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Abstract: Improvements in medical care have turned severe diseases into chronic conditions, but
often their treatment and the use of medical devices are related to specific complications. Here, we
present a clinical case of a long-term dialysis patient who was infected with a rare opportunistic
infectious agent—Gordonia sputi. In recent years, the incidence of Gordonia spp. infections in im-
munocompromised patients with central venous catheters (CVC) has appeared to rise. The isolation
and identification of Gordonia spp. are challenging and require modern techniques. In addition, the
treatment is usually persistent and often results in CVC extraction, which is associated with further
risk and costs for the patient. We also studied the alterations in the immune status of the patient
caused by long-term renal replacement therapy and persistent hepatitis C virus infection. Antibiotic
therapy and immunostimulation with Inosine pranobex lead to successful eradication of the infection
without the need for CVC replacement.
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1. Introduction

Long-term hemodialysis is a life-supporting procedure, but it has many complications
for the patient. Chronic inflammation due to the contact of blood with artificial materials
and uremia affects the immune status of the patient. Consequently, the leading causes of
mortality in the hemodialysis population are cardiovascular diseases, withdrawal from
renal replacement treatment, and infections [1–4].

Here, we present a clinical case of a hemodialysis patient with bacteremia caused by
the opportunistic pathogen Gordonia sputi. Furthermore, we tried to investigate if long-term
renal replacement therapy (more than 35 years) affected the immune status of the patient.

Gordonia spp. are aerobic actinomycetes, found in soil and water, and were first
described as a separate genus by Tsukamura in 1971 [5]. Some species are reported to cause
infections in humans [6]. Even in rare incidences, their identification and treatment may be
challenging. Colonization of medical devices appears to be a potential risk as some species
are reported to adhere to and degrade rubber [7]. Often, successful treatment requires
medical device extraction, which is related to higher risks and healthcare costs.
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2. Case Presentation

We report a 59-year-old female dialysis patient with a double-lumen tunneled venous
catheter. Her dialysis treatment was initiated in 1985 due to four hypotrophic kidneys with
superposed chronic glomerulonephritis. After multiple blood transfusions back then, the
patient was infected with the hepatitis C virus (HCV).

From November 2021, the patient reported malaise, weight loss, and febrile episodes
of 37.5 ◦C to 38 ◦C the night after the dialysis procedure and the next day. No febrile
episodes or chills during the procedure were noted. Multiple blood culture sets were
tested, but no explicit bacterial agent was isolated. No leukocytosis was observed and
only a slightly elevated C-reactive protein (CRP) was found. After every microbiology
test, antibiotic treatment was applied, which resulted in temporary improvements in the
symptoms. No clinical or laboratory findings, including echocardiography, were in favor
of endocarditis. The patient refused a withdrawal of the dialysis catheter multiple times.

In September 2022, upon a new relapse of symptoms, another blood culture set was
sent to the microbiology laboratory. On the fifth day of incubation, it yielded gracile Gram-
positive rods, which grew on sheep blood agar as small non-hemolytic white colonies.
Phenotypic identification was performed using 4 h semi-automated biochemical testing
with RapID™ CB PLUS (Thermo Scientific, Waltham, MA, USA) and the microorganism
was identified as Corynebacterium striatum. Since no leukocytosis was found, and CRP was
37 ◦C, another blood culture sample was taken to rule out contamination or to confirm the
result. Upon 4 days of incubation of the new blood culture set, the aerobic blood culture vial
became positive. Direct microscopy revealed midsized actinomycete-like rods and upon
cultivation at 37 ◦C, in an aerobic environment, small white colonies on sheep blood agar
appeared. They were subjected to Matrix-Assisted Laser Desorption Ionization–Time-of-
Flight Mass Spectrometry (MALDI-TOF MS, Vitek MS, bioMerieux, France) identification
and the protein profiles obtained were characteristic of Gordonia sputi (Figure 1). The
antimicrobial susceptibility testing (AST) according to EUCAST revealed the isolate was
susceptible to vancomycin, gentamicin, linezolid, imipenem, ceftriaxone, and ciprofloxacin.
After antibiotic treatment with gentamicin and meropenem for 21 days, all symptoms
disappeared, and the improvement in the patient’s condition remained constant. On the
second and the fourth week after the end of the antibiotic course, blood culture samples
were negative. Meanwhile, on 22 July 2022, Candida tropicalis from a throat swab was
isolated. The candida infection persisted for about 6 months despite the peroral fluconazole
therapy. A timeline of the events is presented in Figure 2.

