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Abstract: Background: Vulvovaginal candidiasis (VVC) is a disease with high incidence, a huge
impact on the quality of life and health of women, and which represents a great challenge to treat.
The growing need to apply antifungal intensive therapies have contributed to an emergence of
drug-resistant Candida strains. Thus, effective therapeutic options, to meet the antifungal-resistance
challenge and to control high resilient biofilms, are urgently needed. This study aimed to investigate
the antifungal activity of essentials oils (EOs) on drug-resistant Candida vaginal isolates. Method:
Therefore, the antimicrobial effect of tea tree, niaouli, white thyme, and cajeput EOs on the planktonic
growth of Candida isolates was initially evaluated by an agar disc diffusion method. Then, the
vapor-phase effect of tea tree EO (VP-TTEO) on biofilm formation and on pre-formed biofilms was
evaluated by crystal violet staining, XTT reduction assay, colony forming units’ enumeration, and
scanning electron microscopy. Results: The results revealed high antifungal activity of EOs against
drug-resistant Candida isolates. Additionally, the VP-TTEO showed a significant inhibitory effect
on the biofilm formation of all tested isolates and was able to provoke an expressive reduction in
mature Candida albicans biofilms. Conclusions: Overall, this study suggests that the VP-EO may be a
promising solution that is able to prevent biofilm-related VVC caused by antifungal-resistant strains.

Keywords: vulvovaginal candidiasis; biofilm; antifungal resistance; alternative therapies; essential
oil; vapor-phase; phytotherapeutic application

1. Introduction

Vulvovaginal candidiasis (VVC), an extremely common clinical condition that affects
millions of women every year around the world, is an infection of the female reproductive
tract mucosa with vulvar and/or intravaginal changes that consequently causes physical
and mental suffering, involving considerable direct and indirect costs [1]. Furthermore,
complicated episodes of VVC have been suggested to enhance the risk of acquiring HIV
and other complications including pelvic inflammatory disease, infertility, ectopic preg-
nancy, abortion, and menstrual disorders [2]. During episodes of VVC, the innate immune
responses may differ, and this fact suggests that the host environment performs a key
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role in the host—pathogen interaction [3]. Candida organisms are capable of colonizing
the vaginal environment asymptomatically; however, several factors may contribute to
the development of infection, including pregnancy, immunosuppression (HIV /AIDS or
diabetes mellitus), sexual activity, hormonal fluctuations, smoking, obesity, and the use
of sodium glucose cotransporter 2 (SGLT2) inhibitors, broad spectrum antibiotics, or oral
contraceptives [4-7]. Furthermore, the vaginal pathogenicity of Candida organisms is fa-
cilitated by several virulence factors including the biofilm formation on vaginal walls
and intrauterine devices (IUDs) [8]. Biofilms show high resilience to common antifun-
gal agents and host immune responses, requiring long and intensive therapies and, in
more severe cases, the removal of the infected device in order to avoid relapses [9,10].
Of note, the increase in at-risk individuals and the widespread use of over-the-counter
antifungals have been suggested to contribute to the increase/selection of drug-resistant
strains [11,12]. Although Candida albicans is still the species that most frequently causes
CVYV, there is growing concern regarding the incidence of the non-Candida albicans Candida
(NCAC) species. Among them, Candida glabrata or Candida krusei have shown low intrinsic
susceptibility to common antifungals and, in addition, the ability to acquire resistance after
exposure to the agent [4,13]. Therefore, the increasing incidence of drug-resistant vaginal
strains, the high difficulty to treat biofilm-related VVC, and the extremely limited and
toxic therapeutic options for this disease make the development of more efficient and safer
strategies to control it crucial. In this context, therapies developed from natural products
have emerged [14,15]. Honey, saponins, polyphenols (green tea), garlic extract, essential
oils (EOs), usnic acid, and peptides have been shown to exert antimicrobial activity, both
in vivo and in vitro, and, therefore, EOs stand out as the most promising [16—18]. EOs can
be a valuable alternative, since they present low toxicity and a wide range of proprieties,
including anti-Candida activity [19-23]. Nevertheless, EOs were shown to inhibit the growth
of beneficial vaginal bacteria at high concentrations and may cause skin irritation, limiting
their potential use in VVC [24]. Interestingly, EOs show vapor-phase (VP) antimicrobial
activity, which has been shown to present higher activity towards Candida growth than the
liquid phase, and this would avoid direct contact of the EO with the skin [25]. Currently,
although several approaches in the study of planktonic status have been reported, no
standard assay has been established to evaluate microbial inhibition/ inactivation by EOs
in the vapor phase. Nevertheless, appropriate the management of EOs during their use
as an antimicrobial agent is very important for the system used, the environment, and the
package to interact [26].

