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1 Models Considered 



  Supplementary Material 

 2 

1.1 Epidemic models 

We identified statistical models widely applied for predictions during the first epidemic wave of 
COVID-19 around the world. The statistical approaches selected along with the corresponding 
reference(s) are summarized in Table 1 of the main manuscript; the description of the model parameters 
is reported in Table S1. 

1.2 Compartmental Models  

A compartmental model assumes that the overall population is divided into compartments. A SIR 
model, for example, allocates each person in the population to one of the following compartments: 
Susceptible, Infected, and Recovered; the SIRD model instead considers also the Deceased. According 
to the model, individuals can flow between different compartments. The flows and interaction rates 
between compartments are known as the model parameters (1). Prior assumptions on these parameters 
are necessary to model the epidemic growth trend (2). 
The SIR model assumes that individuals in the population can be classified as susceptible, infected, or 
recovered. The transitions between these compartments are modeled using a system of ordinary 
differential equations (ODEs). 
 
Let S(t), I(t), and R(t) be the number of individuals in the population who are susceptible, infected, and 
recovered at time t, respectively. The basic reproductive number, R0, represents the expected number 
of secondary cases produced by a typical primary case in a completely susceptible population. It is a 
key parameter in the model, as it determines whether an outbreak will grow or die out. 
 
The equations for the SIR model are: 
 dS/dt = −𝛽Sl/Ndl/dt = 𝛽SI/N − 𝛾ldR/dt = 𝛾l  

where β is the transmission rate, γ is the recovery rate, and N is the total population size. The first 
equation represents the rate of change of the susceptible population, which is decreasing as individuals 
become infected. The second equation represents the rate of change of the infected population, which 
is increasing due to transmission from the susceptible population and decreasing due to recovery. The 
third equation represents the rate of change of the recovered population, which is increasing as 
individuals recover from the disease. 
 
The SIRD model adds a compartment for deaths, represented by the variable D(t). The equations for 
the SIRD model are: 
 𝑑𝑆/𝑑𝑡 = −𝛽𝑆𝐼/𝑁𝑑𝑙/𝑑𝑡 = 𝛽𝑆𝐼/𝑁 − (𝛾 + 𝜇)𝐼𝑑𝑅/𝑑𝑡 = 𝛾𝑙𝑑𝐷/𝑑𝑡 = 𝜇𝑙  

where μ is the mortality rate, representing the proportion of infected individuals who die from the 
disease. The first three equations are the same as in the SIR model, while the fourth equation represents 
the rate of change of the deceased population, which is increasing as individuals die from the disease. 
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As the transmission rate, recovery rate, and death rate in Italy during the first wave of the pandemic 
were still highly debated, the parameters for these models were estimated directly from the data, using 
a nonlinear minimization procedure (3). In the model implementation, we allowed for the parameters 
to change over time, to account for variations in the epidemic dynamic (e.g. a different transmission 
rate before and after the implementation of physical distancing and control measures).   
 

 

1.3 Data-Driven Models 

 Data-driven models are attractive, especially with the little information available on the 
evolution pattern of the pandemic, because they do not assume preliminary knowledge of the 
mechanism of transmission of the disease (32). In the following part, a short presentation of the main 
data-driven models is provided. 
1.3.1 Exponential model 
The exponential model, which was introduced by Thomas Robert Malthus (4), assumes a geometric 
growth mechanism for the phenomenon considered. The model is defined by the following equation: 

0
rt

ty y e=  
where  is the growth function at a time  is the value of  when  and  represents the relative 
increase or decrease of  for a unit increase of time . 
The nonlinear least squares were used for the estimation by considering the standard maximum 
likelihood (ML) algorithm (5). 

 
1.3.2 Quadratic regression model 
The quadratic equation describes an increasing or decreasing trend that changes according to the level 
of time  (6). The most common parameterization is as follows: 
 

2
0ty y rt pt= + +  

where the parameter  is the value of  when ,  is the linear effect and represents the relative 
increase or decrease of  for a unit increase of time , and  is the deceleration of the growth parameter 
that suggests how much the exponential growth is slowing.  

• The stationary point is . 
• The parameters have been estimated using an ordinary least squares (OLS) estimation 

(7).  
1.3.3 Logistic regression, generalized logistic regression, and Richards regressions 
The logistic regression curve models define an S-shaped growth with the Equation (8): 
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where  is the upper asymptote. The parameter  defines the logarithmic growth rate or steepness of 
the curve. Nonlinear least-square optimization was solved using the ML algorithm (5).  

