
Citation: Lee, C.-H.; Mendoza, T.;

Huang, C.-H.; Sun, T.-L. Comparative

Analysis of Fall Risk Assessment

Features in Community-Elderly and

Stroke Survivors: Insights from

Sensor-Based Data. Healthcare 2023,

11, 1938. https://doi.org/10.3390/

healthcare11131938

Academic Editor: Min-Chi Chiu

Received: 30 April 2023

Revised: 27 June 2023

Accepted: 29 June 2023

Published: 5 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

healthcare

Article

Comparative Analysis of Fall Risk Assessment Features in
Community-Elderly and Stroke Survivors: Insights from
Sensor-Based Data
Chia-Hsuan Lee 1, Tomas Mendoza 2, Chien-Hua Huang 3 and Tien-Lung Sun 2,*

1 Department of Data Science, Soochow University, No. 70, Linxi Road, Shilin District, Taipei 111, Taiwan;
sweat0430@mail.ntust.edu.tw

2 Department of Industrial Engineering and Management, Yuan Ze University, 135 Yuan Tung Road,
Chungli District, Taoyuan 320, Taiwan; s1078907@mail.yzu.edu.tw

3 Department of Eldercare, Central Taiwan University of Science and Technology, Taichung 40601, Taiwan;
108184@ctust.edu.tw

* Correspondence: tsun@saturn.yzu.edu.tw; Tel.: +886-3-463-8800

Abstract: Fall-risk assessment studies generally focus on identifying characteristics that affect postural
balance in a specific group of subjects. However, falls affect a multitude of individuals. Among the
groups with the most recurrent fallers are the community-dwelling elderly and stroke survivors.
Thus, this study focuses on identifying a set of features that can explain fall risk for these two groups
of subjects. Sixty-five community dwelling elderly (forty-nine female, sixteen male) and thirty-five
stroke-survivors (twenty-two male, thirteen male) participated in our study. With the use of an
inertial sensor, some features are extracted from the acceleration data of a Timed Up and Go (TUG)
test performed by both groups of individuals. A short-form berg balance scale (SFBBS) score and the
TUG test score were used for labeling the data. With the use of a 100-fold cross-validation approach,
Relief-F and Extra Trees Classifier algorithms were used to extract sets of the top 5, 10, 15, 20, 25,
and 30 features. Random Forest classifiers were trained for each set of features. The best models
were selected, and the repeated features for each group of subjects were analyzed and discussed.
The results show that only the stand duration was an important feature for the prediction of fall risk
across all clinical tests and both groups of individuals.

Keywords: fall risk; community-dwelling; stroke-survivors; random forest; feature selection;
inertial sensor

1. Introduction

Falls are problems that affect different groups of individuals, and most studies on fall
risk focus on older adults [1]. However, stroke survivors also experience falls. Given that
these two categories of people fall frequently, it is crucial to create effective fall prevention
programs since the expenses associated with falls place an increasing burden on the public
health system [2].

Previous studies have determined that falls are a multifactorial problem [3]. Mobil-
ity [4], gait instability [5–7], and balance issues [4,7,8] are some of the most common causes
that affect older adults. Similarly, the most common factors that affect stroke patients
include balance [9–12] and mobility issues [11,13]. In response, fall-risk prevention pro-
grams use clinical tests to detect subjects who suffer from these issues. Two of the most
common clinical tests associated with fall-risk prevention are the Timed-Up and Go (TUG)
test and the Berg balance scale (BBS), as they were developed and evaluated in several
fall-risk assessment studies [14]. Despite their effectiveness, their implementation requires
the presence and expertise of a medical professional. This has presented the opportunity
for researchers to study the applications of wearable inertial devices as auxiliary tools to
assist medical professionals with their light weight, portability, low cost [14], and ability to
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collect sensitive and reliable TUG data [15,16] which enables researchers to identify reliable
parameters [17].

Researchers have identified features that can be used with statistical or machine-
learning models to identify older adults at risk of falling [18], as well as post-stroke in-
dividuals at risk of falling [19] using data collected by inertial sensors from the TUG
test. However, the features identified by these studies have no medical interpretation for
medical professionals, which makes analyzing the underlying health problems related to
these falls challenging. To address these limitations, a similar fall-risk assessment study
used a wait-mounted accelerometer to estimate the BBS score of community dwelling
elderly [20]. The features used had medical meaning and are easily interpreted by medical
professionals. However, most features extracted in this study require extensive signal
processing and data cleaning, which makes the procedure difficult to reproduce in elderly
homes without the constant monitoring of trained personnel. Moreover, none of the studies
implemented a multifactor clinical test, which is more efficient at capturing the complex
nature of falls [21,22].

Finally, to our knowledge, no research has analyzed the similarities between community-
dwelling elderly adults and post-stroke patients that can predict fall risk. Our motivation to
include both groups of subjects is due to their frequency of fall, the severity of the injuries
they suffer because of their condition, and the limited number of studies analyzing features
related to falls among post-stroke subjects. We will calculate numerous features from the
TUG signals of all individuals. Using feature selection algorithms, we will estimate feature
importance and compare them between both groups of subjects. Consequently, this study will
focus on summarizing the features required to detect the largest number of classes with a higher
potential to fall while simultaneously using machine-learning algorithms to discuss the benefits
of automatic screening.

2. Materials and Methods
2.1. General Approach

Subjects from both groups wore an inertial sensor while they performed the TUG test.
The data will be segmented into sit to stand (Sist), walk, turn, and stand to sit (Stsi), after
which a set of features were calculated from the acceleration data of each subject. The scores
for the TUG and SFBBS clinical tests were used as labels for the features. Using ETC and
Relief-F algorithms, feature importance was calculated from both groups. A random forest
classifier (RF) was used to classify the subjects into fall risk or healthy using different sets
of features selected based on their importance. Finally, the most important features were
analyzed to determine whether any features could be regarded as important for fall-risk
prediction, independent of the type of subject being tested.

