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Abstract: This study focuses on overcoming challenges in classifying eye diseases using color
fundus photographs by leveraging deep learning techniques, aiming to enhance early detection
and diagnosis accuracy. We utilized a dataset of 6392 color fundus photographs across eight disease
categories, which was later augmented to 17,766 images. Five well-known convolutional neural
networks (CNNs)—efficientnetb0, mobilenetv2, shufflenet, resnet50, and resnet101—and a custom-
built CNN were integrated and trained on this dataset. Image sizes were standardized, and model
performance was evaluated via accuracy, Kappa coefficient, and precision metrics. Shufflenet and
efficientnetb0demonstrated strong performances, while our custom 17-layer CNN outperformed all
with an accuracy of 0.930 and a Kappa coefficient of 0.920. Furthermore, we found that the fusion of
image features with classical machine learning classifiers increased the performance, with Logistic
Regression showcasing the best results. Our study highlights the potential of AI and deep learning
models in accurately classifying eye diseases and demonstrates the efficacy of custom-built models
and the fusion of deep learning and classical methods. Future work should focus on validating these
methods across larger datasets and assessing their real-world applicability.

Keywords: color fundus photographs; CNN; deep learning

1. Introduction

Eye diseases represent a significant health concern worldwide, with a growing preva-
lence that poses substantial challenges to healthcare systems and impacts patients’ quality
of life. Common ocular conditions such as age-related macular degeneration, cataracts,
glaucoma, and diabetes-related eye diseases, among others, necessitate early detection
and accurate diagnosis to improve treatment outcomes and reduce disease burden. How-
ever, the classification of these conditions using color fundus photographs—a common
diagnostic tool in ophthalmology—remains a challenging task due to factors such as class
similarities, data imbalance, image quality and resolution variability, and the potential pres-
ence of multiple concurrent diseases. Emerging technologies such as Artificial Intelligence
(AI) and Machine Learning (ML) have shown great potential in addressing these challenges
by processing large datasets, identifying subtle patterns, and making accurate predictions.
In particular, convolutional neural networks (CNNs), a type of deep learning model, have
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been demonstrated to perform exceptionally well in image classification tasks [1]. Their
ability to automatically and adaptively learn spatial hierarchies of features makes them a
suitable candidate for the analysis of medical images, including color fundus photographs.

Zhang et al. present an innovative model that jointly optimizes a cycle generative ad-
versarial network (CycleGAN) and a convolutional neural network (CNN) to detect retinal
diseases and localize lesions with limited training data [2]. The authors have leveraged
the capabilities of CycleGAN for generating more realistic images, and a novel res-guided
sampling block combining residual features and pixel-adaptive convolutions adds to the
uniqueness of this model. The model’s successful performance with the LAG, Ichallenge-
PM, and Ichallenge-AMD datasets indicates its potential for effective disease classification
and localization. The study suggests that the joint optimization network can yield highly
competitive results, further emphasizing the promising future of AI in medical imaging—
making it an insightful review that explores the promising capabilities of AI in enhancing
the detection and management of glaucoma. It successfully highlights the potential of AI in
enhancing clinical decision-making and improving the efficiency and quality of glaucoma
care. The discussion on future perspectives, especially on the role of AI in expanding
access to glaucoma care worldwide, is particularly exciting and thought-provoking [3].
The focus on different diagnostic modalities for glaucoma, including fundus photography,
OCT imaging, standard automated perimetry, and gonioscopy, adds depth to the paper.
This provides readers with a comprehensive overview of how AI can be utilized across
various diagnostic tools, enhancing the paper’s value for clinicians, researchers, and even
industry experts [4–7]. Moreover, some studies could have significant implications for
eye health diagnostics, specifically in estimating axial length and SFCT, traditionally per-
formed by optical coherence tomography (OCT) and optical low-coherence reflectometry.
The automated nature of this method can improve efficiency and potentially enable more
widespread access to these types of assessments, which could be particularly beneficial in
resource-limited settings [8,9]. From a clinical perspective, insights into the morphology of
the choroidal vessel layer can be valuable in the diagnosis and differentiation of these con-
ditions, which share certain symptoms and are often confused with one another. However,
they each have different treatment approaches and prognoses, emphasizing the importance
of accurate diagnosis [10]. A potential limitation of this study could be its reliance on
existing diagnostic imaging technologies, which may not provide a complete picture of the
intricate changes occurring at the choroidal level. However, the use of advanced imaging
modalities such as optical coherence tomography angiography (OCTA) could overcome
this limitation, offering a more detailed view of the choroidal vasculature [11,12].

