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Abstract: A large number of prediction models are published with the objective of allowing personal-
ized decision making for diagnostic or prognostic purposes. Conventional statistical measures of
discrimination, calibration, or other measures of model performance are not well-suited for directly
and clearly assessing the clinical value of scores or biomarkers. Decision curve analysis is an increas-
ingly popular technique used to assess the clinical utility of a prognostic or diagnostic score/rule,
or even of a biomarker. Clinical utility is expressed as the net benefit, which represents the net
balance of patients’ benefits and harms and considers, implicitly, the consequences of clinical actions
taken in response to a certain prediction score, rule, or biomarker. The net benefit is plotted against
a range of possible exchange rates, representing the spectrum of possible patients’ and clinicians’
preferences. Decision curve analysis is a powerful tool for judging whether newly published or
existing scores may truly benefit patients, and represents a significant advancement in improving
transparent clinical decision making. This paper is meant to be an introduction to decision curve
analysis and its interpretation for clinical investigators. Given the extensive advantages, we advocate
applying decision curve analysis to all models intended for use in clinical practice.

Keywords: precision medicine; diagnosis; prognosis; clinical decision rules; models; statistical

1. Introduction

An increasing number of prediction models are being developed and validated in
different fields of medicine [1]. Clinical prediction models provide an individualized
prediction about prognosis or diagnosis. The probability of a future event of interest, or of
an actual disease, may be estimated using biomarkers, clinical and imaging characteristics,
or even genetic data and use a variety of statistical methods, from regressions to machine
learning.

The ultimate goal of a prediction model should be to stratify patients based on their
health prospects to assign the “right treatment to the right patient”. For example, to
recommend an effective but risky treatment to high-risk patients. Alternatively, a prediction
model may serve as a tool to refer a subset of patients to an expensive or inconvenient
diagnostic test (e.g., biopsy).

Taking clinical action based on wrong predictions, however, may cause harm to
patients. Statistical measures of discrimination, calibration, or other measures of model
performance, while important [1], are not well-suited for directly and clearly assessing
the clinical value of a score or biomarker due to a limited direct applicability to clinical
practice [2]. Decision curve analysis (DCA) is an increasingly popular, valuable tool for
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judging whether a certain prediction model could be beneficial for patients. We believe
clinicians should be aware of this method and know how to interpret its results.

2. Introducing Decision Curve Analysis: The Net Benefit

DCA was first developed by Vickers and colleagues in 2006 [3]. A free-text search in
PubMed for “decision curve analysis” shows a dramatic surge in the popularity of this
methodology over the last few years, with more than 3400 results retrieved only in 2022.
Its use is recommended by the TRIPOD guidelines for developing prediction models [1].
DCA is a methodology to assess the clinical utility of a prognostic or diagnostic score/rule,
or even a biomarker. Clinical utility is represented by the net benefit, which is defined by
the following formula [4]:

Net benefit = (True positives/n) − (False positives/n) × (Pt/(1 − Pt))

where: n is the number of patients, and Pt (later referred to as Pthreshold) is the probability
at the decision threshold, meaning the predicted probability of a certain outcome at which
a clinician would decide to take appropriate action (e.g., to administer a treatment, perform
an invasive diagnostic test, etc.). See the following sections.

Intuitively, a positive net benefit is desirable. Specifically, the net benefit can take
values from minus infinity to a theoretical maximum which would coincide with the
incidence of the outcome of interest for a perfectly accurate model (by definition less than
1.0) [3]. A perfect model would identify all patients who will develop the outcome (true
positives), or have the disease in the case of a diagnostic model, and there would be no false
positives. In this ideal case, the second term of the above formula would disappear, and the
first remaining term would coincide with the outcome incidence in the target population.

Net benefit is directly interpretable on the scale of true positives. Differently from
measures of discrimination and calibration, or any other measures of model performance,
the interpretation of net benefit is straightforward. The net benefit is interpreted as the
number of true positives found for every 100 patients in the target population, without
regard to harm. Suppose we would like to interpret a net benefit of 0.10. This would mean
that “for every 100 patients in the target population, 10 true positives would be found without
incurring harm” (i.e., benefit is net). The adjective “net” is crucial in DCA because it indicates
that the benefits are considered after subtracting the harms. The net benefit is similar to the
concept of net balance in economics, where patient benefits can be assumed as revenues
and patient harms as all the expenses. There will be more on this in the next sections. The
net benefit can be also used to compare different clinical strategies.