2.2. Subjects

The community elderly and stroke survivors both commonly use an inertial sensor to
identify fall risk. This study focuses on identifying a set of features that can explain fall risk
for subjects of these two groups.

2.2.1. Community-Dwelling Elderly

Community-dwelling elderly subjects from a hospital in central Taiwan participated
in a set of clinical tests between April 2014 and May 2015. The studies involving human
participants were reviewed and approved by Tsaotun Psychiatric Center, Ministry of Health
and Welfare (IRB No. 104013). A team of physiotherapists and rehabilitation physicians
assisted and monitored the participants. All subjects wore a waist-mounted inertial sensor
while completing the clinical assessments. As summarized in Table 1, data were collected
from 65 elderly adults (with an average age of 76 ± 7 years). Such subjects were recruited
after confirming that they had no history of musculoskeletal injuries or central nervous
system injuries and that they could walk without aid to perform the clinical tests.
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Table 1. Demographic data for community-dwelling elderly subjects.

Subject Group Description Value Number of Participants Age (Mean ± STD)

Community-dwelling
Elderly

Gender
Female 49 77 ± 6.60
Male 16 73 ± 6.00

Age

65–70 12 69 ± 1.72
71–75 25 73 ± 1.53
76–80 12 78 ± 1.48
>80 16 85 ± 4.60

Situation (SFBBS)
Healthy 61 72.64 ± 9.29
Fall-Risk 13 78.5 ± 7.5

Situation (TUG)
Healthy 61 71.91 ± 8.81
Fall-Risk 13 81.61 ± 6.46

Stroke Survivors

Gender
Female 22 61 ± 11.78
Male 13 61 ± 11.41

Age

15–20 1 18 ± 0
21–30 0 0
31–40 4 34.5 ± 1.5
41–50 2 46.5 ± 2.5

Situation (SFBBS)
51–60 11 56 ± 3.23
61–70 12 64 ± 1.32

Situation (TUG)
71–80 4 73 ± 1.51
>80 1 84 ± 0

2.2.2. Stroke Survivors

Between April 2018 and October 2018, we recruited stroke survivors from a hospital
in north Taiwan to participate in a series of clinical tests (IRB No. TYGH106045). Subjects
capable of performing these tests with or without walking assistance were included in this
study. In total, we gathered data from 35 different individuals (22 men and 13 women)
who had suffered from an Ischemic stroke. All subjects that participated in our study did it
willingly and provided consent to have their acceleration data collected. A summary of the
demographic data for the stroke survivors in our study is shown in Table 1.

2.3. Clinical Tests

In this research, two different clinical tests were performed by all test subjects, i.e.,
the short-form berg balance scale (SFBBS) and the TUG. The SFBBS was conducted by a
professional physiotherapist. Subjects who took the SFBBS test were required to perform
seven different activities, which are standing still with both eyes closed, sitting to standing
transitions, standing with both feet while keeping an arm reaching forward, picking up
an object from the floor, turning 360 degrees while standing up, standing with one foot in
front, and standing on one leg unsupported. The professional physiotherapist assigned
a score to each task performed by the subjects. This score ranged from 0 (subject could
not perform the task) to 4 (subject performed the task without problems). Consequently,
subjects who had no problems performing any of the seven tasks obtained the maximum
score of 28. In contrast, subjects who had problems regarding their static balance obtained
a score lower than 23, which was found to be the significant threshold to patients with
posture problems by a previous study [23].

When performing the TUG test [24], subjects began by sitting on a chair. Then, they
were asked to stand up, walk at a natural pace forward, turn 180 degrees when they reached
a mark on the floor, walk back toward the chair, and sit down.

In this study, we used an inertial sensor to collect data from subjects when they
performed the TUG test. We did not collect any acceleration data from the SFBBS test.
Therefore, the features used in this study were extracted exclusively from the TUG accel-
eration signals of subjects. Moreover, we used the scores of the SFBBS test and the score
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of the TUG test to label the subjects as fallers and non-fallers. The duration of the TUG
test was used to classify those subjects who performed the test in over 12.47 s as fallers,
since a previous study found that this threshold was substantial for community-dwelling
elderly [23]. Similarly, we labeled subjects with a SFBBS score lower than 23 as fallers, as
this was also substantial in previous studies [20,25].

2.4. Wearable Accelerometer

To find a set of features that are not related to the type of sensor used, different sensors
were used to collect data from each subject group. For the community-dwelling elderly, the
ADXL345 accelerometer was used. This sensor collected data at a frequency of 30 Hz from
three different axes, namely mediolateral (ML), vertical (V), and anterior–posterior (AP).
For the stroke survivor subjects, a triaxial accelerometer (RD3152MMA7260Q, Freescale
Semiconductor-NXP, Austin, TX, USA) sensor was used. It was calibrated at a frequency
of 45 Hz and recorded acceleration data from the ML, V, and AP axes. Each sensor was
attached to a waist-mounted strap, and it was situated at the lower back of the subjects.
This location approximates the center of mass of most individuals, making it the most
common across similar studies [14]. An illustration of the location of the sensors for both
experiments can be found in Figure 1.
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Figure 1. Illustration showing the estimated location of the inertial sensor (white box). This sensor was
attached to a belt, and it was located on the lower back of subjects (between the L4 and L5 vertebrae).
The three axes of the sensor collected along with their orientations are shown for reference.