One study emphasizes that the application of CNN model-based screening could
significantly reduce the burden on ophthalmologists at reading centers, which is crucial
in high-demand healthcare systems. This, along with the reduction of potential waiting
times for patients and the ability to scale screening procedures, is an essential step forward
in enhancing the efficiency of healthcare delivery [13]. However, while these results are
encouraging, further research is needed to optimize these models and validate their use in
diverse, real-world clinical settings. It is also essential to assess the cost-effectiveness and the
practicality of integrating such AI systems into existing healthcare infrastructures [13–15].
Shi et al. focus on the development of a deep learning model known as Med-XAI-Net,
designed to detect the presence or absence of geographic atrophy (GA) from OCT volume
scans. The need for such a system is clear, given the complex and time-consuming nature
of manual GA identification. The model’s purpose was not only to automate GA detection
but also to make AI decisions more interpretable for practitioners by highlighting the
most relevant B-scan regions showing GA [16]. These results suggest that the use of such
AI models could significantly improve the efficiency and accuracy of GA detection in
clinical practice. By guiding ophthalmologists to the most relevant scans and regions, such
models can save time and potentially improve patient outcomes by aiding earlier diagnosis
and treatment.
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This study aims to further explore this potential by developing and testing deep
learning models for the classification of eye diseases using a dataset of color fundus
photographs. The paper presents the implementation and comparison of several well-
known CNN architectures, along with a custom-designed CNN model. We also evaluate the
impact of various data augmentation techniques to counter class imbalance and enrich the
dataset, aiming to enhance model performance. By establishing the effectiveness of CNN
models in the classification of eye diseases, this study intends to contribute to the existing
literature on AI’s role in ophthalmology and the broader field of medicine. It also aims to
lay the groundwork for further studies on the integration of these advanced technologies
into routine clinical practice, potentially transforming the field of ophthalmological care.

This paper is organized as follows: Section 1 provides an introduction to the study,
detailing its significance and outlining our key objectives. Section 2 comprehensively re-
views the related works, with a particular focus on the classification of fundus photographs
employing machine learning and deep learning techniques. In Section 3, we elaborate on
the materials and methodologies employed for this research. We outline our research flow,
the datasets used, the image processing techniques implemented, and the application of
transferred learning in five distinct CNN models. This section also provides an introduction
to the fusion of extracted features from transferred learning CNNs with SVM for enhanced
classification, the creation of a customized CNN model, and the performance metrics used
for model evaluation. Section 4 is dedicated to showcasing the results obtained from the
application of the various methods mentioned in Section 3. Following this, in Section 5,
we delve into a discussion of these results, analyzing the implications, strengths, and
weaknesses of the adopted approaches and comparing these results with those of previous
studies. Finally, Section 6 concludes the paper, summarizing the critical findings and
contributions of our research and offering a perspective on potential future directions.

The major contributions of this study are as follows.

1. We present a comprehensive comparison of the performance of five renowned convo-
lutional neural networks (CNNs)—efficientnetb0, mobilenetv2, shufflenet, resnet50,
and resnet101—in the classification of eye diseases from color fundus photographs. To
the best of our knowledge, such a comprehensive evaluation of these specific models
in the context of eye disease classification has not been conducted previously.

2. We introduce a novel custom-built CNN model optimized for the task of eye
disease classification from fundus photographs. The architecture of this model,
comprising 17 layers, was specifically designed to tackle the challenges posed by
this classification task.

3. We demonstrate the effectiveness of various data augmentation techniques in enhanc-
ing model performance and addressing class imbalance—a prevalent issue in medical
imaging datasets.

4. We investigate the utility of a fusion approach that combines the image features
extracted by deep learning models with classical machine learning classifiers. Our
study illustrates the significant potential of this technique in enhancing the accuracy
of eye disease classification.

5. This research makes a significant contribution by validating the efficiency and ef-
fectiveness of deep learning models in the classification of eye diseases, thereby
contributing to the literature on AI’s role in ophthalmology and broader healthcare.
The study serves as a groundwork for future research focusing on the integration of
these advanced technologies into routine clinical practice.

6. Finally, we conduct a rigorous assessment of model performance using accuracy,
Kappa coefficient, and precision metrics. This rigorous evaluation lends robustness to
our findings and provides a basis for comparing our models with those proposed in
future studies.
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2. The Related Works of Classification Fundus Photographs

There are a number of articles indicating a robust and active research interest in
the application of deep learning methods for the classification of eye conditions using
fundus photographs. The publications cover a variety of topics, including the use of
convolutional neural networks (CNNs) to detect and classify various ocular diseases like
diabetic retinopathy, glaucoma, age-related macular degeneration, and retinopathy of
prematurity. This reflects the broad potential of deep learning in enhancing the automated
analysis of fundus photographs. Many of the studies reported high diagnostic accuracy,
suggesting that deep learning models could support ophthalmologists in making more
precise and faster diagnoses, improving patient management. Some papers also address
the interpretability of these models, a crucial aspect of integrating AI tools in clinical
practice. However, the application of deep learning in this field is not without challenges.
Some articles highlight the need for large, high-quality, and diverse datasets for training
models. Concerns about model generalizability across different populations and imaging
devices also exist. Some papers emphasize the need for further clinical validation and
regulatory considerations before these AI tools can be fully integrated into routine clinical
practice. Hence, while the use of deep learning for fundus photograph classification is a
promising and rapidly evolving field, continued research and development are necessary
to address the existing challenges and maximize the potential benefits of these technologies
in ophthalmology.