2.1. The Exchange Rate

The exchange rate can be intuitively defined as the number of “false positives” that
are worth one “true positive”. Numerically, it is the odds corresponding to the probability
threshold (Pthreshold) over which a clinical action is taken, or below which an alternative
clinical action is chosen. To understand what the exchange rate is, we have to define more
clearly what the threshold probability (Pthreshold) is. The threshold probability refers to a
specific probability value used in decision making. It represents the minimum or maximum
probability at which a particular clinical action is deemed appropriate. For example, in
diagnostics, a threshold probability may be set to determine whether a patient should be
classified as having a specific condition or disease based on the probability of its presence.

We will also define individual predicted probability (Ppredicted) as the probability (e.g.,
of having the disease or of developing an outcome of interest) assigned to an individual
patient, taking into account the relevant predictors or variables included in the prediction
model. The individual Ppredicted provides an estimate of the likelihood of a particular event
occurring for that specific individual. A prediction model applied to a patient population
should provide a broad spectrum of individual Ppredicted reflecting the variability in health
prospects/diagnosis of the sample population. Assuming a dichotomous outcome (e.g.,
diseased vs. non-diseased), an individual Ppredicted will range from 0.0 to 1.0. For patients
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truly at low risk, the model will, hopefully, indicate a low or very low individual Ppredicted
(e.g., <5% or <10%), while for those truly at high risk the Ppredicted will be closer to 1.0.
Depending on the nature of the event and the consequences of a certain clinical action,
a clinician would want to define a threshold for decision making, that is a threshold of
Ppredicted (i.e., Pthreshold) over which a clinical action should be undertaken.

2.2. The Core Problem of Clinical Decision Making: A Working Example

Let us consider a new hypothetical prognostic tool developed to evaluate the risk of
distant metastases in patients with endometrial cancer 3 years after total hysterectomy.
In low-risk endometrial cancer cases, surgery alone is considered sufficient for effective
management. In high to intermediate risk endometrial cancer, adjuvant vaginal brachyther-
apy is recommended to maximize local control. This treatment option has relatively mild
side effects. Conversely, in high-risk endometrial cancer patients, pelvic radiotherapy may
be further added, particularly in stage I–II cases with risk factors; however, this increases
the potential for side effects [5]. Hence, identifying patients who are at a higher risk of
developing distant metastases is crucial for making informed treatment decisions, such as
determining the need for adjuvant chemotherapy in combination with radiotherapy.

Let us simplify the clinical problem by focusing on the decision of administering
adjuvant chemotherapy plus radiotherapy or not. This treatment option carries potential
health benefits, such as reducing the risk of distant metastases, but also entails treatment-
associated harms. The prediction model will always provide individual predicted probabil-
ities ranging from 0.0 to 1.0. It is worth noting that some patients who would not develop
distant metastases may still be recommended for treatment, which could potentially harm
them.

To determine the plausible range of threshold probabilities (Pthreshold) for this decision,
we can gather opinions from multiple oncologists. By asking the question, “What proba-
bility of distant metastases at 3 years would you consider sufficient to refer a patient to adjuvant
chemotherapy plus radiotherapy after hysterectomy?”, we can explore different perspectives.
Two extreme examples can be considered: the most “conservative” oncologist (oncologist
1) suggests a threshold value of 5%, while an oncologist highly concerned about side effects
(oncologist 2) indicates a threshold of 50%. These examples serve to illustrate varying
preferences.

The first clinician prioritizes preventing distant metastases and is willing to accept
potential severe harms associated with the therapy by picking a low Pthreshold which
minimizes the chances to lose a true positive. A Pthreshold of 5% can be interpreted as “I
am willing to treat 19 patients who would not develop distant metastases in order to treat one true
positive” (i.e., an exchange rate of 1:19). On the other hand, the second clinician, highly
concerned about therapy side effects, opts for a threshold of 50% and is willing to treat only
one patient who would not develop distant metastases in order to treat one true positive.
The exchange rate in this case is the odds 1:1.

By considering these extreme examples, we aim to highlight the range of perspec-
tives and individual trade-offs associated with treatment decisions. Please note that the
exchange rates mentioned above are purely illustrative and serve to emphasize the different
viewpoints.