In March 2023, the patient was referred to the clinical immunology unit for further
investigation of the immune status. For the assessment of humoral immunity, the levels
of serum IgA, IgG, IgM, and complement fractions C3 and C4 were measured by an auto-
mated immunoturbidimetry analyzer (BA200, Biosystems, Barcelona, Spain). An internal
quality control study (using two levels of control serum offered by the manufacturer)
and calibration were performed according to the manufacturer’s instructions (Biosystems,
Barcelona, Spain). The values of serum immunoglobulins are expressed in µg/mL and C3
and C4 levels are expressed in g/L (Table 1).

Table 1. Results from the evaluation of the serum immunoglobulins and complement fractions.

Indicator Measurement Unit Result Reference Range

IgG µg/mL 14,073 5000–17,000

IgM µg/mL 940 400–2500

IgA µg/mL 2458 200–3000

C3 g/L 1.23 0.90–1.80

C4 g/L 0.26 0.10–0.40
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Laboratory investigations showed normal levels of the three immunoglobulins and
the complement fractions. For the evaluation of the cellular immune status, lymphocyte
subpopulation counts (LSc) were measured by 6-color TBNK reagent using Trucount
Absolute Counting Tubes (BD, New Jersey, USA) in a peripheral venous blood sample
within 2 h of blood draw by BD FACSCanto II, BD, USA, and the kit consisted of the
following monoclonal antibodies: CD3-FITC (clone SK7), CD16-PE (clone B73.1), CD56-
PE (clone NCAM16.2), CD45-PerCP-Cy5.5 (clone 2D1), CD4-PE-Cy7 (clone SK3), CD19-
allophycocyanin (APC) (clone SJ25C1), and CD8-APC-Cy7 (clone SK1) (Figure 3).
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CD8 T cells. Panel (A) depicts CD45 + lymphocytes detected in the dot plot of CD45 PerCP-Cy5.5-A
vs. SSC-A. Panel (B) shows the CD19 APC-A vs. SSC-A dot plot with BD Trucount absolute count
bead events. Panel (C) depicts CD3 + T cells in the dot plot of CD3 FITC-A vs. SSC-A. In the CD8
APC-Cy7-A vs. CD4 PE-Cy7-A dot plot, panel (D) depicts suppressor/cytotoxic (CD4-CD8 +) and
helper/inducer (CD4 + CD8 -) T lymphocytes. Panel (E) illustrates the natural killer subset (NK cells)
identified as CD3– and CD16+ and/or CD56+.

Flowcytometric testing revealed an impairment of the cell-mediated immunity with
lymphopenia and a decreased absolute number of immunocompetent CD3+ T cells,
helper/inducer CD4+ T cells, and cytotoxic/suppressor CD8+ T cells, and borderline
low B and NK (natural killer) cells. The CD4/CD8 T cell ratio was normal. (Table 2).

Table 2. Results from immunophenotyping of lymphocyte subpopulations performed on FACSCanto
II Clinical Flow Cytometry System, situated in Medical Microbiology and Immunology Department
of Medical University-Plovdiv according to a standardized procedure and using commercial TBNK-
multitest reagent kit and national age-adjusted reference ranges of lymphocyte subsets.

Indicator Unit of Measurement Results Reference Range

Absolute number of leukocyte subpopulation (number
of cells × 109/L)

Lymphocytes 109/L 0.91 1.0–2.8

Total CD3+ T cells 109/L 0.64 1.0–2.0

T help-induc CD3+CD4+ 109/L 0.45 0.6–1.4

T suppr-cytotoxic CD3+CD8+ 109/L 0.17 0.3–1.0

Total B cells CD19+ 109/L 0.10 0.1–0.4

NK cells CD3-CD56+ 109/L 0.17 0.1–0.6

Percentage of leukocyte subpopulation

Total CD3+ T cells % 70.34 61–85

T help-induc CD3+CD4+ % 48.75 34–59

T suppr-cytotoxic CD3+CD8+ % 18.80 19–36

Total B cells CD19+ % 11.29 6–15

NK cells CD3-CD56+ % 18.29 7–26

Index CD4/CD8 2.59 2.59 0.9–3.0

Additionally, cytokine analysis was conducted using a human Th1/Th2/Th17 cytokine
cytometric bead array kit (Cytometric Bead Array (CBA) Human Th1/Th2/Th17 Cytokine
Kit, BD, USA), which allowed for the simultaneous detection of the IL-2, IL-4, IL-6, IL-10,
TNF-a, IFN-
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Table 3. Results from measurement of cytokine profile Th1/Th2/Th17 by BD CBA Th1/Th2/Th17 kit.