Thus, this study investigated the ability of the VP of EOs (VP-EOs) to inhibit the biofilm
formation and to destroy the mature biofilms of antifungal-resistant vaginal isolates of the
Candida species; the experiment was performed on glassware only to avoid interferences.
Therefore, our main aim is to contribute to the development of new, natural, and effective
strategies that are able to fight or prevent VVC biofilms.

2. Materials and Methods
2.1. Essential Oils

This study evaluated the antifungal activity of four EOs, namely, tea tree (Melaleuca al-
ternifolia; Florame®, Provence, France); niaouli (Melaleuca quinquenervia; Florame®, Provence,
France); white thyme (Thymus satureiodes; Florame®, Provence, France); and cajeput
(Melaleuca cajaputii; Florame®, Provence, France) EOs (all with 100% purity).

Analysis of the EOs was carried out by Florame® (Provence, France), using a Gas
Chromatography (GC) with Flame-Ionization Detection (FID). The major compounds of
the EOs are terpinen-4-ol (43%), y-terpinene (22%), and «-terpinene (10%) in tea tree EO,
p-cymene, limonene, and 1,8-cineole (57%) in niaouli EO, a-terpineol, borneol (47%), and
carvacrol (9%) in white thyme EO, and 1,8-cineole (60%), o-terpineol (12%), and limonene
(5%) in cajeput EO. All EO samples used in this study were stored in the dark, protected by
aluminum foil, at room temperature.
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Cytotoxicity of Vapor-Phase of Essential Oils

The effect of VP-EOs (tea tree, niaouli, white thyme, and cajeput) on cell viability was
evaluated by MTS ((3-[4,5-carboxymethoxyphenyl]-2-(4-sulfophenyl)-2H-tetrazolium)) test.
For this, cells from human primary fibroblast cell lines (3T3-CCL 163-from the American
Type Culture Collection) were first cultured in DMEM (Biochrom, Berlin, Germany) with
1% streptomycin/penicillin-containing antibiotic (Biochrom, Berlin, Germany) and 10%
fetal bovine serum (FBS; Sigma-Aldrich, St Louis, MO, USA) at 37 °C and 5% CO, for
24 h. Then, the cells were trypsinized and seeded in glass wells (200 pL per well) at a final
concentration of 1 x 10° cells/mL under the same cultivation conditions described above.
After 24 h of incubation, the cell cultures were treated with VP-EOs, and 25 uL of each
EO (100%) was discarded in a sterile white disk that was placed next to the wells; the set
was kept inside a plate of glass for another 24 h at 37 °C and 5% CO,. After this time,
the wells were washed twice with phosphate-buffered saline (PBS 1x), and then 80 pL of
MTS (CellTiter 96 Aquoous One Solution Cell Proliferation Assay, Promega, Madison, WI,
USA) with 1% phenol-free DMEM was added to each glass well for 1 h. After this time,
the absorbance (OD 490 nm) was measured in a Heales MB-580 microplate reader (Heales,
Shenzhen, China). The VP-EOs cytotoxicity results were expressed as the percentage of
viable cells in relation to the OD 490 nm of cells cultured without VP-EOs (100% cell
viability). These experiments were performed twice, and each analysis was performed
in duplicate.