 
The generalized growth of logistic functions is an extension of logistic or sigmoid functions, allowing 
for more flexible S-shaped curves (9). The function is defined as (10) (11): 
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where  is the lower asymptote,  is the upper asymptote,    is the growth rate, and   is the slope 
around the inflection point. The function is asymmetric for  different from . Parameters are estimated 
using a general optimizer function to minimize the negative log-likelihood (12). The starting values to 
initialize the algorithm are defined considering a self-starting procedure as indicated in the literature 
(13). 
Finally, the Richards model (RM) (9), also known as the power-law logistic model, is more flexible 
than the logistic one, since it has an additional parameter that controls the slowing rate of the 
exponential growth rate (14). The RM is described by the following equation (10,15): 
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In the aforementioned equation  is the growth function at the time ,  is the upper asymptote,  is 
the lower asymptote,  is the time,  is the slope around the inflection point, and  is the growth rate, 
The nonlinear least-squares optimization was solved using the standard  Levenberg-Marquardt (LM)  
algorithm (5). 

 
1.3.4 Bertalanffy and Gompertz model 
The Bertalanffy model is a growth model developed in the field of ecological research and is also used 
to describe the development of infectious diseases. The model is described by the following equation 
(10): 

( ) 1 expt l l
ty y y y
r∞

  = + − − −      
In the equation  is the growth function at the time ,   is the upper asymptote of the growth function, 

 is the lower asymptote of the growth function, and  is the growth rate(16). 
Nonlinear least-square optimization was solved using the standard LM algorithm (5). 
 
The Gompertz model for a time series is a sigmoid function that describes a growth pattern that is 
slowest at both the start and the end of a given period. The right-hand or future-value asymptote of the 
function is approached much more gradually by the curve than the left-hand or lower-value asymptote. 
This goes against the simple logistic function in which both asymptotes are approached by the curve 
symmetrically(10) (15). Parameters are estimated using an optimizer function to minimize negative 
log-likelihood (12). The starting values to initialize the algorithm are defined considering a self-starting 
procedure as indicated in the literature (13). 
1.3.5 Generalized additive model (GAM) 
GAM (17) is a generalized model in which the linear predictor depends linearly on unknown smooth 
functions defined on the time variable. The GAM function is defined as 

 
The  is a function that may be defined considering a parametric, semiparametric, or not parametric 
smoothing. The scatterplot smoothing function with a natural spline was considered for computation. 
The optimization of the smoothness selection score has been carried out penalizing iteratively the 
reweighted least-squares scheme used to estimate the model given the smoothing parameters (18). 
1.3.6 Poisson Generalized Linear Model (GLM). 
A Poisson regression model may be defined considering the following parameterization. 
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where  is the size of the population and  is the parameter of the Poisson distribution of . The 
estimation of model parameters is obtained using the ML approach performed using the Newton-
Raphson (NR) algorithm (19).  

 
1.3.7 ARIMA model 
An Integrated Autoregressive Moving Average (ARIMA) model is a generalization of an 
Autoregressive Moving Average (ARMA) model, which is the basic model for analyzing stationary 
time series (20). In particular, the ARIMA models are used for non-stationary time series, where a 
differencing step can be applied to eliminate the non-stationarity. 
Indicating with  the order of the autoregressive part, with  the degree of first differencing involved, 
and with  the order of the moving average part, let us model the epidemic series data  where  
indicates the time, with an  model given by:  
 

 
 

Where  are the autoregressive coefficients, and  are the moving 
average coefficients. The different epidemic series is . The predictors on the right side include lagged 

 values and error . The order of the non-seasonal ARIMA model was selected using the Bayesian 
information criterion (21). 
1.3.8 Empirical Bayesian Time Series Framework 
In the model proposed by Liu et al., the natural logarithm of the total cases is modeled by a functional 
effects model as follows: 

 
Where  is the value of  when  and  is the error component of the model. The functional 
effect  is modeled as a cubic smoothing spline with the state space representation as: 

 

where  is the first derivative concerning time,  is the state transition matrix, and 
 is the time interval between two points with the overall time range scaled to [0, 1], 

 is the state innovation vector, with  

and   is a smoothing parameter. 
Smoothing parameters and variances were estimated using the maximum penalized logarithmic 
likelihood approach (22): 
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All explanations of the model parameters are reported in Table 2. 
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Table S1. Model parameters description. 