Cytokine Concentration (pg/mL)

IFN gamma 0

TNF alpha 5

IL-2 0

IL-4 6

IL-6 61

IL-10 9

IL-17A 15

3. Discussion

The clinical and laboratory changes consistent with infection were weakly manifested,
probably because of the patient’s comorbidity and deprived immune status. Clinical
presentation was additionally concealed by the empirical antibiotic courses and later by the
superposed fungal infection. The refusal for catheter removal interfered with the prompt
identification and eradication of the infection.

Dialysis patients with central venous catheters are reported to have higher rates of
mortality and complications, i.e., endocarditis, septic shock, and abscesses, compared
to other vascular accesses: arterio-venous fistulas and vascular grafts. The same article
pointed out that despite the many problems of catheters, their placement may be inevitable
and, because of the profile of patients that begin hemodialysis, they are widely used, i.e., in
older patients often with many comorbidities. The construction of an arterio-venous fistula
and its maturation in these cases may be difficult [8].

The spectrum of the causative agents of hemodialysis-related infections is similar in
cases of vascular access and catheter-related bacteremia. More than half of them are caused
by Gram-positive bacteria, the most common of which is S. aureus, including methicillin-
resistant S. aureus (MRSA). Coagulase-negative staphylococci (CoNS) are also common,
predominantly S. epidermidis [9–11]. Approximately 25% of cases are caused by Gram-
negative bacteria such as Escherichia coli (E. coli), Pseudomonas aeruginosa, Enterobacter spp.,
and Klebsiella spp. as well as Proteus spp. and fungi from the Candida genus [11,12].

With the increasing use of MALDI-TOF MS and 16S rRNA sequencing, bacteria
previously not known to be associated with certain clinical syndromes have been newly
identified. This particular patient population is also susceptible to opportunistic infections
caused by rare pathogens such as Gordonia species. They are emerging pathogens in
hemodialysis patients.

Little is known about the epidemiology of Gordonia spp. in general and its associa-
tion with human diseases. The Gordonia genus has a complicated taxonomic history of
several reclassifications. The picture is further complicated by the fact that identification
is challenging and misidentification often occurs due to the close relation of other genera
within the Mycobacteriales order, like Dietzia spp., Corynebacterium, Nocardia spp., Rhodococ-
cus spp., and Tsukamurella spp., with Gordonia spp. Reports of human infections caused
by Gordonia spp. are relatively rare when compared to other opportunistic pathogens of
closely related taxonomic genera like Nocardia spp. and Rhodococcus spp. A bibliographic
review indicates that the use of catheters for long-term intravenous access is a notable
risk factor for bloodstream infections caused by Gordonia species. A recent report from
France showed that Gordonia spp., including G. sputi, are indeed recovered from immuno-
compromised hosts like HIV-positive individuals, and individuals with malnutrition or
long-term corticosteroid treatment, etc., but also when indwelling catheters of any type are
present [13–20].

In our case, for the time between November 2021 and September 2022, the patient
had multiple febrile episodes where conventional blood culture testing did not yield a
definitive causative agent and the applied antimicrobial treatment had a temporary effect.
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The first possible causative agent in our patient, detected in September 2022, was identified
by semi-automated biochemical testing (RapID CB Plus) as Corynebacterium striatum. The
mentioned test does not include Gordonia spp. in its diagnostic spectrum. Because of this
fact and due to the close relativity and overlapping of some morphological and biochemical
characteristics of Gordonia spp. and its other neighboring genera, similar to the other
authors, we cannot exclude the possibility for the first isolate to have been Gordonia sputi
misidentified as Corynebacterium striatum. This goes to show that routine methods are
insufficient and more complex and modern techniques are needed, e.g., proteomic analysis
with mass-spectrometry or molecular genetic assays like polymerase chain reaction (PCR)
or 16S ribosomal RNA sequencing. Lai et al. retrospectively re-evaluated 66 samples that
were initially identified by conventional techniques as Rhodococcus spp. and found that
when using the molecular method 15 of them were re-identified as Gordonia spp. [21].

Matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) mass spec-
trometry (MS)—MALDI-TOF MS—is a method for rapid and accurate identification that is
becoming increasingly available in the clinical microbiology laboratory. It is a technique
that is based on producing ionized particles from a bacterial–matrix mixture, which are then
separated according to their mass-to-charge ratio. A unique spectrum is generated, which is
in turn compared to a database of known and validated microorganisms. MALDI-TOF MS
is capable of identifying a wide spectrum of microorganisms including Gram-positive and
Gram-negative bacteria, mycobacteria, yeast, and molds. Often, the accuracy is comparable
to molecular methods of identification such as 16S rRNA gene sequencing [22–24].