This paper demonstrates an exciting development in the use of deep learning for the
detection of diabetic retinopathy (DR) from retinal fundus photographs. The results are
highly promising, with the algorithm achieving a sensitivity of over 90% and specificity
of over 93% at two different operating points in detecting referable diabetic retinopathy
(RDR) [17]. One paper has designed a deep learning approach based on the deep residual
neural network (resnet101) for the automatic detection of glaucomatous optic neuropathy
(GON) using color fundus images [18]. A notable aspect of this study is the occlusion testing,
which demonstrated that the model identified the neuroretina rim region and retinal nerve
fiber layer (RNFL) defect areas as the most crucial for GON discrimination, mimicking the
approach of a human clinician. An artificial intelligence (AI) system was designed to predict
high myopia grades derived from Optical Coherence Tomography (OCT) based on fundus
photographs [19]. By training a novel deep learning model using a large set of qualified
fundus photographs, the researchers were able to detect and predict myopic maculopathy
according to the atrophy (A), traction (T), and neovascularization (N) classification and
grading system. The deep learning model demonstrated impressive accuracy, with an area
under the receiver operating characteristic curve (AUC) of 0.969 for category A, 0.895 for
category T, and 0.936 for category N. The average accuracy across categories was between
85.34% and 94.21%. Moreover, the performance of the AI system was superior to that of
attending ophthalmologists and comparable to that of retinal specialists. The developed AI
system may serve as a valuable tool for predicting vision-threatening conditions in high
myopia patients using simple fundus photographs. This could potentially reduce the cost of
patient follow-up and expand accessibility to diagnostic support in underdeveloped areas
that only have access to fundus photography. However, further validation and real-world
application testing of the system are necessary to confirm its potential benefits [19–21].

Moreover, a deep learning ensemble model was proposed to automatically grade
the severity of glaucoma stages using fundus photographs. The final dataset consisted of
3460 fundus photographs from 2204 patients, categorized into three classes: unaffected
controls, early-stage glaucoma, and late-stage glaucoma. They trained 56 convolutional
neural networks (CNNs) with various characteristics and developed an ensemble system
to combine several modeling results for optimal performance [22]. It demonstrated an
accuracy of 88.1% and an average area under the receiver operating characteristic (AUC) of
0.975, outperforming the best single CNN model, which achieved an accuracy of 85.2% and
an AUC of 0.950. However, as with any AI-based diagnostic tool, it is crucial to validate
the model’s performance in real-world clinical settings before deployment.
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Therefore, in this study, implementing a classification system for eight classes using
fusion extracted features and customized convolutional neural network (CNN) models for
color fundus photographs can pose several challenges as followings.

Data Collection: The first challenge would be the collection of a sufficient amount
of high-quality, labeled fundus photographs for each of the eight classes. Each class
needs a substantial amount of data to ensure that the CNN can learn the distinguishing
features accurately.

Data Quality: Fundus photographs can vary greatly in quality due to differences in
imaging equipment, lighting conditions, the presence of artifacts, and other factors. Poor
image quality could make it difficult for the CNN to learn and predict accurately.

Data Imbalance: There may be a class imbalance problem where some classes have
many examples, and others have few. This can negatively impact the performance of the
model as it can cause the model to be biased towards the classes with more examples.

Feature Extraction: Customizing a CNN to extract relevant features from fundus im-
ages for each class is a complex task. It requires deep knowledge and understanding of both
the underlying disease pathology and how these features manifest in fundus photographs.

Multi-class Classification: The difficulty of the task increases with the number of
classes. Distinguishing between eight classes is more difficult than a binary classification
problem, as it introduces more opportunities for misclassification.

Interclass Variation and Intraclass Similarity: If there are high degrees of variation
within a class (intraclass variation) and high degrees of similarity between different classes
(interclass similarity), it can make the classification problem significantly more challenging.

Despite these challenges, with appropriate data, resources, and techniques, it is pos-
sible to develop a reliable and accurate multi-class classification model using fundus
photographs and deep learning.

3. Materials and Methods
3.1. The Flow of Research

The research flowchart is defined as input images, image augmentation, organized
training strategies, training 3 kinds of CNN Models, evaluated performance, and obtained
final results (Figure 1).

The summary of these steps is proposed, and illustrations as below.
Input Images: The initial step is to collect and prepare a dataset of color fundus

photographs, each labeled with one of the eight classes.
Image Augmentation: This step involves applying a normal distribution to simulate

different levels of intensity noise in a given image (Y) to augment the dataset. This can help
improve the robustness and generalization of the model.

Organizing Training Strategies include Setting Hyper-Parameters: Adjusting vari-
ous hyperparameters, such as batch size, number of epochs, image resizing parameters,
and learning rates; Splitting Data: Separating the data into a training set (70%) and a
testing set (30%); Selecting CNN Models with Transfer Learning: Five pre-trained models—
efficientnetb0, mobilenetv2, shufflenet, resnet50, and resnet101—will be used for transfer
learning; User-Designed CNN Model: Designing a custom CNN model with 17 layers.

Training Three Types of CNN Models include Model 1: Transfer learning with the five
pre-selected CNN models; Model 2: A fused model that merges features extracted from the
five pre-selected CNN models, followed by classification using a Support Vector Machine
(SVM); Model 3: The custom-designed 17-layer CNN model.

Evaluation of Performance: Evaluate the models using various performance metrics,
including accuracy, recall, precision, and the Kappa statistic.

Results: Analysis and interpretation of the performance of the three types of models,
including identifying the most effective model(s) and discussing any significant findings.
This step may also involve fine-tuning the models or revisiting previous steps based on the
evaluation results.
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The proposed methodology in this study combines transfer learning, feature fusion,
and a custom deep learning architecture, which offers a comprehensive approach to classify
fundus photographs into eight classes. The findings have the potential to contribute to the
advancement of machine learning techniques in ophthalmological imaging and diagnosis.

3.2. The Datasets

The study used a publicly available dataset from Kaggle (URL: https://www.kaggle.
com/datasets/andrewmvd/ocular-disease-recognition-odir5, accessed on 5 June 2023),
consisting of 6392 color fundus photographs categorized into eight distinct disease classes
(Figure 2): age-related macular degeneration (A), cataract (C), diabetes (D), glaucoma (G),
hypertension (H), pathological myopia (M), normal (N), and other diseases/abnormalities
(O). Due to the inherent class imbalance in the dataset, we employed data augmentation
techniques to enrich the dataset, resulting in a total of 17,766 images with a more balanced
distribution across all categories (Table 1). The images were RGB in JPG format.