GENERAL 𝑦  growth function at time 0 𝑦  growth function at time t  𝑟 relative increase/decrease of y for a unit increase at time t 𝑡 time (days) 

EXPONENTIAL 𝑝 deceleration of growth that suggests how much the exponential growth is getting slower 

LOGISTIC, GENERALIZED LOGISTIC, AND RICHARDS REGRESSION 𝑘 slope around the inflection point 

g Asymmetry parameter 

BERTANLAFFY AND GOMPERTZ MODEL 𝑦  the lower asymptote of the growth function 𝑘 slope around the inflection point 

GAM 𝑓 (𝑡) Smoothing function of time 𝑦  growth function at time 0 

POISSON GENERALIZED LINEAR MODEL 𝜆  parameter of the Poisson distribution 𝑁 population size 
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ARIMA 𝑥 order of the autoregressive part 𝑦 degree of first differencing involved 𝑧 order of the moving average part 𝜙  autoregressive coefficient 𝜃  moving average coefficient 𝜀 error component 

EMPIRICAL BAYESIAN TIME-SERIES FRAMEWORK 𝑦  growth function at time 0 𝑓( ) functional effect 

𝑒( ) Error component 

 

 

Table S2. MAE and MAPE for total cases. 

Panel A MAE 

MAE Total cases 

  
20  

days 
30  

days 
40  

days 
50 

 days 
60  

days 
70  

days 
80  

days 
90 

 days 
98  

days 

SIR 41763.128 61631.441 35256.829 10347.885 6568666.971 31502.821 6156.542 5848.646 5864.783 
SIRD 72337.880 58929.003 13365.466 11362.143 8943.640   9218.985 11300.318 14071.961 16238.300 

QUADRATIC 97997.40 193751.40 154878.92  87321.94  47068.22 26310.69  15939.50  11814.39  10717.30  

POISSON 10304600405 18490478.84  7220985.65  1001760.33  296970.06  126129.66  66763.88  44118.67  37380.12  

EXPONENTIAL 3135047236.35 47584391.83  2155106.81 415599.38 152029.57 74771.32 45701.66  35436.41 33583.14  

LOGISTIC 84445.80  50591.834 37550.557  24113.639  14249.145  8908.800 6675.314  5745.402 5490.985 

GOMPERTZ 26425.484 76467.629 10019.812  10273.975 5271.497  2478.100 1730.360  1472.068 1375.564  

GENLOGIS 68807.332 70585.583  300244.080 7279.645 1475.810  2471.948  1652.706 1220.359  1141.014 

BERTANLAFFY 89307.25  40508.43  17808.07 21585.43 23136.68 21610.55  18999.54  13133.76  12356.63 

RICHARDS 167294.370  57043.699   18413.441 10916.806  4130.433  1301.032  1303.410  1273.783  1251.391  

GAM 28797.356  62634.039  39824.904  18572.346  10623.839  6455.077  2994.290  2432.309  2835.908  

ARIMA 18794.23 46566.41 33809.95  13386.55  9144.54 2101.59  687.37  414.46  348.88  
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BAYESIAN 23598.51 54401.91 34764.97 14652.44   25118.037 1637.306 890.288 390.443 279.796  
 

Panel B MAPE 

MAPE Total cases 

 20 days 30 days 40 days 50 days 60 days 70 days 80 days 90 days 98 days 

SIR 0.261 0.349 0.269 0.216 27.863 0.303 0.210 0.214 0.215 

SIRD 0.406 0.417 0.193 0.170 0.150 0.152 0.165 0.182 0.195 

QUADRATIC 0.555 1.195 0.8488 1.312 2.114 2.997 3.893 4.645 5.091 

POISSON 44665.04 806.048 32.2841 5.517 3.170 3.335 4.120 5.143 6.037 

EXPONENTIAL 13605.50 208.49 10.55 3.92 3.99 5.00 6.309 7.696 8.798 

LOGISTIC 0.477 0.315 0.300 0.394 0.581 0.790 0.951 1.075 1.156 

GOMPERTZ 0.153 0.401 0.130 0.128 0.081 0.051 0.044 0.044 0.046 

GENLOGIS 0.387 0.411 0.208 0.157 0.074 0.112 0.150 0.101 0.070 

BERTANLAFFY 0.895 1.756 3.010 3.799 4.011 3.731 3.014 4.375 4.795 

RICHARDS 0.839 0.347 0.210 0.116 0.089 0.176 0.206 0.197 0.183 

GAM 0.194 0.303 0.218 0.187 0.287 0.181 0.1556 0.512 0.837 

ARIMA 0.128 0.227 0.167 0.072 0.053 0.022 0.016 0.0.015 0.015 

BAYESIAN 0.169 0.265 0.169 0.077 3.515 0.017 0.0134 0.011 0.011 
 

 

Table S3. MAE and MAPE for new cases. 