2.2. Microorganisms and Initial Culture Conditions

For this study, C. albicans (n = 3), C. glabrata (n = 8), C. krusei (n = 1), and Candida guil-
liermondii (n = 1) vaginal isolates belonging to a collection of yeasts created by the Candida
Research Group of the Centre of Biological Engineering of University of Minho, in the
scope of a large-scale recovery of vaginal specimens of Candida carried out in health cen-
tres and a university campus in the north of Portugal, were used [7]. The identity of all
isolates was obtained by PCR-based sequencing using specific primers (ITS1 and ITS4)
against the 5.85S subunit gene [7,27]. Minimum inhibitory concentration (MIC) for each
species was determined by the Epsilometer-test (E-test) methodology and according to the
guidelines provided by the manufacturer. Fernandes et al. [7] also tested reference strains
with MICs characterized by the CLSI19 microdilution method to ensure the reliability
of the E-test results. In addition, a potential interpretation of MICs based on CLSI M60
was also performed [7]. All the isolates used are at least resistant to one of the antifungal
agents (fluconazole, ketoconazole, or caspofungin) [28,29]. Table 1 presents the MIC of
each antifungal and the features reported by women at the moment of vaginal sample
collection, including symptoms of vaginal infection, previous vaginal infections, use of
over-the-counter antifungals, and relevant health conditions. This study followed the
Data Protection Legislation and was approved by the Portuguese Health Ethical Commis-
sions (SECVS-UM 092/2017, CES-S Norte 49/218, CESHB 151/2018, CES-USLAM 23/2018,
CESHSOG 5/2018) [7].

Candida isolates were kept at -80 £ 2 °C in Sabouraud Dextrose Broth medium (SDB;
Liofilchem, Teramo, Italy) with 20% (v/v) glycerol (Biochem Chemopharma, Nievre, France).
Prior to each assay, the isolates were subcultured on Sabouraud Dextrose Agar (SDA;
Liofilchem) plates and incubated at 37 °C for 24 h. Then, 3-5 colonies of Candida isolates
were inoculated onto SDB for 18 h at 37 °C under agitation (120 rev/min). After this,
they were centrifuged at 5000 x g for 10 min at 4 °C and washed twice with PBS. The
supernatants were discarded, and the pellets were suspended in SDB. For the subsequent
analyses, the cellular density of the pre-inocula was adjusted to 1 x 108 or 1 x 10° cells/mL,
depending on the intended analysis, using a Neubauer haemocytometer (Marienfeld,
Lauda-Konigshofen, Germany).
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Table 1. List of vaginal isolates used in this study and respective data, including species, features
of the women at the moment of sample collection, and minimum inhibitory concentration (MIC) of
fluconazole, ketoconazole and caspofungin for each isolate.

Women's Features MIC (pug/mL)
Species Isolate . Use of over-
P ;}}I:ﬁ!t;rir;; If\l;::;)(::s the-Counter Cl({)ilgi‘;?:;s Fluconazole  Ketoconazole Caspofungin
Antifungals
Cgl Yes Yes 96 (R) 2 (R) 0.25 (I)
Cg2 Yes Yes 64 (R) 2 (R) 0.19 (I)
Cg3 Yes Diabetes 16 (SDD) 1.5 (R) 0.19 (I)
Cg4 Yes 4 (SDD) 0.032 (S) 0.5 (R)
C. glabrata Cg5 Yes Yes 8 (SDD) 15 (R) 0.064 (S)
Cg6 Yes Yes >256 (R) 1.5 (R) 0.032 (S)
Cg7 Yes Cancer 16 (SDD) 1.5 (R) 0.064 (S)
Cg8 Yes Yes IUD >256 (R) 6 (R) 0.047 (S)
Cal Yes Yes Yes 1(5 0.032 (S) 1(R)
C. albicans Ca2 Yes Yes Pregnancy 64 (R) 32 (R) 0.064 (S)
Ca3 Yes Yes A“té’.' mune 256 (R) 0.38 (S) 019 (S)
isease
C. krusei Ck1 Yes Yes 64 (R) 3(R) 0.38 (I)
C. guilliermondii Cgil 8 0.023 32 (R)

2.3. Evaluation of the Antifungal Activity of Essential Oils
2.3.1. Growth Inhibition Analysis

The inhibitory activity of the EOs (tea tree, niaouli, and cajeput) on the growth of the
drug-resistant Candida isolates was evaluated using the disk-diffusion agar method [30].
Briefly, SDA plates were inoculated by using a swab dipped in cell suspensions (pre-inocula)
adjusted 1 x 108 cells/mL. Then, 25 uL of each EO (100%) was discarded on sterile blank
disks (Liofilchem®) and placed atop of the plates (disks without EOs were also included
as control). The SDA plates were incubated for 24 h (at 37 °C); then, the inhibition zones
induced by the EOs were measured (mm).