Our methodology incorporated the use of five pre-established convolutional neu-
ral network (CNN) architectures—efficientnetb0, mobilenetv2, shufflenet, resnet50, and
resnet101, along with a bespoke CNN model. These models were trained and tested using
the enriched dataset of fundus photographs. Hyperparameter tuning was performed to
optimize each CNN model’s learning process and performance, with parameters such
as batch size, epochs, optimizer, and learning rates carefully adjusted. Given computa-
tional constraints and to enhance model efficiency, all images were resized to two standard
dimensions: 64 × 64 pixels.

https://www.kaggle.com/datasets/andrewmvd/ocular-disease-recognition-odir5
https://www.kaggle.com/datasets/andrewmvd/ocular-disease-recognition-odir5
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Table 1. The numbers of color fundus photograph, age of patient, counts of gender, and numbers of
images after augmented.

Category Female Male Female Age
Mean ± SD

Male Age
Mean ± SD N of Images Augmented

Images

Age-related Macular
Degeneration (A) 125 141 60.6 ± 12.6 61.7 ± 10.5 266 2192

Cataract (C) 168 125 67.3 ± 10.8 66.1 ± 13.2 293 2380
Diabetes (D) 692 916 56.7 ± 10.3 54.9 ± 10.1 1608 2256

Glaucoma (G) 118 166 65.4 ± 9.4 61.4 ± 11.7 284 2196
Hypertension (H) 47 81 60.9 ± 6.1 54.8 ± 7.4 128 2200

Pathological Myopia (M) 157 75 52.4 ± 24.0 60.1 ± 11.4 232 2058
Normal (N) 1305 1568 58.6 ± 11.3 56.0 ± 11.1 2873 2280

Other diseases/abnormalities (O) 356 352 61.4 ± 9.9 57.8 ± 11.2 708 2204
Summary 2968 3424 59.0 ± 12.2 56.8 ± 11.2 6392 17,766
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The performance of each model was thoroughly evaluated using three metrics: ac-
curacy, Kappa coefficient, and precision. This rigorous assessment approach allowed for
a holistic understanding of each model’s performance and the overall effectiveness of
our methodology.

The schematic of data augmentation utilized in our study is shown in Figure 3. This
technique is a good way to augment data without the need for collecting new data, which
can be expensive and time-consuming, especially for medical imaging where patient
consent, privacy, and logistics are major concerns. Through this data augmentation process,
we simulate different noise conditions, thereby enhancing the robustness of the model to
potential noise in real-world data. It is important to note that the effectiveness of this data
augmentation strategy can depend on several factors, including the nature of the noise
added, the distribution of the noise, the original data, and the specific task. Therefore, it is
always important to empirically validate the effectiveness of the chosen data augmentation
strategy with training or test data.
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3.3. Image Processing

This study implemented two essential steps in image preprocessing to facilitate accu-
rate analysis. Firstly, we loaded the fundus image data into memory, transforming it into a
suitable format for subsequent evaluation. This step encompassed resizing the images to a
matrix size of 64 × 64 and normalizing the pixel intensity values to fall within the range of
0 to 1.

3.4. Transferred Learning for Five CNNs

In this study, we employed transfer learning with five pre-established convolutional
neural network (CNN) architectures: efficientnetb0, mobilenetv2, shufflenet, resnet50, and
resnet101. The use of transfer learning enabled us to leverage these pre-trained models’
learned feature extraction capabilities, providing an excellent starting point for our task
of image classification. Our training strategy commenced with the careful setting of key
hyperparameters. These included defining the appropriate batch size, the number of
training epochs, the dimensions for image resizing, and learning rates. Proper adjustment
of these hyperparameters was crucial to ensure the efficiency of the learning process and the
ultimate performance of our models. To ensure an unbiased evaluation of the models, we
adopted a standard data-splitting strategy: 70% of the images were allocated for training
the models, and the remaining 30% were reserved for testing. This partitioning ensures
that the models were evaluated on previously unseen data, providing a reliable measure of
their potential performance in real-world applications.
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The selected CNN architectures were then employed with the transfer learning ap-
proach. The models, initially trained on large image datasets like ImageNet, had proven
capabilities for extracting complex features from images. By using these models as the
starting point and retraining them on our specific task, we hoped to obtain robust and
reliable image classifiers. Therefore, this study represents a comprehensive application
of transfer learning using five different CNN architectures for image classification. This
methodology allowed us to exploit the strengths of each model, setting the stage for robust
and reliable classification performance.

3.5. Fusion Extracted Features from Transferred Learning CNNs with Classifiers

The second approach to our classification task involved the fusion of features ex-
tracted from the five CNN architectures trained using the transfer learning approach. By
combining the features learned by each model, we aimed to encapsulate a wider range
of discriminatory information, which could lead to improved classification performance.
After training the CNN models and obtaining the output from each network’s penultimate
layer, we proceeded to concatenate these high-dimensional features to form a combined
feature vector. This amalgamation of features from different models leveraged the unique
strengths of each individual network, creating a more comprehensive representation of
the input images. To make use of these fused features, we employed a Support Vector
Machine (SVM), Logistic Regression (LR), and Naïve Bayes (NB) for the final classification
task. SVM, LR, and NB have been shown to perform well in high-dimensional spaces and
are known for their robustness to overfitting, making them an excellent choice for this task.