Panel A MAE 

MAE New cases 
  20 days 30 days 40 days 50 days 60 days 70 days 80 days 90 days 98 days 

SIR 1975.778 2140.135 2156.117 2536.731 2488.577 2258.779 2025.271 1996.667 2001.496 

SIRD 1627.866 1554.963 1202.559 923.431 646.679 469.803 480.777 528.935 531.310 

QUADRATIC 30910 19248 1360 3125 2610 1813 1247 942.8 890.5 
POISSON 138557124 1618152 45810 8243 3408 2086 1627 1481 1444 

EXPONENTIAL 100371543 392235 18241 5178 2744 1937 1622 1508 1467 
LOGISTIC 17123 2830 2153 1839 1628 1466 1626 1044 1040 

GOMPERTZ 26256 3887 2221 1865 1647 1482 1626 1090 1090 
GENLOGIS 26709 2317 2100 1825 1614 1445 1339 1292 1288 

BERTANLAFFY 5132 7630 3690 2194 1790 1595 1477 1418 1398 
RICHARDS 34816 3234 2173 1845 1631 1469 1364 1309 1553 

GAM 13561 5993 3767 380.8 1008 581.8 441.8 434.6 429.3 
ARIMA 5777 6249 1728 1046 865.7 471.8 380.8 357.9 350.2 

BAYESIAN 8156 8185 1643 696 342.2 483.1 284.3 273.5 273.9 
 

Panel B MAPE 

MAPE New cases 

  20 days 30 days 40 days 50 days 60 days 70 days 80 days 90 days 98 days 

SIR 0.8637 1.359 1.390 2.194 2.100 1.626 1.073 0.979 0.998 

SIRD 0.750 0.734 0.667 0.606 0.474 0.292 0.304 0.376 0.374 

QUADRATIC 38.142 3.931 1.299 4.962 4.175 2.859 1.757 1.076 0.936 

POISSON 286791.803 3040.128 72.106 11.602 4.732 3.017 2.466 2.325 2.316 
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EXPONENTIAL 206712.44 692.865 26.593 7.207 3.936 2.890 2.465 2.295 2.229 

LOGISTIC 15.093 2.938 2.367 2.081 1.846 1.622 2.465 1.873 1.864 

GOMPERTZ 27.880 3.931 2.460 2.125 1.880 1.651 2.465 1.920 1.920 

GENLOGIS 26.508 2.551 2.315 2.051 1.804 1.574 1.368 1.218 1.161 

BERTANLAFFY 6.035 8.895 4.198 2.620 2.188 1.912 1.671 1.480 1.357 

RICHARDS 38.8  3.349  2.445  2.146  1.907  1.682  1.459  1.285  2.017  

GAM 15.115 6.762 72.106 0.303 1.226 0.666 0.485 0.530 0.547 

ARIMA 6.719  7.204  1.977  1.245  1.007  0.449  0.2771  0.2257  0.2046  

BAYESIAN 9.372  9.247  2.05  0.7106  0.2401  0.5482  0.1737  0.1566  0.1552  
 

 

 

 

Table S4. Last observed vs last fitted total cases at i-th time. 

 20 days 30 days 40 days 50 days 60 days 70 days 80 days 90 days 98 days 
SIR 

(last observed) 21157 69176 119827 159516 189973 210717 222104 229327 233019 

SIR 
(last fitted) 21584.20 69267.20 122272.33 165011.35 193105.45 215604.48 228034.57 96197.26 96197.26 

SIRD 
(last observed) 21157 69176 119827 159516 189973 210717 222104 229327 233019 

SIRD 
(last fitted) 21369.23 72418.37 125415.32 164263.35 189484.98 203030.27 207872.75 332688.76 332931.49 

QUADRATIC 
(last observed) 21157 69176 119827 159516 189973 210717 222104 229327 233019 

QUADRATIC 
(last fitted) 19815 68149 127566 173080 206592 229415 240955 245054 245047 

POISSON 
(last observed) 21157 69176 119827 159516 189973 210717 222104 229327 233019 

POISSON 
(last fitted) 22617 81924 158469 219954 267407 302390 324637 337802 343866 

EXPONENTIAL 
(last observed) 21157 69176 119827 159516 189973 210717 222104 229327 233019 

EXPONENTIAL 
(last fitted) 21564 74769 137025 186574 226150 256095 275523 287865 294305 

LOGISTIC 
(last observed) 21157 69176 119827 159516 189973 210717 222104 229327 233019 

LOGISTIC 
(last fitted) 20941 69451 117652 152926 181000 201699 214170 221761 225759 