2.5. Data Analysis
2.5.1. Feature Extraction

We calculated a set of 79 different features from the inertial sensor data using Python,
which can be found in Table 2. Every feature was calculated for each axis (ML, V, and AP),
and was found to be related to fall risk by previous studies. This section introduces these
features from a physiological point of view.

Root mean square (RMS) represents the degree of spread of the data with respect to
zero [26]. As the data in this study were collected from the lower back level, RMS measures
the degree of variability in trunk acceleration. This feature is commonly used in similar
studies, as maintaining balance relies heavily on trunk control since this the approximate
location of center of body mass [27,28]. Consequently, previous studies have found low
acceleration RMS to be associated with instability [29–31], which directly affects posture.
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Table 2. Features calculated from the inertial sensor data.

Feature Name (Feature Number)

Full TUG Features

MSE Mean (1–3) MSE Standard Dev. (4–6) MSE Complexity Idx. (7–9) Permutation Ent. (10–12)

Sit to Stand (SiSt) Features

Stand Duration (13) Range (14–16) Maximum Value (17–19) Root Mean Square (20–22)

Maximum Jerk (23–25) Minimum Value (26–28) Mean Jerk (29–31) Standard Dev. (32–34)

Walk Features

Walk Duration (35) Cadence (36) Step Length (37) Gait Speed (38)

Step Time (39) Stride Time (40) CV Step Time (41) CV Stride Time (42)

Root Mean Square (43–45)

Turn Features

CV (46–48) Median (49–51) Range (52–54) Root Mean Square (55–57)

Stand to Sit Features

Sit Duration (58) Range (59–61) Root Mean Square (62–64) Minimum (65–67)

Maximum (68–70) Maximum Jerk (71–73) Mean Jerk (74–76) Standard Deviation (77–79)

Similar to RMS, jerk measures the rate of change in acceleration [32]. Jerk is a common
feature in previous studies as healthy subjects will exert higher muscle strength when
performing sit to stand or stand to sit transitions [33], which may result in noticeable
acceleration changes. These acceleration changes can also be reflected in subjects as they
lean forward during standing or backwards while sitting and can be captured by their
maximum acceleration values [34,35]. Moreover, subjects with posture balance problems
perform the standing and sitting transitions in a more controlled manner as they have
reduced ability to control their movement while performing these tasks. This restricted
movement has been captured by previous studies and found to be considerably different
between fallers and non-fallers as shown by their standard deviation measurements of
acceleration [36,37], median acceleration values [37], and range acceleration values [37].

Individuals who are at risk of falling also exhibit abnormal sways when walking [27,38].
This abnormal sway can be caused by a strategy of remaining in control of their balance
to avoid falling [39]. Consequently, this strategy of caution affects the total time it takes
subjects to walk. In fact, studies have found walk duration to be a good predictor of
falls walk duration [40–43]. A similar strategy used by frail subjects at risk of falling is
to take smaller steps to improve their balance while walking, as reflected by shorter step
lengths [44–46] and stride length [43,47]. Reducing walking speed is also common, as
shown by recent studies that found significant relations between risk of falling and gait
speed [43,47], cadence [43,47], stride time [48], and step time [48].

Stride length measures the distance from the moment a particular heal touches the
ground, goes through a gait cycle, and touches the ground again. Similarly, step length
measures the distance from the moment a heel touches the ground to the moment the heel
on the opposite side touches ground, which is usually half of a stride. As observed by
previous studies, stroke survivors suffer from variations in step and stride length caused
by underlying paretic leg impairment [49,50]. These differences provide information on the
severity of gait abnormalities and have implications for fall risk assessment. Understanding
these differences and analyzing their relationship with fall risk can provide comprehen-
sive information for stroke patient fall risk assessment and help to screen or design more
effective interventions. Similar variations are also common in elderly subjects with de-
mentia [51]. These abnormalities in gait increase the risk of falling, as observed by recent
studies which found subjects at risk of falling to have higher coefficient of variation (CV)
for step time and stride time [51–53] when compared to healthy subjects.
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Postural problems can also be identified during the standing and sitting transitions. Sit-
to-stand and stand-to-sit durations have been found to be statistically significant between
healthy elderly and those with transitional posture problems [54,54–56]. Sit-to-stand
duration has also been found to be statistically significant among stroke survivors as
they need considerably more time to achieve stability when standing up [57]. Similarly,
stand-to-sit duration was also found to be a good predictor of falls among stroke survivors,
as subjects tend to shift their weight towards one leg, which causes difficulties to sit
naturally [57].

2.5.2. Multiscale Entropy (MSE) Analysis

The calculation of MSE begins by defining the scaling factors τ to be analyzed. Then,
for each scaling factor, a coarse-grained series is extracted from a given time series of length
N. This process is performed by estimating the mean of all data points within a sliding
window of size τ. As the name suggests, this window slides through the entire time series;
thus, the resulting coarse-grained series has a length of N/τ data points. An example found
in another study [58] illustrating the process of calculating coarse grained series can be
found in Figure 2.
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signal at two different scales. Figure originally available in a previous study [58].

Next, for each coarse-grained series, sample entropy (SampEn) is calculated. SampEn
measures the complexity of a signal by finding the probability that similar sequences of m
consecutive data points will remain similar if their number of data points increases by one
data point. As observed in Equation (1), a signal with low complexity has a SampEn value
close to zero.