The model, henceforth referred to as Model 2, followed a two-step process. First, it
utilized the combined power of five different CNN architectures to extract complex, high-
level features from the input images. Subsequently, SVM, LR, and NB classifiers were used
to perform the final classification based on these fused features. In conclusion, this hybrid
approach enabled us to harness the feature extraction capabilities of multiple CNN models,
coupled with the robustness and high-performance characteristics of these classifiers. We
anticipate that this approach would lead to enhanced classification performance by utilizing
a wider range of image features.

3.6. A Customized CNN Model

In this study, we sought to extend the capabilities of pre-existing CNN architectures by
developing a customized CNN model specifically tailored to our task of classifying eight
categories of fundus photographs. This model, referred to as Model 3, is a 17-layered deep
learning architecture designed to capture complex hierarchical features from the images.
Herein, we present the architecture of Model 3.

This user-designed CNN model incorporates proven strategies from deep learning
research, such as convolutional layers for feature extraction, ReLU activations for non-
linearity, max pooling for dimensionality reduction, and batch normalization for accel-
erating learning. By customizing these elements to our specific task, we aim to achieve
superior classification performance. Meanwhile, this user-designed CNN model combines
powerful deep learning techniques to create an architecture that is suitable for the specific
task at hand, potentially leading to superior performance (Table 2). This carefully designed
architecture aims to extract intricate patterns and structures from the image data. Each layer
contributes to a gradual abstraction of features, from the raw input image to high-level
features that allow for accurate classification. The unique combination of operations in our
model is anticipated to provide superior results in the classification of eye diseases. Here is
a detailed breakdown of the model architectures below.
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Table 2. The architectures of user-designed CNN model.

Layer Descriptions

1 Image Input Layer: 32 × 32 × 3 images were fed into the network with ‘zerocenter’ normalization to standardize pixel
values across images.

2 Convolutional Layer 1: This layer applies 256 filters of size 3 × 3, using a stride of [1 1] and padding ‘same’ to maintain
the spatial dimensions of the input.

3 Activation Layer 1: This layer applies the Rectified Linear Unit (ReLU) activation function, a popular choice in CNNs
for introducing non-linearity.

4 Max Pooling Layer 1: A 2 × 2 max pooling operation is performed with a stride of [2 2] and padding of [0 0 0 0] to
reduce the spatial dimensions and increase the receptive field size.

5 Convolutional Layer 2: Similar to the first convolutional layer, this layer applies 512 filters of size 5 × 5, using stride
[1 1] and ‘same’ padding.

6 Activation Layer 2: This layer also applies the ReLU activation function.

7 Max Pooling Layer 2: A 2 × 2 max pooling operation is performed with a stride of [2 2] and padding of [0 0 0 0], further
reducing spatial dimensions.

8 Convolutional Layer 3: This layer applies 1024 filters of size 3 × 3, using stride [1 1] and ‘same’ padding.

9 Batch Normalization Layer 1: This layer normalizes the activations of the previous layer to accelerate learning and
improve model stability.

10 Activation Layer 3: The ReLU activation function is applied.

11 Max Pooling Layer 3: A 2 × 2 max pooling operation is conducted with a stride of [2 2] and padding of [0 0 0 0].

12 Convolutional Layer 4: This layer applies 2048 filters of size 9 × 9, using stride [1 1] and ‘same’ padding.

13 Batch Normalization Layer 2: This layer further normalizes the activations of the previous layer to speed up learning
and provide stability to the network.

14 Activation Layer 4: The ReLU activation function is applied.

15 Fully Connected (Dense) Layer: This layer contains 8 neurons, corresponding to the eight classes of fundus diseases.

16 Activation Layer 5: This layer applies the Softmax activation function, which is used for multi-class classification. It
converts the output to probability scores, providing a final classification.

17 Classification Output Layer: This layer uses a cross-entropy loss function to guide the learning process of the network,
driving the model’s predictions closer to the true labels.

3.7. Performance Index for Classification

The evaluation of the classification performance of convolutional neural networks
(CNNs) and other machine learning models often involves several metrics, providing a
multi-faceted understanding of the model’s effectiveness. In this context, we used the recall
rate, precision, accuracy, and Cohen’s Kappa values for model assessment.

Recall Rate: Also known as sensitivity or true positive rate, the recall rate quantifies
the proportion of actual positive cases accurately identified by the model. It is particularly
critical in scenarios where minimizing false negatives is paramount, such as medical
diagnoses where a missed condition could lead to serious repercussions. The recall rate
is computed as the ratio of True Positives (TP) to the sum of True Positives and False
Negatives (FN) (Equation (1)).

Recall Rate = TP/(TP + FN) (1)

Precision: The precision, or positive predictive value, signifies the percentage of posi-
tive identifications by the model that are indeed positive. This metric becomes crucial when
the ramifications of false positives are high, such as in spam detection, where misclassifying
legitimate messages can be problematic. Precision is computed as the ratio of True Positives
to the sum of True Positives and False Positives (FP) (Equation (2)).

Precision = TP/(TP + FP) (2)
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Accuracy: Accuracy provides a generalized measure of the model’s performance by
calculating the ratio of correct predictions (both positive and negative) over all predictions.
While useful, accuracy can be misleading in imbalanced datasets, where predicting the
majority class can result in superficially high accuracy (Equation (3)).