GOMPERTZ 
(last observed) 21157 69176 119827 159516 189973 210717 222104 229327 233019 

GOMPERTZ 
(last fitted) 20642 70390 120887 157701 186705 207951 220528 227936 231654 

GENLOGIS 
(last observed) 21157 69176 119827 159516 189973 210717 222104 229327 233019 

GENLOGIS 
(last fitted) 20747 69318 118942 157742 188518 211040 223924 231261 234889 

BERTANLAFFY 
(last observed) 21157 69176 119827 159516 189973 210717 222104 229327 233019 

BERTANLAFFY 
(last fitted) 15356 51490 102349 149617 190181 223356 248069 185229 203047 

RICHARDS 
REGRESSION 
(last observed) 

21157 69176 119827 159516 189973 210717 222104 229327 233019 
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RICHARDS 
REGRESSION 

(last fitted) 
20735 70303 119861 157064 186899 208945 222047 229880 233887 

GAM 
(last observed) 21157 69176 119827 159516 189973 210717 222104 229327 233019 

GAM 
(last fitted) 20700 69934 120738 158167 189576 212539 224554 231311 235013 

ARIMA 
(last observed) 21157 69176 119827 159516 189973 210717 222104 229327 233019 

ARIMA 
(last fitted) 20207 68716 119910 160455 190697 211228 222618 384116 426108 

BAYESIAN 
(last observed) 21157 69176 119827 159516 189973 210717 222104 229327 233019 

BAYESIAN 
(last fitted) 2829 5984 4426 3713 2745 1580 908.2 606.2 443.2 
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Table S5. Last observed vs last fitted new cases at the i-th time.  

 

 20 days 30 days 40 days 50 days 60 days 70 days 80 days 90 days 98 days 
SIR 

(last observed) 3497 5249 4585 3153 2646 1389 888 669 355 

SIR 
(last fitted) 3351.21 5275.58 3759.55 3106.70 1354.60 1910.79 1271.68 0 0 

SIRD  
(last observed) 3497 5249 4585 3153 2646 1389 888 669 355 

SIRD  
(last fitted) 3333.95 5154.26 3576.14 2613.25 2116.96 1548.51 1074.90 0 0 

QUADRATIC  
(last observed) 3497 5249 4585 3153 2646 1389 888 669 355 

QUADRATIC  
(last fitted) 3165 6359 5489 3716 2167 760.9 421.2 52795 62362 

POISSON  
(last observed) 3497 5249 4585 3153 2646 1389 888 669 355 

POISSON  
(last fitted) 3437 7666 7833 6564 5230 3954 2826 2023 1551 

EXPONENTIAL 
(last observed) 3497 5249 4585 3153 2646 1389 888 669 355 

EXPONENTIAL 
(last fitted) 3386 6731 6536 5585 4611 3659 2810 1625760 3379013 

LOGISTIC  
(last observed) 3497 5249 4585 3153 2646 1389 888 669 355 

LOGISTIC  
(last fitted) 3355 5791 5284 4729 4259 3799 2824 6383 6383 

GOMPERTZ  
(last observed) 3497 5249 4585 3153 2646 1389 888 669 355 

GOMPERTZ (last 
fitted) 3247 5925 5328 4724 4248 3789 2825 8179 8182 

GENLOGIS  
(last observed) 3497 5249 4585 3153 2646 1389 888 669 355 

GENLOGIS  
(last fitted) 3282 5588 5242 4750 4278 3804 3351 5588 5588 

BERTANLAFFY 
(last observed) 3497 5249 4585 3153 2646 1389 888 669 355 

BERTANLAFFY 
(last fitted) 2512 5519 5806 4924 4256 3719 3254 18807 20578 

RICHARDS 
REGRESSION (last 

observed) 
3497 5249 4585 3153 2646 1389 888 669 355 

RICHARDS 
REGRESSION (last 

fitted) 
3277 5817 5282 4719 4252 3796 3347 7092 7096 

GAM  
(last observed) 3497 5249 4585 3153 2646 1389 888 669 355 

GAM  
(last fitted) 3290 5730 4054 3637 3066 1990 1022 626.8 458.7 

ARIMA  
(last observed) 3497 5249 4585 3153 2646 1389 888 669 416 

ARIMA  
(last fitted) 2731 4962 4668 4092 3370 1900 1402 652 516 

BAYESIAN  
(last observed) 3497 5249 4585 3153 2646 1389 888 669 355 

BAYESIAN  
(last fitted) 2829 5984 4426 3713 2745 1580 908.2 606.2 443.2 
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