2.3.2. Effect of the Vapor-Phase of Essential Oils on Biofilms

The effect of the VP-EOs on biofilm formation and on the mature biofilms (24 h-old) of
one strain of each Candida species (C. glabrata, C. albicans, C. krusei, and C. guillermondii) was
evaluated. The strains and the EO for this assay were selected based on the results of the
evaluation of the antimicrobial activity of the EOs in Section 2.3.1. Biofilms were developed
as described by Stepanovi¢ et al., with some modifications due to the use of volatile
compounds [31]. In order to determine the effect of tea tree VP-EO (VP-TTEO) on biofilm
formation, Candida cellular suspensions adjusted to 1 x 10° cells/mL were transferred
to glass wells (1 mL per well), and 25 uL of the tea tree EO (100%) was discarded on a
sterile blank disk which was placed near the wells (the set was kept inside a glass plate).
Plates were incubated for 24 h at 37 °C under agitation in an orbital shaker (120 rev/min).
Additionally, biofilms were pre-formed during 24 h and, after this time, were incubated
in the presence of 25 uL of tea tree EO discarded on a sterile blank disk for an additional
24 h. As a control, biofilms were formed without any contact with the VP-TTEO for 24 h
and 48 h.

Biofilms were analysed with the following parameters: determination of the Candida
cultivable cells’ numbers through the colony forming units (CFUs) counting methodology,
quantification of biofilm biomass by staining with crystal violet (CV), determination of
metabolic activity by XTT reduction assay, and evaluation of biofilm cell morphology by
scanning electron microscope (SEM) [32,33].
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Quantification of Candida Biofilm Biomass

To quantify the biomass resulting from the EO assay, the biofilms treated with VP-
TTEO and the respective controls were fixed with 1 mL of methanol, which was removed
after 15 min and dried at room temperature. After, 1 mL of CV (1%) was added to each well
and incubated for 5 min. The glass wells were then gently washed with sterile, ultra-pure
water, and 1 mL of acetic acid (33%) was added to release and dissolve the stain. Thus,
200 pL of the solution obtained from each glass well was immediately transferred to a
microtiter plate, and the absorbance of each condition was read at 570 nm in triplicate on a
Multiskan™ FC microtiter plate reader (Thermo Scientific™, Waltham, MA, EUA) [33].

Quantification of Candida Biofilm Cultivable Cells

The number of cultivable cells in the biofilms was estimated using the CFU counting
methodology. Briefly, the biofilms were washed with PBS to remove non-adherent cells
and were then scraped from the wells with 1 mL of PBS. The suspensions obtained were
serially diluted to 10® in PBS and then plated on SDA. SDA plates were incubated (24 h at
37 °C), and the number of colonies grown was counted and translated into colony forming
units per milliliter (Log (CFU/mL)) [32].

Quantification of Metabolic Activity of Candida Biofilms Cells

An XTT reduction assay was used to determine the biofilm metabolic activity after
contact with VP-TTEO. Therefore, the culture medium was aspirated after 24 h or 48 h, and
non-adherent cells were removed by washing with PBS. Then, 200 uL of a solution contain-
ing 100 pg/uL of XTT (2,3-(2-methoxy-4-nitro-5-sulphophenyl)-5-[ (phenylamino)carbonyl]-
2H-tetrazolium ydroxide) (Sigma—Aldrich) and 10 pg/uL of phenazine methosulphate
(PMS) (Sigma—Aldrich) were added to each well and incubated at 37 °C (120 rev/min) for
3 h, in the dark, and protected by aluminium foil. Thus, 150 uL was transferred from each
glass well to a microtiter plate, and the colorimetric changes were measured at 490 nm
using a Heales MB-580 microtiter plate reader [32,34].

Scanning Electron Microscopy (SEM)

To examine the morphology of the biofilm cells after contact with VP-EOs, the biofilms
treated with VP-TTEO and the respective controls were analyzed by SEM. For this, biofilms
formed on glass coupons, under the same conditions as those described above, for 24 h,
were dehydrated with ethanol (using 70% ethanol for 10 min, 95% ethanol for 10 min and
100% ethanol for 20 min). The samples were kept in a desiccator for at least 48 h. Prior to
observation, coupons were sputtered with gold and observed with Phenom Desktop SEM
(Thermo Scientific™) [32].

