional networks (DenseNet): Fourteen studies were iden-
tified where authors used this framework. The highest accuracy of 99% was achieved by
Kassania et al. [214]. Most authors preferred publicly available datasets; only three worked
on private datasets (See Table 8).

Table 8. Comparison: COVID-19 detection using DenseNet architecture according to the year of
publication.

Author [Ref] (Year) Dataset Collection
Performance (%)

ACC SPEC SEN AUC

Hu et al. [61] (2020) C1 86.00 - - 94.00
Jaiswal et al. [67] (2020) C4 96.25 96 96 -
Peng et al. [78] (2020) * C13 - - 78.0 89.1

Jin et al. [82] (2020) Private 90.8 93 84 -
Liu et al. [87] (2020) C1, C17 - - - 76.09

Jangam et al. [114] (2021) * C1, C3, C4 91.49 - - -
Wang et al. [147] (2021) * Private - - 96.25 -

Li et al. [162] (2021) C1 87 - - 75
Liu et al. [181] (2021) * Private 94.3 88.50 91.12 98

Kassania et al. [214] (2021) * C25 99.0 99.0 99.0 -
Habib et al. [226] * (2022) Not provided 99.3 - 99.1 -
Sadik et al. [248] (2022) C19 93.8 90.0 97.5 -
Ghose et al. [274] (2022) C22 99.95 99.97 -

Dialameh et al. [279] (2022) C3 - - 85.8 -

* Other data collections were also used.

Inception: Nine authors used the Inception network for their study, and three worked
on private datasets. Finally, El-Bana et al. [93] achieved the highest accuracy of 99.5% with
99.8% sensitivity.
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Table 9. Comparison: COVID-19 detection using Inception architecture according to the year of
publication.

Authors [Ref] (Year) Dataset Collection
Performance (%)

ACC SPEC SEN AUC

El-Bana et al. [93] (2020) * Private 99.5 99.2 99.8 -
Benbrahim et al. [103] (2020) Private 99.01 100 72 -

Shalbaf et al. [125] (2021) C1 85 - 85 -
Wang et al. [220] (2021) Private 79.30 83 67 -

Subhalakshmi et al. [223] (2022) C1 96.81 95.81 96.53 -
Montalbo et al. [227] * (2022) C22, C2, C9, C1, C18 97.41 - 97.52 99.0

Batra et al. [233] (2022) C1 93 - 89.81 -
Ortiz et al. [258] * (2022) C19 91 - 33 80.0

Manconi et al. [268] (2022) C19 98.21 99.24 97.17 99.72

* Other data collections were also used.

UNet: Twenty-seven articles were identified, and 14 researchers utilized private
datasets. The highest accuracy of 99% was achieved by Munusamy et al. [146].

Table 10. Comparison: COVID-19 detection using UNet architecture according to the year of publication.

Authors [Ref] (year) Dataset Collection
Performance (%)

ACC SPEC SEN AUC

Ni et al. [60] (2019) Private Per lobe—83
Per patient—94

- 96
100

86.54
86.08

Chaganti et al. [64] (2020) Private - - - -
Alirr et al. [116] (2021) C2, C6 - 95.1 82.2 -
Fung et al. [119] (2021) C2 - - - 98.66

Zhang et al. [129] (2021) Private - - - -
Jiang et al. [71] (2020) C2 - - - -

Kuchana et al. [137] (2021) C14, C2 - - - -
Munusamy et al. [146] (2021) C2 99 - - -

Hasan et al. [156] (2021) * C4, C1 90.14 88.59 - 94.60
Basset et al. [157] (2021) * C22 96.80 - - 98.86
Müller et al. [161] (2021) * C25 - - - -

Xu et al. [164] (2021) * C2 96.1 - 78.6 -
Lessmann et al. [81] * (2020) Private - 89.8 85.7 95

Voulodimos et al. [168] (2021) * C2, C8 - - - -
Wang et al. [84] (2020) * Private 90.1 - - 95.9
Amyar et al. [90] (2020) C1, C2 94.67 92 96 -

He et al. [197] (2021) Private 98.5 - - 99.1
Kalane et al. [200] (2021) C1, C6 94.10 93.47 94.86 -

Gao et al. [204] (2021) Private 94.80 94.45 95.42 98.17
Wang et al. [215] (2021) Private - 99.2 97.4 99.1
Kang et al. [99] (2020) Private 95.5 96.6 93.2 -
Chen et al. [100] (2020) Private 98.85 99.16 94.34 -

Pu et al. [217] (2021) Private - 84 95 -
Luo et al. [231] (2022) Private 93.84 - 93.15 -
Suri et al. [273] (2022) Private 98.00 - - 87.00
Yoo et al. [272] (2022) Private - - - -

Yousefzadeh et al. [276] (2022) C9 - - -

* Other data collections were also used.