SampEn = −ln
Cm+1(r)

Cm(r)
(1)

Finally, after calculating SampEn, the complexity index (CI) is calculated as the sum of
the SampEn values of all coarse-grained series (for all scaling factors τ), as illustrated in
Equation (2). CI was found useful to categorize falling behavior [59], as it can measure the
information contained in physiological time series over multiple scales.

n

∑
τ=1

SampEn(τ) (2)

2.5.3. Permutation Entropy (PE)

The first step in calculating PE is to use a window (of length D) and slide it τ data
points each step through the entire time-series data (of length T). This will result in a
two-dimensional matrix of shape D × T − (D − 1) τ, where each column represents the
data scanned at each step by the sliding window. To illustrate this process, consider the
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following example. Given a time series S(t) = {8, 5, 4, 3, 11, 9, 1}, the dimensional matrix
we would obtain if we used a sliding window D = 3 and τ = 1 is:8 5 4 3 11

5 4 3 11 9
4 3 11 9 1


Then, each column vector of the matrix is mapped into all possible permutations of

itself. To achieve this, we first find all possible ordinal patterns which capture the ordinal
rankings of the data. We can find these by calculating all possible permutations for a given
window size. In this particular case, given our sliding window of size D = 3, then the
ordinal patterns are

π1 = {0, 1, 2}
π2 = {0, 2, 1}
π3 = {1, 0, 2}
π4 = {1, 2, 0}
π5 = {2, 0, 1}
π6 = {2, 1, 0}

To map these ordinal patterns to the matrix obtained above, it is necessary to observe
the order of the values in each column. For example, given the first column, the permutation
that should be mapped to it should be π1 = {2, 1, 0}, since 8 > 5 > 4. Therefore, if we map
all the permutations to our matrix, we would obtain the following permutation matrix:2 2 1 0 2

0 0 0 2 1
1 1 2 1 0


Given the permutation matrix, the frequency of each permutation that appears through-

out all sequences is then calculated. This frequency is then divided over the total number
of sequences (or several columns in the matrix), which gives a probability p. For the
permutation matrix obtained above, the probabilities pi of each ordinal pattern are

pπ1= 0/5
pπ2= 1/5
pπ3= 1/5
pπ4= 0/5
pπ5= 2/5
pπ6= 1/5

Finally, the value for PE for a given order D is obtained using Equation (3):

PED =
D!

∑
i=1

pilog2 pi (3)

2.6. Feature Importance and Classification

The methodology proposed for feature importance selection is inspired by a recent
and novel study [60]. Using the score and specific criteria for each clinical test, we labeled
each subject as either fall risk or non-fall risk. With a 100-fold cross-validation strategy,
we used two different feature selection algorithms, namely Relief-F and ETC, to find the
top 5, 10, 15, 20, 25, and 30 features for each clinical test. We selected this number of folds
as it is a common technique to reduce bias towards samples in small datasets [61]. Using
each set of features, we used a random forest algorithm with a 100-fold cross-validation
approach to classify subjects into fall-risk or healthy categories. Furthermore, we selected
the best model for each clinical test, feature selection algorithm, and subject group, based
on the average AUC score across folds. Finally, we selected those features found in both
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models as the set of important features for the respective clinical test. This entire procedure
is illustrated in Figure 3.
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2.6.1. Relief-F

Relief-F has been used for feature selection in fall-risk assessment studies and gait analysis
studies [60,62,63]. This popularity can be attributed to its numerous characteristics, such as
its computational efficiency when dealing with large feature spaces (which are common in
fall-risk assessment studies). It is capable of detecting feature dependencies by indirectly
deriving interactions through the concept of nearest neighbors [64]. Furthermore, Relief-F is a
non-parametric feature selection method, which allows it to determine feature importance
across a wide range of datasets without relying on the underlying distribution of the data [65].
Contrary to other filter-based feature selection methods, Relief-F has more robustness against
imbalanced datasets [65]. Thus, it has been preferred for our imbalanced dataset.

The main objective of this algorithm is to estimate the quality of attributes (features)
based on their ability to classify samples that are similar. Features that can correctly classify
neighboring samples obtain high-quality estimation, whereas features that misclassify
neighboring samples are ranked poorly. This iterative algorithm starts at iteration i = 1
by first setting the quality of all samples, wj, to 0. Then, for each next iteration i = 1, 2, . . . ,
m, the algorithm randomly selects a sample, xr, and using the Manhattan distance, drq,,
it computes a set of k-nearest neighbors for each class. Finally, it updates the quality
estimation, wj, for each neighbor xq using Equation (4) assuming xr and xq belong to the
same class or using Equation (5) if they belong to different classes.

Wi
j = Wi−1

j −
∆j
(
xr, xq

)
m

·drq (4)

Wi
j = Wi−1

j +
pyq

1− pyr

·
∆j
(
xr, xq

)
m

·drq (5)

where Wi
j is the weight of the feature Fj at iteration ipyr , pyq prior probability of xr’s

and xq’s class, respectively, m is the maximum number of iterations, set by the user,
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and ∆j is the difference of the feature value Fj between xr and xq, and is expressed as

∆j =
|xrj−xqj|

max(F j

)
−min(F j

) .

2.6.2. Extra Trees Classifier (ETC)

Decision Trees (DT) are algorithms that classify samples by recursively evaluating
features that best split the data. For categorical DT, this splitting criterion is determined
using different metrics, i.e., the Gini index or entropy. The main problem with DTs is that
they are inaccurate, and thus can be solved by random forests (RF) [66] by combining many
DTs to make predictions. However, combining multiple DTs without any data preparation
results in a highly biased prediction. Thus, RFs use bootstrapping to reduce correlation
across trees. This technique consists of the generation of datasets of the same size as the
original but with randomly selected samples with replacement. Then, for each bootstrapped
dataset, a decision tree is created using only a random subset of features n at each step.
Therefore, given a new sample, the classification results for all trees are aggregated (this
technique is called bagging), and the final classification result is obtained. Finally, feature
importance is calculated by estimating the average of each decrease in the impurity of the
feature across trees.