2.4. Statistical Analysis

The Prism software package (GraphPad Prism version 6.01 for Windows, GraphPad
Software, San Diego, CA, USA) was used to perform the statistical analysis of the results
obtained in this study. For that, the cell cultivability of biofilms treated with VP-TTEO was
compared with that of untreated biofilms using one-way ANOVA and Tukey’s multiple
comparisons test (confidence level of 95% and statistical significance was assumed at
p <0.05). For all assays, three independent experiments were carried out (independent
pre-inocula), and each analysis was performed in duplicate.

3. Results
3.1. Cytotoxic Effect of Essential Oils

The cytotoxic effects of the tea tree, niaouli, cajeput, and white thyme VP-EOs were
evaluated (Figure 1). Viability of the unexposed to VP-EOs cell cultures (control) was set at
100% to compare with the responses of the cell cultures exposed to VP-EOs. In cultures
exposed to the VP-EOs of the tea tree, cajeput, and niaouli, the viability was greater than
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70%. However, the viability of cultures incubated with the VP of white thyme EOs was less
than 70%.

150+

100-

o Em o o s am e am s

Relative cell viability (%)
[4;]
i

0-
N\
. Q,Qo . ,bO\)
® &

Essential oil

Figure 1. Vapor phase of essential oils’ (VP-EOs) cytotoxicity, expressed as the percentage of viable
cells in relation to the absorbance values (OD 490 nm) of cells cultured without VP-EOs (100% cell
viability). The dashed line represents the normative limit of 70% metabolic activity.

3.2. Antifungal Activity of Essential Oils

The inhibitory activity of the EOs (tea tree, niaouli and cajeput) on the growth of the
antifungal-resistant isolates of C. albicans, C. glabrata, C. guilliermondii, and C. krusei was
evaluated using the disk-diffusion agar method, and the results are summarized in Table 1.
The tea tree EO had the greatest inhibitory effect (20-39 mm of inhibition zone), followed
by the cajeput (10-21 mm) and niaouli (10-17 mm) EOs (Table 2). Among the isolates, the
highest inhibition was found in C. glabrata Cg1, and the lowest was found in C. krusei Ck1
(Table 2).

Table 2. Anti-Candida activity of essential oils on drug-resistant isolates evaluated through the
disk-diffusion method.

Essential Oil
Inhibition Zone (mm)

Species Isolate
Tea tree Cajeput Niaouli
Cgl 39.0+17 21.0£2.6 13.0 £ 2.0
Cg2 29.7 £ 0.6 188 £1.5 127 +1.2
Cg3 28.0 0.0 103 £ 0.5 10.4 £ 0.9
C. glabrata Cgd 340+ 1.0 148 £ 0.5 128 £ 0.5
Cgb 26.3 £4.9 19.3 £3.38 16.0 £ 1.0
Cgb 328 £32 190+ 1.7 158 £2.2
Cg7 205+ 1.0 105+ 1.0 105+ 1.0
Cg8 20.0+£0.8 10.3 £ 0.5 10.0 £ 0.0
Cal 225+24 255£35 10.8 £ 1.0
C. albicans Ca2 248 +24 215+13 128 £ 1.3
Ca3 23.8£0.5 18715 10.8 £ 0.5
C. krusei Ck1 21.8+21 123 £ 0.6 120+£1.3

C. guilliermondii Cgil 28.0 £ 89 203 £25 173 +£29
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3.3. Antifungal Activity of the Vapor-Phase of Essential Oils on Biofilms Formation

The effect of the VP-TTEO on biofilm formation and on the mature biofilms (24 h-old)
of C. albicans Ca2, C. guillermondii Cgi 1, C. glabrata Cg7, and C. krusei Ck1 was evaluated.
The VP-TTEO resulted in a significant reduction of two to four orders of magnitude (Log
CFU/mL) in the cell cultivability of the biofilm in all the isolates tested (Figure 2A). Indeed,
VP-TTEO reduced 2 Log CFU/mL in C. albicans Ca2 and C. krusei Ck1, 2.5 Log CFU/mL in
C. glabrata Cg7, and the greatest effect of 4 Log CFU/mL was observed in C. guillermondii
Cgil. In relation to biomass quantification, a statistically lower amount of biomass was
found on the biofilm formation of C. albicans Ca2 (p-value < 0.0001) and C. guilliermondii
Cgil (p-value < 0.1) (Figure 2B). Regarding the metabolic activity in the biofilm formation, it
was observed that this parameter decreased for all species tested, mainly in C. glabrata Cg7
(p-value < 0.01) and C. guilliermondii Cgil (p-value < 0.0001) (Figure 2C). The SEM images
(Figure 2D) show evident alterations in the morphology of the biofilm cells after contact
with VP-TTEO, and the main changes observed are membrane damage and alteration in
hyphal capacity.