MobileNet: Three authors used this architecture, and Canayaz et al.’s [222] proposed
model achieved the highest accuracy of 99.06% using C1 and C4 datasets.
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Table 11. Comparison: COVID-19 detection using MobileNet architecture according to the year of
publication.

Authors [Ref] (Year) Dataset Collection
Performance (%)

ACC SPEC SEN AUC

Singh et al. [135] (2021) C4 96.40 - 98 99.5
Canayaz et al. [222] (2022) C1 and C4 99.06 95.75 95.83 -

Singh and Kolekar [115] (2022) C4 96 - 98 -

EfficientNet: Five authors preferred this network in their research, where the highest
accuracy (99.61%) was obtained by Balaha et al. [225].

Table 12. Comparison: COVID-19 detection using EfficientNet architecture according to the year of
publication.

Authors [Ref] (Year) Dataset Collection
Performance (%)

ACC SPEC SEN AUC

Balaha et al. [225] (2022) C18 99.61 - 99.62 99.98
Garg et al. [242] (2022) C4 98.45 98.83 96.82 -

Verma et al. [245] (2022) 99.58 - 99.69 -
Huang et al. [249] (2022) C1, C4 97.48 - - -

Ravi et al. [111] (2022) C16 99.00 - 99.00 -

4.5. How Big Is Big Data?

The greater the data, the higher the performance we state in machine learning, particu-
larly for DL-based models. As far as machine learning algorithms are concerned, this is not
true, as it necessitates all possible manifestations associated with a specific disease (COVID-
19, in our case). However, the size of the dataset allows for the likelihood of having new
topics (i.e., manifestations). We refer to earlier works for additional information [285,286].
Underfitting and overfitting were not discussed in most of the published papers due to the
lack of data. Furthermore, the authors used the holdout method to train/test the model
instead of k-fold cross-validation. Another critical issue is an unbalanced dataset, where
possible bias was not well argued.

4.6. Transfer Learning

Apart from conventional machine learning, large amounts of annotated data are required
for DL models to deliver desirable performance. For this reason, transfer learning is usually
applied and generates a large amount of data. Subsequently, the model is fine-tuned for a
target task of interest. The use of pretrained DL models is prevalent in COVID-19 imaging
tools. For example, commonly used models are AlexNet, VGGNet-XX, GoogleNet, ResNet-XX,
Xception, Inception, wideResNet, MobileNet, NASNet, DarkNet, CheXNet, ShuffleNet, Incep-
tionResNetV2, InceptionV3 (to name a few) [62,67,79,95,102,103,111,112,114,115,121,125,128,
134,139,143,146,151–153,158,159,162,210,211,213,214,220,234,247,249,255,263,270,274,277,284].

4.7. Data Augmentation

Data augmentation plays a significant role in reducing overfitting, which can improve
the performance of DL models. The principal objective of the augmentation technique
is to uplift the available raw data by adding slightly modified copies of the source or, in
some cases, the synthetic image generated from the existing data. For COVID-19 imaging
tools, authors often used augmentation methods for aiming more features from the limited
available data. Let us discuss the use of augmentation techniques on CT imaging tools over
the last two years (see Table 13).
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Table 13. Data augmentation techniques according to year of publication.