2.3. How a Decision Curve Is Drawn, and How to Interpret It

We covered the basic definitions of measures used in DCA. Let us draw a hypothetical
decision curve for our fictional prognostic model (Figure 1).
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in which all patients are scored by the illustrative prognostic model. This means each pa-
tient is assigned by the model a Ppredicted of distant metastases, and the decision of whether 
to treat or not treat each patient is made according to the Pthreshold the clinician has adopted. 
The net benefit is calculated for each possible Pthreshold used for decision making. As the last 
step, the red curve is drawn by connecting all these points. Thus, this curve includes the 
extreme cases in our example (oncologists 1 and 2) and all other clinicians who may decide 
to choose a different Pthreshold. 

Oncologist 1 was worried about the risk of metastases, had few concerns about the 
harmful effects of the therapy, and decided to use a Pthreshold of 5% (i.e., patients with a 
Ppredicted > 5% would be considered “positives” and would be recommended for treatment). 
As shown in Figure 1, in this fictional database of patients, a Pthreshold of 5% would corre-
spond roughly to a net benefit of 0.05. Oncologist 2 was more worried about the poten-
tially severe harms of the particular therapy and decided to adopt a Pthreshold of 50%. In this 

Figure 1. Hypothetical decision curve for a fictional prognostic model.

The decision curve is a graphical representation that allows for the assessment of
clinical strategies by evaluating their net benefit across different Pthresholds. The x-axis
represents the range of possible Pthresholds, while the y-axis indicates the net benefit. The
decision curve illustrates the trade-off between true-positive predictions and false-positive
predictions for a given strategy. The area under the decision curve quantifies the overall
clinical utility of the predictive model, capturing its ability to improve decision making
compared to alternative approaches. In this hypothetical example, we considered that
it would be very unlikely that an oncologist would consider Pthresholds > 50%. Most
oncologists would probably recommend the therapy at much lower Ppredicted. Hence, we
omitted to plot on the x-axis values over 50%. As suggested by Vickers and colleagues, we
have also conveniently renamed the x-axis as “preference” [6], and reported the exchange
rates corresponding to some meaningful Pthreshold.

In each DCA, there are at least two reference lines, one horizontal and one diago-
nal, depicting two possible alternative approaches against which the prediction model is
compared. The dotted horizontal line indicates the net benefit of a strategy in which no
patient is actually treated (i.e., treat none). The diagonal dashed line shows the net benefit
of a clinical strategy in which all patients receive the therapy (i.e., treat all). These two
lines represent the two most extreme strategies possible. In fact, any other clinical strategy
would involve treating certain patients, and not treating others.

The red curve (i.e., the decision curve), instead, indicates the net benefit of a strategy in
which all patients are scored by the illustrative prognostic model. This means each patient
is assigned by the model a Ppredicted of distant metastases, and the decision of whether to
treat or not treat each patient is made according to the Pthreshold the clinician has adopted.
The net benefit is calculated for each possible Pthreshold used for decision making. As the
last step, the red curve is drawn by connecting all these points. Thus, this curve includes
the extreme cases in our example (oncologists 1 and 2) and all other clinicians who may
decide to choose a different Pthreshold.

Oncologist 1 was worried about the risk of metastases, had few concerns about
the harmful effects of the therapy, and decided to use a Pthreshold of 5% (i.e., patients
with a Ppredicted > 5% would be considered “positives” and would be recommended for
treatment). As shown in Figure 1, in this fictional database of patients, a Pthreshold of 5%
would correspond roughly to a net benefit of 0.05. Oncologist 2 was more worried about
the potentially severe harms of the particular therapy and decided to adopt a Pthreshold of
50%. In this database of patients, the Pthreshold would correspond roughly to a net benefit
of 0.005. The important thing to note is that both are positive values.
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The role of a DCA is to indicate the net benefit of taking clinical actions on the target
population of patients over a large spectrum of possible Pthresholds and exchange rates, thus
taking into account a variety of possible preferences. Just to reiterate, the term “preference”
here means how many patients who would not develop metastases would be acceptable to
treat, in order to also treat one patient who would truly develop metastases. In other words,
adopting a lower Pthreshold would favor sensitivity (i.e., the clinician is mostly worried
about not missing true positives), while choosing a higher Pthreshold would favor specificity
by seeking to minimize false positives.

Figure 1 represents an ideal scenario of DCA. The net benefit at every single plausible
Pthreshold is higher than the net benefit offered by both strategies (“treat all”, “treat none”).
The term “plausible” here means the range of possible exchange rates that would include
the one adopted by the vast majority of the oncologists in this clinical scenario. We
hypothesized that, in this example, this range could be from a Pthreshold of 5% to 50%.