Log (CFU/mL)

- ()
g oe g . VP-TTEO

3, 5 Y ® K 3 3, k

C. albicans Ca2 C. guilliermondi Cgil1

(+) VP-TTEO +)

C. glabrata Cg7 C. krusei Ck1

Figure 2. Effect of the vapor phase of tea tree essential oil (VP-TTEO) on the biofilm formation of
antifungal-resistant Candida isolates. Biofilms of C. albicans Ca2, C. guilliermondii Cgil, C. glabrata Cg7,
and C. krusei Ck1 were developed in the absence (control) and presence of the VP-EOs: (A) Number
of cultivable cells (Log CFU/mL). (B) Absorbance values of crystal violet solutions (Abs CV) and
(C) absorbance values of XTT solutions (Abs XTT). * indicates statistical reduction in biofilms cell
cultivability in comparison with the respective control (* p < 0.1, ** p < 0.01, **** p < 0.0001). (D) Scan-
ning electron microscope (SEM) images. The bar represents 30 um (lower magnification image) or
10 um (higher magnification image).
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3.4. Antifungal Activity of the Vapor-Phase of Essential Oils on Mature Biofilms

VP-TTEO significantly reduced (4 Log CFU/mL) the number of viable cells of C. al-
bicans Ca2 (Figure 3A) in mature biofilms (24 h-old). Concerning the quantification of
biomass, no significant differences were observed between the VP-TTEO and the control
(Figure 3B). Instead, there was a significant decrease in metabolic activity in C. guilliermondii
Cgil (p < 0.1) and a slight decrease in metabolic activity in C. krusei Ck1 and C. glabrata
Cg7 after contact with VP-TTEO. From the SEM images (Figure 3D) of the treatment with
VP-TTEQ, alterations in the cell morphology of the C. albicans Ca2 and C. glabrata Cg7
biofilms are detected. In fact, C. albicans Ca2 changed from yeast to hypha after exposure
to VP-TTEO.

‘t 3log
- ()
10 2 VP-TTEQ

Log (CFU/ mL)

n

Abs CV (570 nm)
<
o
5
o
o
Abs XTT (490 nm)
s

C. albicans Ca2
(+)

C. krusei Ck1

C. glabrata Cg7

Figure 3. Effect of the vapor phase of tea tree essential oil (VP-TTEO) on pre-formed biofilms of
antifungal-resistant Candida isolates. Biofilms of C. albicans Ca2, C. guilliermondii Cgil, C. glabrata Cg7,
and C. krusei Ck1 were developed in the absence (control) and presence of the VP-EOs: (A) Number
of cultivable cells (Log CFU/mL). (B) Absorbance values of crystal violet solutions (Abs CV) and
(C) absorbance values of XTT solutions (Abs XTT). * indicates statistical reduction of biofilms cell
cultivability in comparison with the respective control (* p < 0.1, **** p <0.0001). (D) Scanning electron
microscope (SEM) images. The bar represents 30 um (lower magnification image) or 10 um (higher

magnification image).
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4. Discussion