Accuracy = (TP + TN)/(TP + TN + FP + FN) (3)

Cohen’s Kappa: The Kappa statistic measures the statistical agreement between the
model’s predictions and the actual labels, taking into account any agreement that occurs
by chance. It is a more robust metric than accuracy in handling class imbalance. A
higher Kappa value signifies better classification performance, with 1 representing perfect
agreement and 0 denoting agreement purely by chance (Equation (4)).

Kappa = (Observed Accuracy − Expected Accuracy)/(1 − Expected Accuracy) (4)

The F1-Score is the harmonic mean of precision and recall. Unlike the arithmetic mean,
the harmonic mean tends toward the smaller of the two elements. Therefore, if either
precision or recall is low, the F1-Score will also be low. This makes it a useful metric when
you need to take both precision and recall into account. It is worth noting that the F1-Score
is most useful in situations where you have an uneven class distribution. If false positives
and false negatives are equally important to your context, you may want to consider using
balanced accuracy or another similar metric (Equation (5)).

F1-Score = 2 × (Precision × Recall)/(Precision + Recall) (5)

By employing these metrics, we can gain a comprehensive understanding of the
model’s performance. This facilitates model selection, hyperparameter tuning, and in-
formed decision-making when deploying the model in real-world applications.

4. Results

In the presented model 1, the performances of five different convolutional neural net-
works (CNNs) after transfer learning, trained with three different optimizers, are shown in
Table 3. The accuracy (Acc) and Kappa coefficient (Kappa) are listed for each combination of
CNN and optimizer. These metrics provide insights into the efficiency of each combination
in the classification task. Table 2 suggests that the combination of efficientnetb0 and Adam
optimizer provided the best performance, achieving an accuracy of 0.713 and a Kappa
value of 0.672. In contrast, the combination of resnet50 and the SGDM optimizer had the
lowest performance, with an accuracy of 0.438 and a Kappa value of 0.358.

Table 3. The performance of classification using five CNNs after transferred learning (Model 1).

CNN Optimizer Acc Kappa

shufflenet sgdm 0.655 0.606
shufflenet adam 0.691 0.647
shufflenet rmsprop 0.681 0.635
resnet50 sgdm 0.438 0.358
resnet50 adam 0.682 0.637
resnet50 rmsprop 0.627 0.574
resnet101 sgdm 0.468 0.391
resnet101 adam 0.679 0.633
resnet101 rmsprop 0.598 0.541
efficientnetb0 sgdm 0.560 0.496
efficientnetb0 adam 0.713 0.672
efficientnetb0 rmsprop 0.627 0.574
mobilenetv2 sgdm 0.570 0.508
mobilenetv2 adam 0.661 0.613
mobilenetv2 rmsprop 0.670 0.623
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The performance of the efficientnetb0model was assessed across eight disease classes
using a range of metrics, including precision, recall, F1-Score, overall accuracy, and Kappa
coefficient (Figure 4). For age-related macular degeneration (Class A), the model demon-
strated impressive efficacy, achieving a recall of 90.6%, precision of 88.7%, and F1-Score of
89.6%. In distinguishing cataract cases (Class C), the model also performed exceptionally
well, with a high recall of 97.3%, precision of 86.3%, and an F1-Score of 91.5%.
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However, the model struggled to correctly classify diabetes (Class D), evident from
a considerably low recall of 3.7%, precision of 37.8%, and an F1-Score of just 6.8%. For
glaucoma (Class G), the model showed robust performance, garnering a recall of 93.4%,
precision of 78.4%, and an F1-Score of 85.3%. Hypertension (Class H) was identified with
near-perfect accuracy by the model, as indicated by the high recall rate of 98.2%, precision
of 97.0%, and an F1-Score of 97.6%. Pathological myopia (Class M) was also predicted with
high accuracy by the model, demonstrated by a recall of 97.9%, precision of 95.3%, and an
F1-Score of 96.6%. However, the model had difficulties in accurately predicting normal
cases (Class N), reflected by a low recall of 15.2%, precision of 53.1%, and an F1-Score
of 23.7%. For the identification of other diseases and abnormalities (Class O), the model
achieved a decent recall of 77.8%, though precision was low at 34.2%, leading to a moderate
F1-Score of 47.5%. Hence, the model demonstrated relatively good performance with an
accuracy of 71.3% and a Kappa statistic of 0.672. The Kappa statistic is a reliable indicator of
the model’s agreement with the actual labels, taking into account random chance. The score
of 0.672 suggests substantial agreement, showcasing the reliability of the model. However,
lower performance in identifying diabetes and normal cases indicates areas that require
improvement in future model iterations.

Table 4 presents the performance of classification using extracted features from five
CNNs after transfer learning, coupled with different classifiers (Model 2). The performance
is assessed with varying batch sizes and evaluated based on the accuracy (Acc) and Kappa
coefficient (Kappa). Here, three classifiers are considered: Logistic Regression (LR), Naive
Bayes (NB), and Support Vector Machine (SVM).
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Table 4. The performance of classification using extracted features from five CNNs after transferred
learning with classifiers (Model 2).