ETC has also been used for feature selection in studies of fall-risk assessment [60,62,67].
Non-parametric in nature, ETCs serve as effective tools for uncovering nonlinear associations
and are considered valuable in the analysis of data [68]. They achieve this by using randomized
splitting points for each tree. Moreover, they are highly interpretable and can be used for both
discrete and continuous data. Furthermore, they are able to reach a balanced ratio between
variance and bias when compared to other feature selection algorithms [69]. ETCs do not use
bootstrapped datasets but rather consider the whole dataset for each DT. In addition, they
consider a random subset of features at each step when building a DT, and this subset is
generally larger in ETC than in RF. Finally, the split decision at each node is random, as opposed
to the impurity criteria used by RF, which allows them to be computationally less expensive. To
select features, ETCs use mean decrease impurity methods, which allow ranking of features in
order of classification significance.

3. Results and Discussion

We performed the analysis by first calculating all sets of important features using each
feature selection algorithm. Then, we analyzed the best-performing model for each feature
selection algorithm, clinical test, and subject group. The features used were then compared
by each best-performing model, as these features contain relevant information related to
the falling problem. Furthermore, we compared these features across clinical tests. The
ranking of features is different across feature selection algorithms as these use different
criteria to rank features. Consequently, features found to be important across both feature
selection mechanisms and both groups of subjects are discussed.

3.1. Top Features Selected by Both Feature Selection Algorithms for Each Subject Group

The sets of top 5, 10, 15, 20, 25, and 30 features (in descending order) selected by both
feature selection algorithms for community-dwelling adults can be found in Table 3. As
observed, for most clinical tests, the gait-related features are at the top of the table. This
further indicates the importance of gait-related features to fall-risk screening, which is
consistent with previous studies [70,71]. Moreover, features from the ML axis are predomi-
nant. This correlates with previous studies that present ML as indicative of fall risk in the
elderly [72], irrespective of laboratory or clinical measures of postural stability.
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Table 3. Top features selected by each feature selection algorithm for community-dwelling elderly.