This study evaluated the antifungal activity of EOs and their VP against antifungal-
resistant vaginal isolates of various Candida species. Approximately 50% of the isolates were
collected from women with symptoms of vaginal infection (with VVC) and the remaining
were from asymptomatic women (colonized with Candida organisms) (Table 1). Importantly,
almost all women reported one or more vaginal infections prior to the collection of the drug-
resistant strains, suggesting that previous antifungal treatments may have contributed to
the acquisition of resistance [11,12]. Additionally, the use of over-the-counter antifungals to
treat self-diagnosed VVC, which was reported by 30% of the women of this study (Table 1),
can also be suggested to contribute to the selection of low-susceptible strains [29,35].
Moreover, some women reported IUD use, pregnancy, or immunocompromised conditions
(Table 1); therefore, these women are at greater risk of developing VVC and, consequently,
are more likely to fail treatment [36,37]. Of note, all clinical vaginal isolates used during
this study are at least resistant to one of antifungal agents (fluconazole, ketoconazole,
and caspofungin) (Table 1). Indeed, the extremely limited options to treat VVC caused
by drug-resistant strains make the development of new strategies designed to meet the
drug-resistance challenge crucial [38]. EOs appear as a potential alternative, presenting low
toxicity and the main advantage of their natural antimicrobial agents’ ability to avoid the
development of antifungal resistance [39-41]. The cytotoxic effect of the tea tree, niaouli,
cajeput, and white thyme VP-EOs was determined against the 3T3 cell line (Figure 1).
The results (Figure 1) show that the VP of the tea tree, cajeput, and niaouli EOs were
not cytotoxic, since the relative cell viability is lower than 70% of the control (no EOs),
based on ISO 10993-5:2009 [42]. So, an initial screening of the non-cytotoxic EOs in test
was performed for the antifungal activity of the tea tree, cajeput, and niaouli EOs against
antifungal-resistant isolates of C. albicans, C. glabrata, C. guilliermondi, and C. krusei, the
results of which were evaluated. The results revealed that all EOs were able to inhibit the
growth of the tested isolates, although with different impacts (Table 2).

Among the isolates, the highest inhibition was found in C. glabrata Cgl and the
lowest in C. krusei Ck1 (Table 2). Previous studies have also reported the high antifungal
activity of tea tree EOs against susceptible and drug-resistant strains of various Candida
species, including C. albicans, C. glabrata, and C. krusei [43—45]. In fact, the tea tree EO
was found to increase yeast cell permeability and membrane fluidity and to inhibit the
acidification of the medium [46]. Moreover, Keereedach, Hrimpeng, and Boonbumrung
recently demonstrated that the cajeput EO has an antifungal effect on fluconazole-resistant
C. albicans isolates [47]. These investigators showed that the cajeput EO reduced the
expression level of the C. albicans MDR1 gene, which encodes the multidrug resistance
protein 1 [47]. Of note, the antifungal activity of EOs has been shown to be influenced
by several factors, such as the original species, geographic and climatic conditions, the
biological and physical-chemical properties of the soil, and storage conditions [48]. As
such, an adequate control of these factors may allow for the maximization of the antifungal
activity of EOs.

One of the most important virulence factors of the Candida species is their ability to
form biofilms, which promote the development of VVC and make its treatment extremely
difficult and often ineffective [49]. Therefore, a more effective, low-toxic, and inexpensive
solution to treat biofilm-related VVC is urgently needed. Eos have been suggested as a
promising solution due their ability to inhibit the biofilm formation and reduce pre-formed
biofilms of various Candida species, including C. albicans, C. glabrata, C. parapsilosis, and
C. krusei [50]. Furthermore, EOs present high volatility, and their VP was shown to possess
higher antimicrobial activity than the liquid phase [25,51]. Inouye et al. suggested that, in
their aqueous state, EOs’ lipophilic molecules associate to form micelles and thus suppress
their binding to organisms, while those in the VP allow for free binding [52]. As such, this
study investigated, for the first time, the effect of the VP-EO on Candida biofilm formation
and on pre-formed biofilms of antifungal-resistant strains (C. albicans Ca2, C. guilliermondii
Cgil, C. glabrata Cg7, and C. krusei Ck1). Importantly, C. albicans Ca2 and C. krusei Ck1
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present an extremely high resistance to fluconazole; the most prescribed antifungal agent,
C. glabrata Cg7, is resistant to ketoconazole, a less common azole; and C. guilliermondii Cgil
presents resistance to caspofungin, a highly toxic antifungal (Table 1). The tea tree EO
was selected for the assays with biofilms due their high antifungal activity against these
drug-resistant isolates (Table 2).

In order to study the effect of VP-TTEO on the biofilm formation (Figure 2) and
pre-formed biofilms (Figure 3) of antifungal-resistant Candida isolates (C. albicans Ca2,
C. guilliermondii Cgil, C. glabrata Cg7, and C. krusei Ck1), the number of cultivable cells
(Figures 2A and 3A), the total biomass (Figures 2B and 3B), metabolic activity
(Figures 2C and 3C), and cells’ morphology (Figures 2D and 3D) were evaluated.