Let us briefly elaborate why this is important. In several clinical scenarios, “treat none”
or “treat all” are real possibilities. In certain settings, a strategy may be to administer broad
spectrum antibiotics as soon as possible to all patients with suspected sepsis (i.e., treat all).
In case of a new controversial screening program for which there are not (yet) convincing
proofs of effectiveness, the likely approach is to recommend it to nobody (i.e., treat none).

Though a prognostic score provides the same information to all clinicians, the Pthreshold
and the corresponding exchange rate that each clinician will adopt in practice may differ.
This has to do with a variety of reasons, including personal professional experience, uncer-
tainty and differences in interpreting the available evidence regarding a certain condition
and its therapeutic options, but also patients’ preferences, including cost and convenience
of possible alternatives. For example, which patients should be referred to a strategy of
“extended close monitoring” for a certain chronic disease? In a low-income country where
people have no access to universal insurance, the plausible Pthreshold could be high (i.e.,
only patients showing high Ppredicted would be advised to follow this strategy). Preference
would likely differ in a Western country with a universal public health system. Hence, a
new score should be, ideally, better than the “treat none” and “treat all” strategies over the
entire spectrum of plausible preferences.

When more than one prognostic/diagnostic score is available, plotting net benefit of
these different tools in the same graph makes it possible to directly compare the clinical util-
ity of the new score over the existing one, or over other strategies that are well-established
in clinical practice. To be adopted, a new score should offer some advantages. For exam-
ple, a better net benefit at certain exchange rates, a similar net benefit while being more
convenient to calculate, or a new diagnostic test which is less expensive or painful.

Interestingly, DCA is very useful also when developing a model. Fu et al. devel-
oped preliminary prediction models for intracranial infection in patients under external
ventricular drainage and neurological intensive care by using three different approaches
(i.e., logistic regression, support vector machines, and K-nearest neighbors) [7]. Although
standard statistical measures of discrimination and calibration could not identify a clearly
better modelling strategy, only the model developed using logistic regression had a positive
net benefit over a large range of Pthresholds [7]. If a model net benefit is below zero at
a certain Pthreshold, and all clinicians adopted that Pthreshold, not receiving the treatment
would be a better solution for these patients. Under these circumstances, the model would
make more harm than good. That is why we may not want to use in clinical practice a
model whose net benefit is below zero for large intervals of plausible Pthresholds. In case of
serious miscalibration, this can happen even for models with apparently high AUC values
(see next section) [7].

2.4. What Does DCA Add Compared to Measures of Discrimination and Calibration?

Prediction models have two fundamental features: discrimination and calibration [1].
In brief, commonly used measures of discrimination (e.g., the area under the receiver
operating characteristic curve (AUC) and the c-statistic) quantify the ability of the model
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to identify patients with the disease/event of interest. An AUC or c-statistic equal to
0.50 would indicate a discrimination capacity not different than random chance (i.e., tossing
a coin), whilst values closer to 1.0 would indicate an excellent discrimination capacity (i.e.,
patients who have the disease will be correctly identified).

Calibration, instead, is the agreement between the Ppredicted and the observed fre-
quency of event over the entire spectrum of predicted probabilities. Calibration is usually
assessed graphically or with different statistical tests. When a prediction model constantly
overestimates or underestimates the absolute probability of event, the clinical actions taken
are ill-informed and may cause harm. This happens because the true absolute risk of an
event/outcome is a key factor for decision making. Consider again the working example
of this paper and a fictional Pthreshold of 5% for suggesting adjuvant chemotherapy plus
radiotherapy. Imagine dividing the Ppredicted by the model by five times, hence creating a
parallel imaginary model with high miscalibration. Due to how measures of discrimination
are calculated, this would not affect the overall AUC of the model. Imagine, however, we
tell a patient that the risk of relapse is 4% though it is really 20%. With this risk estimate,
the patient would not be referred for treatment, hence missing an important opportunity to
prevent distant metastases. This example makes clear that, even in cases of high AUC, the
practical application of a miscalibrated prediction score may be harmful.

One, however, may wonder what DCA can add that is not already shown by measures
of discrimination and calibration.

Consider a prediction model showing very high discrimination but some miscalibra-
tion. Hypothesize that the authors of this study would like to compare this new tool with
a simpler existing tool which is used in practice and shows a worse discrimination but a
better calibration. Which one is the best for patients? Choosing among the two tools based
on conventional measures of discrimination and calibration would be rather subjective and
arbitrary.