Feature Name

Top Relief-F ETC

y = SFBBS y = TUG y = SFBBS + TUG y = SFBBS y = TUG y = SFBBS + TUG

1 Stand Duration Stand Duration Median Turn (ML) Step Length Gait Speed Gait Speed

2 Gait Speed RMS Turn (AP) Range Turn (ML) Gait Speed Walk Duration Walk Duration

3 Step Length Min Stand (ML) Stand Duration Min Sit (ML) Stand Duration RMS Stand (ML)

4 Walk Duration MSE Mean (AP) Max Stand (AP) RMS Walk (V) Cadence Std Stand (ML)

5 Std Stand (ML) Jerk Stand (AP) Range Sit (ML) Walk Duration RMS Walk (V) Stand Duration

6 RMS Stand (ML) RMS Stand (AP) Min Sit (ML) RMS Walk (ML) Step Length MSE Mean (AP)

7 MSE CI (ML) Min Sit (V) Gait Speed MSE Mean (ML) RMS Walk (ML) Min Sit (ML)

8 MSE Mean (ML) Max Stand (ML) Median Turn (V) MSE CI (ML) Sit Duration MSE CI (AP)

9 MaxJerk Stand V MSE CI (AP) Jerk Stand (AP) RMS Stand (ML) Step Time RMS Walk (ML)

10 Stand Duration Stand Duration Median Turn (ML) Step Length Gait Speed Gait Speed

11 CV Stride Time PE (V) Min Std (AP) Std Stand (ML) Stride Time MSE Mean (ML)

12 CV Step Time Median Turn (AP) MaxJerk Stand AP Stand Duration RMS Stand (ML) Step Length

13 Min Sit (ML) Range Stand (V) Std Sit (V) MSE Std (AP) Std Stand (ML) MSE CI (ML)

14 MSE CI (V) Std Stand (ML) Jerk Stand (ML) Min Stand (AP) Std Sit (V) Cadence

15 MSE Mean (V) RMS Walk (V) MaxJerk Sit (ML) MSE CI (AP) RMS Sit (V) RMS Walk (V)

16 Median Turn (V) RMS Walk (AP) RMS Turn (V) MSE CI (V) MSE CI (ML) PE (AP)

17 RMS Turn (V) Std Stand (V) MeanJerk Sit (ML) MSE Mean (V) MSE Mean (ML) Step Time

18 RMS Walk (ML) CV Turn (ML) Max Stand (ML) MSE Mean (AP) Min Sit (ML) Std Sit (V)

19 Max Stand (V) MSE Mean (ML) Range Turn (V) Max Sit (V) Range Sit (V) RMS Sit (ML)

20 CV Turn (AP) Range Sit (AP) Max Stand (ML) CV Turn (ML) Std Sit (ML) Std Sit (ML)

21 Median Turn (AP) Gait Speed RMS Walk (ML) MaxJerk Stand AP Median Turn (V) RMS Sit (V)

22 PE (ML) Min Stand (V) CV Turn (AP) Max Sit (V) Min Stand (AP) Sit Duration

23 Range Stand (ML) MeanJerk Sit (AP) RMS Sit (AP) Range Stand (AP) CV Stride Time Stride Time

24 RMS Walk (V) RMS Turn (V) MSE CI (ML) RMS Turn (AP) Min Sit (V) MaxJerk Stand AP

25 CV Turn (ML) PE (AP) PE (AP) Range Stand (ML) Range Stand AP Range Stand ML

26 Max Stand (ML) Step Time Range Stand (ML) MSE Std (ML) CV Step Time MSE Mean (V)

27 PE (V) Min Std (AP) Range Sit (V) Range Sit (AP) Range Stand ML MSE CI (V)

28 Min Stand (ML) Median Turn (ML) Jerk Stand (V) Jerk Stand (ML) MSE Std (V) Range Sit (AP)

29 Max Stand (ML) RMS Sit (AP) Range Stand (AP) Jerk Stand (V) Min Stand (ML) Min Std (AP)

30 RMS Turn (AP) Range Turn (ML) Max Sit (V) Median Turn (V) Range Sit (ML) MSE Std (AP)

The top features for stroke survivors are summarized in Table 4. Most gait-related
features are at the top of the table, which highlights their importance for fall-risk assessment.
For community-dwelling elderly, gait speed and step length are consistently within the top
five important features. This is an indication that these two features might hold valuable
information when studying falls across these two subject groups. Finding these features
is also consistent with studies [73,74]. Moreover, most features for stroke survivors are
related to the vertical axis, rather than the ML axis. We believe this is due to the need to
maintain proprioceptive balance in stroke patients [75].
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Table 4. Top features selected by each feature selection algorithm for stroke survivors.

Feature Name

Top Relief-F ETC

y = SFBBS y = TUG y = SFBBS + TUG y = SFBBS y = TUG y = SFBBS + TUG

1 Walk Duration MSE Mean (V) Std Stand (ML) Step Length Gait Speed Step Length

2 Gait Speed RMS Sit (V) Std Sit (AP) Gait Speed Step Length Gait Speed

3 Step Length MSE Std (ML) Median Turn (AP) Walk Duration Walk Duration Walk Duration

4 CV Step Time Min Std (AP) Min Sit (V) CV Step Time Cadence MSE Std (ML)

5 CV Stride Time RMS Walk (ML) Range Stand (ML) RMS Walk (ML) MSE Std (ML) RMS Walk ML

6 RMS Walk (ML) CV Step Time MSE Std (V) CV Stride Time MaxJerk Stand AP Sit Duration

7 Sit Duration PE_V RMS Turn (AP) MSE Std (ML) Step Time CV Step Time

8 Cadence Stand Duration Max Sit (AP) Sit Duration Min Stand (AP) Cadence

9 Std Sit (AP) Std Sit (V) RMS Turn (V) RMS Turn (V) RMS Stand (ML) Std Sit (AP)

10 Median Turn (AP) Min Std (AP) MSE Mean (V) CV Turn (AP) Jerk Sit (ML) Stand Duration

11 Step Time Range Sit (ML) Max Sit (V) Std Sit (AP) Stride Time CV Stride Time

12 Stride Time MSE CI (V) RMS Stand (V) MaxJerk Sit (AP) Stand Duration Stride Time

13 Stand Duration Min Stand (AP) CV Turn (V) RMS Walk (AP) RMS Stand (AP) Step Time

14 MaxJerk Sit (AP) MaxJerk Sit (ML) Gait Speed Cadence Range Stand (AP) MSE Std (V)

15 RMS Turn (V) Range Sit (V) RMS Stand (ML) Std Sit (V) Std Stand (AP) RMS Turn (V)

16 MSE Std (ML) Median Turn (ML) Cadence Step Time MSE Std (V) Jerk Sit (AP)

17 Median Turn (V) Sit Duration Stand Duration PE (AP) Std Stand (ML) RMS Walk (AP)

18 Range Sit (ML) Median Turn (V) Min Sit (ML) Jerk Sit (AP) MaxJerk Stand V Jerk Stand (V)

19 RMS Walk (AP) Step Length MaxJerk Sit (ML) Stride Time Jerk stand ML Std Sit (V)

20 Min Sit (ML) Stride Time Max Stand (ML) Stand Duration Std Sit (AP) MSE Mean (V)

21 Std Sit (V) MaxJerk Stand AP RMS Sit (V) Median Turn (AP) MaxJerk Sit (ML) PE (AP)

22 MaxJerk Sit (ML) RMS Walk (AP) Jerk Stand V Jerk Sit (V) RMS Walk (ML) MSE CI (V)

23 Range Sit (AP) Range Turn (ML) Min Stand (ML) Max Sit (V) Max Stand (AP) CV Turn (AP)

24 CV Turn (AP) RMS Turn (V) Step Time Median Turn (V) Range Turn (V) Median Turn AP

25 Jerk Stand ML RMS Stand (ML) CV Turn (AP) MSE CI (V) RMS Sit (AP) Jerk Sit (ML)

26 RMS Sit (V) Median Turn (AP) Jerk Sit (V) MSE Mean (V) Max Stand (ML) Std Sit (ML)

27 Median Turn (ML) Std Stand (ML) Max Stand (V) Jerk Stand (V) Max Sit (V) Max Sit (V)

28 MSE CI (V) Min Sit (V) MaxJerk Sit (AP) MSE Std (V) CV Turn (AP) RMS Walk (V)

29 MSE Mean (V) Std Sit (AP) Range Turn (ML) Jerk Stand ML Min Std (AP) Median Turn V

30 RMS Sit (AP) MSE Std (V) Std Sit (ML) MaxJerk Stand AP MSE CI (AP) Jerk Sit (V)

3.2. Best-Performing Models for Each Clinical Test, Feature Selection Mechanism, and
Subject Group

The average AUC score for the best-performing models is highlighted in Table 5. In
most cases, the best-performing models have a high AUC score, indicating an overall good
classification performance. From the perspective of stroke survivors, the AUC of the TUG
test is better for all sets of features. Similarly, from the perspective of community-dwelling
elderly adults, almost all the best-performing models use the TUG test. Moreover, this
table also shows that half of the best-performing models for stroke survivors use the set
of top 30 features. While in contrast, half of the best models for community-dwelling
elderly subjects use the set of top 15 features. This could be attributed to a larger number
of samples in our community-dwelling elderly group. It can also be observed that in most
cases, the models that use the multifactor clinical score as a label also use a smaller set of
features than the models that use the SFBBS or TUG clinical scores. This can be explained
by more robust classification criteria obtained after combining the SFBBS and TUG clinical
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scores. In addition, from the point of view of the feature selection mechanism, the AUC
results of ETC are all higher than that of Relief-F, which is consistent with the findings of a
similar study [60]. Moreover, as stated earlier, this study focuses on finding sets of features
that can be used to study the underlying problems related to fall risk. Table 6 demonstrates
that the trained models indeed are able to obtain good classification results. Thus, the
features selected by these models are related to fall risk.