Author [Ref]
(Year) Used Methods Motivation Dataset

Collection
Dataset (Aug-

mentation)

Performance (%)

ACC SEN SPEC AUC

Loey et al. [62]
(2020) CGAN Model accuracy

improvement C1 1502 (4843) 82.91 77.66 87.62 -

Mohammed et al.
[69] (2020)

Contrast stretching, the addition of
Gaussian noise, blur, and spatial

transformations such as zooming,
scaling, rotation, and elastic deformation

Augment positive
samples count C19 22,873 (-) 77.6 85.5 79.3 -

Jiang et al. [71]
(2020)

GAN (random resizing and cropping,
random rotation, Gaussian noise, and

elastic transform)

Increase image
number C2 373 (2220) - - - -

Chen et al. [145]
(2020)

Random cropping, resizing, color
distortion

Classification
performance
improvement

C1, C2 1286 (-) 86.8 - - 93.1

Silva et al. [75]
(2020)

Rotation (0–15◦ clockwise or
anticlockwise), horizontal flip, scaling,

20% zoom
Increase data size C1, C4 1693 (-) 87.68 - - -

Wang et al. [84]
(2020)

Random affine transformation
(horizontal and vertical translations,

shearing in the width dimension) and
color jittering (adjusted brightness and

contrast)

Avoid overfitting Private - (310,055) 90.1 - - 95.9

Zhang et al. [85]
(2020)

Crop square patches, rotation with an
angle, random horizontal reflection, and
adjusted contrast by random darkening

and brightening

Increase number of
images Private - (630) - - - 95.9

Ko et al. [92]
(2020)

Rotation between –10◦ and 10◦ and 90%
(zoom-in) and 110% (zoom-out)

Increase number of
images Private - (3993) 96.97 99.58 100 -

El-Bana et al.
[93] (2020)

Crop square patches, rotation with an
angle (∆ = −25 to 25), random

horizontal reflection, adjust contrast
(factor ranging from 0.5 to 1.5)

Avoid overfitting Private - (499) 99.5 99.8 99.2 -

Hu et al. [96]
(2020)

Cropping square patches, rotation with
an angle of −25 to + 25 degrees, random

horizontal reflection, and contrast
adjustment (factor ranging between 0.5

and 1.5)

Increase dataset size Private - (-) 87.1 80.83 91.23 90.6

Ibrahim et al.
[105] (2021) Resizing, rotating, flipping, skewing Increase number of

Images C6 33,676 (75,000) 98.05 - 99.5 99.66

Acar et al. [110]
(2021) GAN Increase effectiveness

of DL models C2, C1 1607 (3921) - - - -

Huang et al.
[113] (2021)

Vertical–horizontal flip, rotation (90, 180,
270 degrees)

Acquire richer
samples FaNet 422 (12,924) 98.28 - - -

Jangam et al.
[114] (2021)

Random resized crop, rotation,
horizontal flip, color jittering

Increase size of
dataset C1, C3, C4 15,286 (-) 91.49 - - -

Tan et al. [120]
(2021) SRGAN Enhancement in

model accuracy C1 746(-) 97.9 99 94.9 -

Lascu et al. [121]
(2021) Random patching, resized Generate more

samples C1 746 (-) 94.9 - - -

Bhuyan et al.
[139] (2021) RAIOSS Changing image C2 - (3855) 99 96.66 99.41 -

Wang et al. [147]
(2021)

Noise injection, HS transform, vs.
transform, rotation, GC, RT, and scaling

Improve
generalization of

model
Private 1164 (-) - 96.25 - -

Jiang et al. [148]
(2021) CycleGAN Increase data size C1 600 (2000) 96 - - 98.89

Jingxin et al.
[150] (2021) Coronal view, squeezing Improve model

performance C1, C19 -(-) 97.83 96.89 - -

Balaha et al.
[151] (2021)

Cropping, zooming, shearing, rotating,
flipping, and changing the brightness Increase Data size C1, C3, C24 - (15,535) 99.33 - - -

Turkoglu et al.
[152] (2021)

Symmetrical rotation (90 and 270
degree), reflection

Increase classification
accuracy C1 746 (3730) 98.36 98.28 98.44 98.36

Ahamed et al.
[153] (2021) *

Rescaling, zooming, horizontal flipping
and shearing operations

Reduce network
generalization error C15 3000 (7593) 99.99 - - -

Aslan et al. [159]
(2021) Crop, rotation Increase number of

images C19 - (1095) 98.70 - - 99

Zhang et al.
[163] (2021)

Salt and pepper noise (SAPN) and
speckle noise Avoid overfitting Private - (-) 98.02 98.10 97.95 -