Thanks to the MALDI-TOF MS method, we managed to elucidate the etiology and
initiate appropriate treatment. We consider MALDI-TOF MS a cheap, rapid, and reli-
able method for the accurate identification of G. sputi on a species level. Precise iden-
tification is also important in providing additional information about the association of
G. sputi and extending our knowledge on the epidemiology of G. sputi and its role as an
opportunistic pathogen.

Also, it is crucial to underline the significance of opportunistic isolates such as Gordonia
sputi in immunosuppressed patients. For an adequate immune response towards infectious
agents, a sufficient number of immune-competent cells are needed and, in our patient, the
flowcytometry testing indisputably confirmed lymphopenia with suppression of major
subsets of cells with the most remarkable decrease in the CD3+ T-cells count. This is an
important factor supporting the invasiveness of infections. Such findings regarding the
cellular immune status are also present in various studies [25,26].

Another reason for the impaired immune response is the dysregulation of cytokine
production resulting in an imbalanced differentiation of Th lymphocytes to Th1 or Th2
cells. Each of the corresponding subpopulations secretes distinct cytokines—Th1 cytokines
are IL-2, TNF-α, IFN-γ, etc., while IL-4, IL-6, IL-10, etc. belong to the group of Th2
cytokines [27]. Our patient’s immune status demonstrates an impairment of cell-mediated
immunity, which is sustained by Th1 cells (slightly detectable levels of Th1 cytokines)
with preserved humoral immunity marked by normal levels of total immunoglobulins and
complement fractions C3 and C4 sustained by Th2 cells (increased levels of Th2 cytokines).
It is known that IL-4 as well as IL-10 enhance Th2 and inhibit Th1 development [28,29].
According to some other authors, the levels of Th2 cytokines in hemodialyzed patients are
increased [27] [30], which corresponds to the results in our patient. A study by Szabo et al.
demonstrates that IL-4 inhibits the expression of the signal-transducing β2 subunit of the IL-
12 receptor and thus the ability of the latter to induce a Th1 response [31]. Additionally, both
IL-4 and IL-10 possess direct anti-inflammatory properties [32–35]. The hindrance of Th1
cytokines may result in complex defects of cell-mediated effector functions, including the
phagocytic elimination of infectious agents, macrophage inflammatory cytokine production,
and natural killer cell– and CD8+ T-cell–mediated cytotoxicity [36]. Moreover, chronic
hepatitis C infection is associated with impaired function of helper/inducer CD4+ T cells
and cytotoxic/suppressor CD8+ T cells and an overactive Th2 immune response [37–42]
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Thus, the comorbidities presented by chronic liver infection, long-term hemodialysis, and
cancer in her adolescence correspond to the immune suppression in this patient.

Immune stimulation is an important therapeutic measure in such patients. Due to
the intact levels of total immunoglobulins in this case, the administration of intravenous
immunoglobulin (IVIG) was not taken into consideration. A therapeutic approach for
this patient is Inosine pranobex (IP), commonly known as Isoprinosine, which is known
to enhance T-cell lymphocyte proliferation and the activity of NK cells, leading to the
restoration of the deficient responses in immunosuppressed patients with advantageous
effects also on HCV infection [43].

4. Conclusions

The clinical presentation of catheter-associated bacteriemia in polymorbid hemodialy-
sis patients may be vague because of a depressed immune system. Prophylaxis of infections
by these patients is crucial because of the many life-threatening complications. These pa-
tients must be closely followed-up and even when mild symptoms are presented physicians
should be encouraged to take blood cultures.

Given the current rise in immunocompromised hosts as well as the prominent increase
in venous catheter use, it is crucial to precisely identify Gordonia spp. on a species level.
This, in turn, will not only help us better understand the epidemiology of G. sputi infections
but also aid in improving strategies and optimizing the treatment guidelines. Increased
awareness among clinicians, including clinical microbiologists, would be beneficial to
high-risk populations and public health in general. This case illustrates that some rapid
commercially available microbiological identification systems may provide inaccurate
results, and the precise identification to the species level can be achieved by assays that are
more complex but still accessible for most laboratories like MALDI-TOF mass spectrometry.
We consider MALDI-TOF mass spectrometry a reliable alternative to molecular methods
that can provide rapid, cheap, and accurate identification of Gordonia spp. on a species level.

We may also conclude that the treatment of immunocompromised comorbid hemodial-
ysis patients should always include a consideration of the constant risk of opportunistic
infections. Their management should involve protective measures against the latter, pro-
phylaxis of fungal infections, and appropriate immune stimulation.
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