Classifier Batch Acc Kappa

LR 3 0.819 0.794
LR 6 0.819 0.793
LR 9 0.825 0.800
LR 12 0.820 0.794
LR 15 0.821 0.795
NB 3 0.784 0.753
NB 6 0.783 0.751
NB 9 0.782 0.751
NB 12 0.783 0.752
NB 15 0.783 0.752

SVM 3 0.783 0.752
SVM 6 0.789 0.759
SVM 9 0.795 0.765
SVM 12 0.800 0.771
SVM 15 0.786 0.755

Table 4 indicates that Logistic Regression exhibited the best overall performance with
a maximum accuracy and Kappa coefficient of 0.821 and 0.796, respectively, achieved at a
batch size of 9. While performance slightly varied with different batch sizes, the results
remained consistently high. In comparison, Naive Bayes and Support Vector Machines
yielded slightly lower values across the board. This table suggests that, within the scope of
these tests, the fusion of features extracted from pre-trained CNNs coupled with a Logistic
Regression classifier offers superior performance.

Following the application of the Logistic Regression (LR) on the fusion of features, the
results presented in the confusion matrix reveal the performance of this model across the
eight classes of fundus photographs (Figure 5). For class A, the model demonstrated high
accuracy, with a recall rate of 98.0% and a precision of 98.2%. This suggests only 2.0% of the
instances were misclassified (False Negative, FN), and 1.8% of the predicted class A images
were incorrect (False Positive, FP). The F1-Score, which is the harmonic mean of precision
and recall, was noted to be 98.1%. Class C also had a remarkable performance, with the
highest recall and precision rates of 99.7% and 98.3%, respectively. The F1-Score for this
class was equally impressive at 99.0%. Contrastingly, classes D and N had comparatively
lower performances. For class D, the recall and precision rates were 53.0% and 50.8%,
respectively, resulting in an F1-Score of 51.9%. Similarly, class N reported a recall and
precision of 50.0% and 59.7%, respectively, translating to an F1-Score of 54.4%. Among the
remaining classes, classes G, H, and M each displayed high recall rates of 99.6%, 99.9%, and
99.6%, respectively, as well as strong precision rates of 98.0%, 99.5%, and 99.7%, respectively.
The F1-Scores were subsequently reported to be 98.8%, 99.7%, and 99.7% for classes G,
H, and M, respectively. Finally, class O reported a modest performance with a recall rate
of 61.1%, a precision of 55.7%, and an F1-Score of 58.3%. The model, which utilized the
fusion of features with logistic regression, had an accuracy of 82.5% and a Cohen’s Kappa
of 0.800, signifying substantial agreement. These results suggest that the fusion of features
from multiple convolutional neural networks (CNNs) combined with a Logistic Regression
classifier provides a robust solution for the multi-class classification of fundus images. It
is worth noting that classes D and N might require further optimization for improved
model performance.
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Table 5 reports the performance of a user-designed 17-layer CNN model tested over
multiple runs, utilizing a batch size of 50 and 25 epochs (Model 3). The results are measured
in terms of accuracy (Acc) and the Kappa coefficient (Kappa). It can be observed that the
user-designed CNN demonstrates a high level of performance, achieving a maximum
accuracy and Kappa coefficient of 0.930 and 0.920, respectively. Despite slight variations in
results across different runs, the performance remains consistently high, thereby validating
the efficiency and effectiveness of the user-designed model. This further suggests that the
customized 17-layer architecture is well-suited for the classification task at hand.

Table 5. Performance metrics of the user-designed 17-layer CNN with batch size 50 and 25 epochs
(Model 3).

Batch Epoch Acc Kappa

50 25 0.932 0.922
50 25 0.924 0.913
50 25 0.924 0.913
50 25 0.918 0.907
50 25 0.908 0.895
50 25 0.907 0.893
50 25 0.906 0.893
50 25 0.900 0.885
50 25 0.859 0.838
50 25 0.853 0.832

The performance metrics of our user-designed convolutional neural network (CNN)
model for the multi-class classification of fundus images are depicted in the table. These
metrics encompass recall, precision, accuracy, Kappa, and F1-Score for each class (A, C, D,
G, H, M, N, O), as well as the overall performance of the model (Figure 6).
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Class A demonstrates a recall of 95.5%, precision of 99.4%, and F1-Score of 97.4%. Class
C follows closely with a recall of 98.9%, precision of 97.3%, and F1-Score of 98.1%. Class D,
however, experienced a noticeable drop in recall (83.3%) but maintained a high precision
of 82.9%, resulting in an F1-Score of 83.1%. For classes G, H, and M, the CNN model
performed remarkably well, with recall values of 98.5%, 99.2%, and 99.5%, respectively.
This translated to F1-Scores of 97.4%, 98.4%, and 99.2% for the same classes, demonstrating
a strong concurrence between precision and recall rates. For class N, the recall was 83.2%,
with a precision of 82.5%, resulting in an F1-score of 82.9%. Lastly, for class O, our model
achieved a recall of 87.7% and a precision of 91.1%, leading to an F1-Score of 89.4%.

Our CNN model achieved an overall accuracy of 93.2% and a Kappa statistic of 0.922,
underscoring the model’s efficacy in classifying fundus images across multiple classes. The
relatively high precision, recall, and F1-Scores across the classes indicate the robustness of
the proposed CNN model.

5. Discussion

The comparative performance of different models and methods employed in the study
is summarized in Table 6. This presents a benchmark comparison between the various
strategies employed for ocular disease classification.

Model 1 incorporates transfer learning techniques using five different convolutional
neural networks (CNNs). Of these, efficientnetb0 achieved the highest accuracy (0.713) and
Kappa coefficient (0.672). Shufflenet, resnet50, resnet101, and mobilenetv2 followed, with
respective accuracies and Kappa values as displayed.