El-Shafai et al.
[211] (2021) GAN Improve model

accuracy
C1, C25,

C16 - (-) 99.05 - - -

Zouch et al. [224]
(2022)

Random rotation with angle ranging
from +20 to -20 degrees, random noise,

horizontal flip
Increase dataset size C1 - (-)

76.32
(ResNet50)
and 84.87
(VGG19)

- - -

Balaha et al.
[225] (2022) GANs, CycleGAN, CCGAN Avoid overfitting C18 - (-) 99.57 and

99.14 - - -

Habib et al. [226]
(2022) Contrast enhancement developed robust

system
Not

mentioned 21,165 (47,440) 99.3 99.1 -

Bhuyan et al.
[139] (2022) RAIOSS generated different

quality images C1 746 (3855) 99 95.82 99.26
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Table 13. Cont.

Author [Ref]
(Year) Used Methods Motivation Dataset

Collection
Dataset (Aug-

mentation)

Performance (%)

ACC SEN SPEC AUC

Ibrahim et al.
[236] (2022) Rotation of all images to 90, 180, 270

To increase number
of images and attain
high generalizability

C1 746 (2984) 95 95 96

Akinyelu et al.
[237] (2022)

Rotation, zoom, width shift, height shift,
shear Increase dataset size Private - (194,922) 97.50 (B),

99.86
100,

99.83
93.19,
99.90

Baghdadi et al.
[239] * (2022)

Rotation, width shift ratio, height shift
ratio, shear ratio, zoom ratio, brightness

change, vertical flip, horizontal flip
To balance datasets C15 14,486 (15,186) 99.73 - -

Karthik et al.
[244] (2022)

Random rotation, random translation,
shearing, horizontal flip

Improve
generalizability C9 - - - -

Fallahpoor et al.
[247] (2022)

Random rotation, 90 degree rotation,
scaling, translation

Prevent overfitting
and improve model

performance
Private - - - -

Joshi et al. [261]
(2022)

Horizontal flip, anticlockwise rotation (5
degree angle), clockwise rotation (5

degree angle), gaussian noise
Increase sample size C1, and C4 - 93.59,

98.79 - -

Chouat et al.
[278] (2022) Scaling, rotating, shifts, and flips

Increase data and
improve network

efficiency
C11 - 90.5, 89.5 - -

El-Shafai et al.
[284] (2022)

Rotation, width shift range, feature wise
center, sample-wise center, brightness

adjustment
Increase sample size C1 - 98.49 - -

4.7.1. 2020

We found a total of 10 articles; among them, the researchers of 9 articles used conven-
tional augmentation techniques such as resizing, zooming, gaussian noise, blur, spatial
transformation, contrast adjustment, flipping, scaling, cropping, rotation, intensity trans-
formation [69,71,75,84,85,92,93,96,145]. Similarly, one author used GAN [62], considered
under the classical augmentation approach.

4.7.2. 2021

We found 16 articles where researchers applied different types of augmentation tech-
niques. Most of the authors used resizing, rotating, flipping, skewing, cropping, color
jittering, patching, flattering, downsampling, transpose rotation, squeezing, shearing, re-
flection, coronal view, symmetric rotation, noise injection, HS transform, vs. transform,
rotation, GC, RT [105,113,114,121,147,150,153,159,163]. Similarly, a few authors utilized
GAN [110,211], SRGAN [120], CycleGAN [148], and RAIOSS [139] approaches.

4.7.3. 2022

A total of 12 articles are listed where authors used data augmentation methods. The
most popular approaches are horizontal flip, anticlockwise rotation, scaling, brightness
change, and contrast enhancement [224,236,237,239,244,261,284]. In addition, GANs, cycle
GAN, CCGAN [225], and RAIOSS [139] were also opted for in a few studies.

5. Conclusions and Future Scope

In this paper, we studied peer-reviewed research findings/articles on AI-guided tools
for COVID-19 analysis/screening using chest CT scans images in the years 2020, 2021, and
2022. Our research was confined to deep learning methods for detecting COVID-19 in CT
scans, and we identified data collections, methodological procedures, and discussion of
prospective methodologies and challenges. Using the search terms (COVID-19 OR Coron-
avirus) AND chest CT AND (deep learning OR artificial intelligence OR medical imaging),
we systematically reviewed 231 research papers and meta-analyses on the PubMed Central
Repository and Web of Science. Unlike standard articles, we did not analyze pre-print
publications like those in ArXiv, TechRxiv, and medRxiv.