A practical example close to the above-mentioned scenario is the study by Perry
and colleagues [8]. The authors were interested in developing a model for predicting
up to 6-year risk of incident metabolic syndrome in young patients with psychosis from
commonly recorded information [8]. At the developing phase they reached a model, the
PsyMetRiC, which included some biochemical measurements that may not be widely
available in this population. Hence, they also developed a simplified model not including
such baseline variables. In the published paper, they showed that discrimination was rather
comparable between the two models but there were some problems of miscalibration in
the simplified model. By plotting the DCA curves of both models on the same graph, the
authors showed how much the simplified model was comparable in terms of clinical utility
and provided convincing evidence of the fact that both tools can serve the original purpose
they had in mind without reaching a negative net benefit over a large spectrum of decision
thresholds [8].

DCA goes beyond conventional measures of discrimination and calibration, as it
considers them both at the same time [9], as well as individual preferences. DCA computes
the net benefit over a spectrum of possible preferences. It allows for a comprehensive
evaluation of the clinical utility of a model by considering the consequences of decisions
made based on model predictions. Hence, plotting the results of DCA of both models in
the same graph when applied on the same population of patients at risk would allow a
direct comparison of the two prediction scores. This is why DCA is the tool of choice to
assess which of the two decision tools would provide the highest (net) clinical utility in a
given clinical scenario.

An important note here: DCA is a tool to help make informed decisions about which
prediction model or approach may be most useful in clinical practice, but this does not
mean that reporting the discrimination capacity and the calibration of any model is not
necessary. On the contrary, they are fundamental measures that should always be reported
for detailed transparency and comparability of published models [1]. DCA does not replace
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existing accuracy measures but complements them by considering the net benefit of a
model in different clinical scenarios.

DCA offers valuable insights into the clinical utility of a prediction model in a specific
patient population, but it cannot serve as a substitute for thorough external validation of a
newly developed model in a different validation cohort. The assessment of external validity
remains a crucial step in ensuring the generalizability of model performance to diverse
patient populations and should always precede the widespread clinical application of any
prediction model or clinical decision algorithm. DCA can be extended to the validation
cohort to corroborate the sustained positive net benefit for patients within the new study
population.

Another important disclaimer is that DCA is not a substitute for a traditional, compre-
hensive, decision analysis or cost-effectiveness analysis [6].

This paper is meant to be an introduction to DCA explaining the concepts in simple
words with the help of examples. There are several additional analyses that can be per-
formed with DCA, such as plotting the net reduction in interventions, or formally assigning
the amount of—possibly different—harm corresponding to one or more diagnostic or
treatment strategies (e.g., one or more imaging tests for the diagnosis of breast cancer).
New developments of DCA are able to compare several treatment options when evidence
comes from a network meta-analysis of clinical trials [10]. For additional information on
what DCA can accomplish, we invite those interested to read further excellent papers on
the topic [2,6,10,11].

3. Conclusions

Taking clinical action based on wrong predictions may cause harm to patients. Fun-
damental conventional measures of discrimination and calibration, while important, may
not directly and clearly assess the clinical value of scores or biomarkers for diagnosis and
prognosis.

DCA is a valuable and transparent tool displaying a measure of clinical utility, the
net benefit, which takes into account discrimination and calibration at the same time, and
is a measure of the net balance of patients’ benefits and harms. The net benefit considers,
implicitly, the consequences of clinical actions taken in response to a certain prediction
score, rule, or biomarker. It is plotted against an exchange rate, representing the spectrum
of possible patients’ and clinicians’ preferences. This allows, for example, a comprehensive,
comparative assessment of the clinical utility of different decision tools and alternative
clinical strategies on a given population of patients.

Given the extensive advantages, we advocate applying DCA to all models intended for
use in clinical practice, regardless of the computational method used for development (i.e.,
regression methods or machine learning approaches), as long as they provide an individual
predicted probability.

As a closing remark, we would like to point out an important aspect. When a new
prediction model is published, clinicians often inquire about the “optimal” Pthreshold for
decision making in a given scenario. In other terms, they seek “statistical” guidance
on how to use the prediction model (i.e., at what predicted risk the patient should be
recommended for treatment or referred to biopsy). We hope that this paper helps readers
understand why this question cannot be answered through statistics alone [6]. Translating
individualized predictions into clinical actions should always require both knowledge and
careful judgement.
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