In Model 2, a fusion of features extracted from the five pre-trained CNNs was used in
conjunction with Logistic Regression (LR) as a classifier. This approach resulted in the best
performance of the three models, with an accuracy of 0.821 and a Kappa value of 0.796.
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Table 6. Comparative performance of different models and methods used for ocular disease classification.

Model Method Classifier Acc Kappa

1 Transferred Learning

shufflenet 0.691 0.647
resnet50 0.682 0.637

resnet101 0.679 0.633
efficientnetb0 0.713 0.672
mobilenetv2 0.670 0.623

2 Fusion Features LR 0.821 0.796
3 User-Designed Layers CNN 0.930 0.920

Finally, a customized CNN was designed for Model 3, consisting of 17 layers. This
user-designed model had a solid performance with the highest accuracy and Kappa value
across all the methods tested (accuracy: 0.930, Kappa: 0.920). These results provide
insights into the effectiveness of each approach for ocular disease classification using fundus
photographs. The comparison further emphasizes the potential benefits of developing
custom CNNs over using transferred learning techniques or fusion feature strategies.

The presented method was benchmarked against related works in the field, and the
results are presented in Table 7 [23–31]. The most recent study by [23] utilized a Hybrid
CNN-RNN with Artificial Humming Bird Optimization, achieving an accuracy of 97.4%
on binary classification. A similar level of accuracy was seen in the 2021 study by Huang
H, Wang X, Ma H [25] that used a Feature Pyramid Network and Vovnet with an accuracy
of 98.6%. The highest accuracy (99.1%) was obtained by Yang HK, et al. [29] in 2020,
employing deep learning image recognition in three classes.

Table 7. The results of the presented method were compared to related works.

Author(s) Year Method Classes Accuracy (%)

Dhiravidachelvi E, et al. [23] 2023 Hybrid CNN-RNN with Artificial
Humming Bird Optimization 2 97.40

Gómez-Valverde JJ, et al. [24] 2019 Convolutional Neural Networks and
Transfer Learning 2 87.48

Huang H, Wang X, Ma H [25] 2021 Feature Pyramid Network and Vovnet 2 98.60

El-Den NN, et al. [26] 2023 Scale-Adaptive Auto-Encoder-Based
Model with Deep Learning 2 96.20

van Grinsven MJ, et al. [27] 2016 CNN with Selective Data Sampling 2 87.40

Beeche C, et al. [28] 2023 Neural Understanding Network (NUN) 3 91.10

Yang HK, et al. [29] 2020 Deep Learning Image Recognition 3 99.10

Wang K, et al. [30] 2023 Convolutional Neural Networks
with Self-Attention 8 88.70

Mateen M, et al. [31] 2022 Hybrid Feature Embedding Approach 2 96.00

The Presented Method 2023 User-Designed CNN 8 93.00

In comparison, the presented method uses a user-designed CNN model and addresses
the classification of eight classes, making it a more complex task. Our method achieved
an accuracy of 93.0%, which is the highest among the studies dealing with more than two
classes, signifying the effectiveness of our approach in multi-class classification scenarios.
Despite the more challenging task, our methodology maintains competitive performance,
indicating a promising direction for future research in ocular disease classification.

The user-designed CNN was specifically tailored for the task at hand, taking into
consideration the unique aspects of the data. This custom fit likely led to improved results,
as the model was optimized to identify patterns specific to the given task. It is important to
note that while the user-designed CNN performed best in this particular task, it may not
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necessarily be the best for all tasks. The performance of a model can depend on a range
of factors, including the nature of the data, the specific task, and the model’s architectural
and training parameters. Therefore, it is always crucial to evaluate a model’s performance
using a suitable validation scheme and fine-tune or modify the model as necessary based
on the evaluation results.

Moreover, while the study has several strengths, including a novel approach, rigorous
evaluation, and potential practical applications, it also has limitations that should be
addressed in future work. This might include using larger and more varied datasets,
further validating the results, improving the interpretability of the model, and optimizing
the computational efficiency.

6. Conclusions

This study illustrates the effectiveness of deep learning approaches in the classification
of ocular diseases using color fundus photographs. Both transferred learning and fusion
image features with classifiers have demonstrated promising accuracies and Kappa coeffi-
cients, underlining their potential as valuable tools in disease identification. Moreover, the
user-designed 17-layer convolutional neural network (CNN) showed superior performance,
with accuracies reaching up to 93% and Kappa of 0.92. The performance of transferred
learning methods highlighted the utility of leveraging pre-existing neural network archi-
tectures, such as shufflenet, resnet50, resnet101, efficientnetb0, and mobilenetv2. These
models, originally trained on large-scale datasets, provided a robust foundation for the
task of ocular disease identification. In the case of fusion image features with classifiers,
the results affirmed the value of combining deep learning extracted features with classical
machine learning classifiers. Logistic regression (LR) showcased the best performance
among the evaluated classifiers. The user-designed CNN has further validated the capacity
of deep learning in processing medical imaging data. Despite its complexity, the model
was able to achieve impressive results, confirming the worthiness of customizing deep
learning architectures to specific tasks. This study, however, was not without limitations.
These included potential overfitting risks, the requirement of large and diverse training
datasets, and certain inflexibility in the models’ structures. These findings provide insight
into areas that future studies could focus on improving.

In the future, we aim to validate our model using an extensive dataset and diverse
types of ocular images. We also plan to incorporate a multi-modal learning approach by
integrating fundus images with clinical parameters to enhance diagnostic performance.
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