Future guidelines for effectively using CT imaging and deep learning (DL) in COVID-
19 screening should prioritize data augmentation (DA) and diversity to enhance DL model
generalizability. Recommendations include augmenting data with varying noise levels
and incorporating scans from diverse populations, disease stages, and comorbidities.
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Finetuning existing models on COVID-19 data helps to learn disease-specific features
while leveraging knowledge from pretraining on other medical images. Emphasizing
explainability and interpretability is essential, using techniques like attention maps, saliency
maps, or Grad-CAM to highlight influential regions in CT scans, increasing trust in DL
model decisions.
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254. Oğuz, Ç.; Yağanoğlu, M. Detection of COVID-19 using deep learning techniques and classification methods. Inf. Process. Manag.
2022, 59, 103025. [CrossRef]

255. Yang, L.; Wang, S.-H.; Zhang, Y.-D. EDNC: Ensemble Deep Neural Network for COVID-19 Recognition. Tomography 2022, 8,
869–890. [CrossRef]

256. Tello-Mijares, S.; Woo, F. Novel COVID-19 Diagnosis Delivery App Using Computed Tomography Images Analyzed with
Saliency-Preprocessing and Deep Learning. Tomography 2022, 8, 1618–1630. [CrossRef]

257. Heidari, A.; Toumaj, S.; Navimipour, N.J.; Unal, M. A privacy-aware method for COVID-19 detection in chest CT images using
lightweight deep conventional neural network and blockchain. Comput. Biol. Med. 2022, 145, 105461. [CrossRef]

258. Ortiz, A.; Trivedi, A.; Desbiens, J.; Blazes, M.; Robinson, C.; Gupta, S.; Dodhia, R.; Bhatraju, P.K.; Liles, W.C.; Lee, A.; et al.
Effective deep learning approaches for predicting COVID-19 outcomes from chest computed tomography volumes. Sci. Rep.
2022, 12, 1716. [CrossRef]

259. Sangeetha, S.K.B.; Kumar, M.S.; Deeba, K.; Rajadurai, H.; Maheshwari, V.; Dalu, G.T. An Empirical Analysis of an Optimized
Pretrained Deep Learning Model for COVID-19 Diagnosis. Comput. Math. Methods Med. 2022, 2022, 9771212. [CrossRef]

260. Mohammed, M.A.; Al-Khateeb, B.; Yousif, M.; Mostafa, S.A.; Kadry, S.; Abdulkareem, K.H.; Garcia-Zapirain, B. Novel Crow
Swarm Optimization Algorithm and Selection Approach for Optimal Deep Learning COVID-19 Diagnostic Model. Comput. Intell.
Neurosci. 2022, 2022, 1307944. [CrossRef]

261. Joshi, A.M.; Nayak, D.R. MFL-Net: An Efficient Lightweight Multi-Scale Feature Learning CNN for COVID-19 Diagnosis From
CT Images. IEEE J. Biomed. Health Inform. 2022, 26, 5355–5363. [CrossRef]

262. Zhang, S.; Yuan, G.-C. Deep Transfer Learning for COVID-19 Detection and Lesion Recognition Using Chest CT Images. Comput.
Math. Methods Med. 2022, 2022, 4509394. [CrossRef]