Table 5. Summary of AUC average scores for all models.

Subjects y Top 5 Top 10 Top 15 Top 20 Top 25 Top 30

Relief-F

Stroke
Survivors

SFBBS 0.789 0.781 0.781 0.790 0.785 0.798
TUG 0.808 0.855 0.864 0.967 0.965 0.956

SFBBS + TUG 0.609 0.715 0.805 0.810 0.835 0.838

Community
Dwelling
Elderly

SFBBS 0.834 0.820 0.843 0.824 0.802 0.810
TUG 0.869 0.870 0.919 0.983 0.986 0.987

SFBBS + TUG 0.829 0.945 0.949 0.941 0.941 0.940

ETC

Stroke
Survivors

SFBBS 0.815 0.834 0.829 0.838 0.835 0.849
TUG 0.990 0.993 0.994 0.994 0.995 0.995

SFBBS + TUG 0.922 0.927 0.932 0.932 0.918 0.931

Community
Dwelling
Elderly

SFBBS 0.850 0.867 0.870 0.869 0.870 0.866
TUG 0.991 0.995 0.995 0.993 0.994 0.994

SFBBS + TUG 0.962 0.975 0.970 0.965 0.954 0.962

Table 6. Performance statistics for the best models.

Subjects y AUC Precision Recall F1-Score

Relief-F

Stroke
Survivors

SFBBS 0.798 0.742 0.716 0.729
TUG 0.967 0.787 0.815 0.801

SFBBS + TUG 0.838 0.814 0.795 0.804

Community
Dwelling
Elderly

SFBBS 0.843 0.761 0.810 0.785
TUG 0.987 0.949 0.944 0.946

SFBBS + TUG 0.949 0.841 0.912 0.875

ETC

Stroke
Survivors

SFBBS 0.849 0.794 0.768 0.781
TUG 0.995 0.976 0.969 0.972

SFBBS + TUG 0.932 0.854 0.831 0.842

Community
Dwelling
Elderly

SFBBS 0.870 0.770 0.811 0.790
TUG 0.995 0.989 0.987 0.988

SFBBS + TUG 0.975 0.890 0.923 0.906

After finding the best model for each clinical test and each subject group, we also
included other statistics from such models to show a more complete performance summary,
as can be found in Table 6. When observing the results of using Relief-F as the feature
selection mechanism, it can be observed that the AUC scores for TUG are the highest.
Similarly, the precision results for community-dwelling elderly show that the TUG test
obtained the best results since the features were directly extracted from the TUG acceleration
signals. In contrast, when analyzing the F1 score, we can observe that the multifactor
clinical test (SFBBS + TUG) had a better prediction accuracy for the stroke survivor subjects.
Moreover, when analyzing the overall classification performance of using the features
selected by ETC, we observed that TUG shows the best classification performance across
both groups. This is expected as the features were extracted directly from the inertial
acceleration data collected during the TUG test. Despite the higher AUC scores for most
TUG tests, it is important to take into consideration that SFBBS and TUG tests measure
different characteristics of a subject’s balance. TUG focuses on gait, while SFBBS focuses on
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static balance. Therefore, considering the multifactor test can provide a deeper and more
robust understanding of a subject’s balance, as was suggested by previous studies [56,57].

3.3. Most Important Features for the Community-Dwelling Elderly and Stroke Survivors

From the community-dwelling elderly subjects, the set of repeated features that were
found to be used by the best models of both feature extractor algorithms can be found in
Table 7. As observed, only stand duration feature is present across all clinical tests (as it is
highlighted by a “*”). This is consistent with previous studies, which found this feature to
be significantly different between healthy and fall-risk subjects [53,76] and to be statistically
significant between healthy elderly and those with transitional posture problems [54].
Meanwhile, gait speed was found to be important across two of the three clinical tests. This
is consistent with previous studies that found this feature helpful for fall prediction [43,47].

Table 7. Features selected by the best models for the community-dwelling elderly. Features found to
be repeated across all clinical tests are marked with a “*”.

SFBBS TUG SFBBS + TUG

Walk Duration Stand Duration * Gait Speed
Gait Speed Stand Duration *
Step Length

Stand Duration *
MSE-V CI

MSE-V Mean

From the stroke survivors, the set of repeated features that were used by the best mod-
els of both feature extractor algorithms is shown in Table 8. Two features were important
across all three clinical tests, i.e., step length and stand duration (as highlighted by a “*”).
Step length was also found in previous studies to predict falls [43] and was important to
determine posture balance [77]. This can be related to gait speed, as subjects who have poor
balance will try to maximize the time that they have for direct contact of their feet with the
ground to avoid falling. Step length was important for fall-risk prediction among stroke
survivors [74]. Moreover, duration of standing, step length, and stride time (important
across two different clinical tests) were believed to be related to gait asymmetry and are
related to fall risk [78] because they indicate the level of lower limb control the subject has
while walking [79].