https://doi.org/10.3389/frai.2022.919672
https://doi.org/10.3390/life12070958
https://doi.org/10.1016/j.compbiomed.2022.105383
https://doi.org/10.1016/j.compbiomed.2021.105127
https://doi.org/10.1016/j.artmed.2022.102427
https://doi.org/10.1016/j.eswa.2022.116540
https://doi.org/10.1016/j.displa.2022.102150
https://doi.org/10.1016/j.asoc.2022.108765
https://www.ncbi.nlm.nih.gov/pubmed/35370523
https://doi.org/10.1016/j.compbiomed.2022.105298
https://www.ncbi.nlm.nih.gov/pubmed/35220076
https://doi.org/10.1016/j.imu.2022.101059
https://doi.org/10.1016/j.compbiomed.2022.105464
https://doi.org/10.1016/j.compbiomed.2022.105806
https://doi.org/10.1016/j.compbiomed.2022.105604
https://doi.org/10.1016/j.compbiomed.2022.105340
https://www.ncbi.nlm.nih.gov/pubmed/35305504
https://doi.org/10.1016/j.eswa.2022.118227
https://doi.org/10.1016/j.media.2022.102459
https://doi.org/10.1016/j.compbiomed.2021.105182
https://doi.org/10.1016/j.ipm.2022.103025
https://doi.org/10.3390/tomography8020071
https://doi.org/10.3390/tomography8030134
https://doi.org/10.1016/j.compbiomed.2022.105461
https://doi.org/10.1038/s41598-022-05532-0
https://doi.org/10.1155/2022/9771212
https://doi.org/10.1155/2022/1307944
https://doi.org/10.1109/JBHI.2022.3196489
https://doi.org/10.1155/2022/4509394


Healthcare 2023, 11, 2388 42 of 42

263. Mouhafid, M.; Salah, M.; Yue, C.; Xia, K. Deep Ensemble Learning-Based Models for Diagnosis of COVID-19 from Chest CT
Images. Healthcare 2022, 10, 166. [CrossRef]

264. Dara, S.; Kanapala, A.; Babu, A.R.; Dhamercherala, S.; Vidyarthi, A.; Agarwal, R. Scalable Federated-Learning and Internet-
of-Things enabled architecture for Chest Computer Tomography image classification. Comput. Electr. Eng. 2022, 102, 108266.
[CrossRef]

265. Özdemir, Ö.; Sönmez, E.B. Attention mechanism and mixup data augmentation for classification of COVID-19 Computed
Tomography images. J. King Saud Univ.—Comput. Inf. Sci. 2022, 34, 6199–6207. [CrossRef]

266. Ahuja, S.; Panigrahi, B.K.; Dey, N.; Taneja, A.; Gandhi, T.K. McS-Net: Multi-class Siamese network for severity of COVID-19
infection classification from lung CT scan slices. Appl. Soft Comput. 2022, 131, 109683. [CrossRef]

267. Messaoud, S.; Bouaafia, S.; Maraoui, A.; Khriji, L.; Ammari, A.C.; Machhout, M. Detection of COVID-19 and other pneumonia
cases from CT and X-ray chest images using deep learning based on feature reuse residual block and depthwise dilated
convolutions neural network. Can. J. Infect. Dis. Med. Microbiol. 2022, 133, 109906.

268. Manconi, A.; Armano, G.; Gnocchi, M.; Milanesi, L. A Soft-Voting Ensemble Classifier for Detecting Patients Affected by
COVID-19. Appl. Sci. 2022, 12, 7554. [CrossRef]

269. Chen, C.; Li, R.; Shen, H.; Xia, L. Long Short-Term Memory Based Framework for Longitudinal Assessment of COVID-19 Using
CT Imaging and Laboratory Data. IEEE Access 2022, 10, 55533–55545. [CrossRef]

270. Lu, S.-Y.; Zhang, Z.; Zhang, Y.-D.; Wang, S.-H. CGENet: A Deep Graph Model for COVID-19 Detection Based on Chest CT. Biology
2022, 11, 33. [CrossRef]

271. Owais, M.; Sultan, H.; Baek, N.R.; Lee, Y.W.; Usman, M.; Nguyen, D.T.; Batchuluun, G.; Park, K.R. Deep 3D Volumetric Model
Genesis for Efficient Screening of Lung Infection Using Chest CT Scans. Mathematics 2022, 10, 4160. [CrossRef]

272. Yoo, S.-J.; Qi, X.; Inui, S.; Kim, H.; Jeong, Y.J.; Lee, K.H.; Lee, Y.K.; Lee, B.Y.; Kim, J.Y.; Jin, K.N.; et al. Deep Learning–Based
Automatic CT Quantification of Coronavirus Disease 2019 Pneumonia: An International Collaborative Study. J. Comput. Assist.
Tomogr. 2022, 46, 413–422. [CrossRef]

273. Suri, J.S.; Agarwal, S.; Chabert, G.L.; Carriero, A.; Paschè, A.; Danna, P.S.C.; Saba, L.; Mehmedović, A.; Faa, G.; Singh, I.M.; et al.
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