Table 8. Features selected by the best models for the stroke-survivors. Features found to be repeated
across all clinical tests are marked with a “*”.

SFBBS TUG SFBBS + TUG

Walk duration Stand duration * Walk duration
Gait speed Step Length * Sit duration

Step length * Stride time
CV step time Mean sit (V)

RMS walk (ML) Stand duration *
CV stride time CV stride time

Sit duration Step Length *
Std sit (AP)

RMS turn (Y)
Jerk sit (AP)

Cadence
Median turn (AP)
Stand duration *

Step time
Stride time
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Finally, by analyzing the features found to be important across both groups (found in
Table 9), it can be observed that four features were found to be important for the SFBBS
clinical test, which is walk duration, gait speed, step length, and stand duration. Moreover,
stand duration was found to be important for both the TUG test and the multifactor
test. This can be attributed to a reduction and weakening of the hamstring muscles
(located on the legs) of fall-risk individuals, which causes them to hastily perform the
standing transitions [76]. Differences in the sit-to-stand transition can also be explained
by a reduction in balance as the center of mass is raised further from the ground [37]. In
summary, no matter which group of subjects is studied (community-dwelling or post-
stroke), stand duration has important information that can help researchers and doctors to
judge and further study fall risk among subjects.

Table 9. Most important features across both groups of subjects.

SFBBS TUG SFBBS + TUG

Walk Duration Stand Duration Stand Duration
Gait Speed
Step Length

Stand Duration

Finding stand duration as a critical feature for posture assessment is backed by several
studies which found it to be significantly different between healthy individuals and those
at risk of falling [53,54,76,80]. Stand duration is calculated by measuring the total time in
seconds it takes for the person to stand up from the sitting position. This time is calculated
from the moment they lounge their upper body forwards to the moment they are standing
upright, with legs fully stretched. In older individuals, a variation in stand duration can
be explained by reduced muscle strength. This weakening of muscles results in a loss
of balance during this transition which can lead to falls. In fact, clinical tests involving
repeated sit-to-stand exercises have been found in previous studies to accurately identify
individuals with reduced lower muscle strength [33,81]. Individuals with reduced muscle
strength rely on their arms for support while standing, which increases the time they
require to stand up [33].

According to multiple studies, post-stroke individuals are most susceptible to falling
during sit-to-stand transitions [82–84]. This is generally caused by individuals shifting their
weight towards their unaffected leg when standing up [57,82,85–87]. This shifting of weight
causes individuals to require longer times to perform these transitions. Consequently, sit-
to-stand tests have also been recommended as a tool to measure lower muscle strength in
post-stroke individuals, as well as a screening tool for individuals at risk of falling [88,89].

Table 10 summarizes the values in seconds for stand duration obtained by each group
of subjects. As observed, healthy individuals across all clinical tests were able to stand up
in a shorter time when compared to individuals considered to be under fall risk, which
suggests this feature can provide important information to identify subjects with postural
problems. The values in seconds for the community elderly are consistent with a previous
study that performed the TUG test on four different elderly subjects and measured the
time it took individuals to stand up [80]. From this table, it can also be observed that stroke
survivors that are not healthy (according to all clinical tests) have significant problems
standing up compared to healthy stroke survivors as evident from the time they required
to stand up.
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Table 10. Table summarizing the stand duration (in seconds) for all subjects in our study, organized
according to their situation and their clinical test score.

Subjects Situation BBS
Mean (SD)

TUG
Mean (SD)

BBS + TUG
Mean (SD)

Stroke
Survivors

Fall Risk 4.14 (1.76) 3.59 (1.74) 4.58 (2.08)
Healthy 1.81 (0.85) 1.27 (0.25) 1.27 (0.82)

Community Dwelling
Elderly

Fall Risk 1.37 (0.46) 1.70 (0.37) 1.66 (0.32)
Healthy 1.07 (0.39) 1.00 (0.30) 0.99 (0.39)

4. Conclusions

This study analyzed the fall risk in individuals by automatically extracting features
from the inertial sensor data collected from a TUG test and using machine learning to
classify subjects as fallers and non-fallers. Our results show that the set of features extracted
can provide good screening performance on either single or multifactor clinical tests. Using
two feature selection algorithms, we found a set of important features, which were also
found to be related to fall risk in previous studies.

We recognize there are some limitations with our study. Mainly, our subjects are mostly
female, which makes it difficult to draw conclusions that can be representative of larger
populations. However, due to the restrictions for recruitment which were necessary during
our study as well as the difficulties involving recruiting individuals for medical studies,
it was inevitable to recruit a balanced number of female and males. Nonetheless, this
study provides a valuable contribution from the current perspective of technology-assisted
scientific research.

Studies on fall-risk assessment are mostly limited by the type of subjects that par-
ticipate in them. To address such limitation, this study is the first to compare the set of
important features between two groups of subjects, which are the community-dwelling
elderly and stroke survivors. By comparing these two groups, this study focused on finding
a set of features that can be used to predict fall-risk, independent of the type of individuals
being studied. Results showed that, across all clinical tests, only stand duration was found
to be important to fall risk. This is consistent with a multitude of fall-risk assessment studies
and is generally attributed to the weakening of muscles and the reduction in balance during
such transition in subjects who are at risk of falling.

Finally, it is important to understand that the factors of fall risk are multiple, including
muscle strength, cognitive function, environmental factors, etc. The purpose of this study is
to use technology-assisted methods to focus on measuring acceleration data and pairing it
with a clinical balance test task to find out the association between it and the risk of falling.
Such an approach is valuable in studying the commonalities between specific eigenvalues
and populations. Future studies could further explore other possible characteristics and
factors to develop a more comprehensive and reliable fall-risk assessment model.
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