The results of the cultivable cells’ number revealed that the tea tree EO had a high
inhibitory effect on the biofilm formation of all the isolates tested (Figure 2A). The highest
inhibition was obtained in the C. guilliermondii Cgil biofilms, followed by those of C. glabrata
Cg7 (2.5-4 Log CFU/mL). In addition, the biomass quantification revealed a significant
alteration of two species, C. albicans Ca2 and C. guilliermondii Cgil (Figure 2B). Although CV
staining quantifies both dead and live cells and the biofilm matrix, it is possible that, while
the biofilm was not completely removed, a large portion of the cells were dead [53]. The
effect of VP-TTEO on the metabolic activity of biofilm formation cells was also evaluated
(Figure 2C), and a decrease was observed in the four Candida species tested, with greater
emphasis on C. guilliermondii Cgil, followed by C. glabrata Cg7. In agreement with the
results in Figures 2A and 2B, C. guilliermondii Cgil showed a greater decrease in metabolic
activity. The results of these three parameters are confirmed by the SEM images (Figure 2D).
In fact, when comparing the image of the untreated biofilm cells (control) with the images
after contact with VP-TTEO, an increase in the number of damaged cells (membrane change,
no hyphae or burst cells) is evident for the four Candida strains tested.

Additionally, the VP-TTEOs were also able to reduce the number of viable cells on the
mature biofilms (24h-old) of C. albicans Ca2 (Figure 3A) and to change their morphology
(Figure 3D). Indeed, due to cellular stress, the C. albicans can transition from yeast to
hypha [54]. The results obtained (Figure 3C) on the metabolic activity of mature biofilm’s
cells show a significant reduction in the metabolic activity in C. guilliermondii Cgil and a
slight decrease in the metabolic activity of the C. krusei Ck1 and C. glabrata Cg7 biofilms’
cells cultivated in the presence of VP-TTEO, with morphology alteration of the C. glabrata
biofilm cells, compared to the absence of the EOs. Interestingly, in the C. albicans strain and
the C. guilliermondii strain, there is an opposite effect between metabolic activity and the
biomass quantification, both in the biofilm formation and in mature biofilms; this curious
fact may be due to the unique structure of each biofilm, and the biomass quantification
assay did not differentiate between living and dead cells. These results, together with
those obtained with CV (Figure 2B), the cultivable cells’ number (Figure 2A), and SEM
(Figure 2D) suggest a more promising effect of VP-TTEO on biofilm formation.

Overall, the results show a significant inhibitory effect of the VP-TTEO on the devel-
opment of Candida biofilms of antifungal-resistant isolates. However, the induced effect
by VP-TTEO may differ according to the Candida species due to the differences that each
species presents, both in its planktonic state and in the biofilm structure. In this sense, it
would be important to determine the mode of action of VP-TTEO on different Candida
species. Furthermore, a possible factor that can influence this effect is the distance of
the EO from Candida cells and the atmospheric dimension of the VP-EO. Therefore, in
future studies, it would be important to evaluate these factors together with in vivo and
clinical trials.

5. Conclusions

VVC has been considered a public health problem due to its serious negative con-
sequences, high incidence, and increasing difficulty to treat. The emergent resistance of
Candida organisms to conventional antifungal agents have been pushed the development of
more effective strategies to combat them. This study suggests a promising use of VP-EOs to
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prevent biofilm-related VVC caused by drug-resistant strains. Interestingly, a VP-mediated
treatment has additional advantages, including high efficacy without requiring direct con-
tact of the liquid phase with the skin and an easy mode of application (for instance on
women’s underwear). Of note, some antifungal-resistant isolates used in this study were
collected from women (symptomatic or not) presenting clinically relevant conditions such
as pregnancy and immunodepression, in which the prevention and quick treatment of VVC
are imperative. However, the prophylactic treatment of VVC with common antifungals,
besides being not always effective, may contribute to the selection of strains with low
antifungal susceptibility. In contrast, the VP-EOs seem to be a safe and effective solution to
prevent biofilm-related VVC in at-risk women such those using IUDs and those who are
immunosuppressed and pregnant. In this particular study, tea tree, cajeput, and niaouli EOs
present important high antifungal activity, and VP-TTEO presents an important preventive
effect in biofilm-related VVC caused by antifungal-resistant strains. Importantly, Candida
organisms have the ability to form multi-species biofilms, either of the Candida—Candida
species as well as of Candida—bacteria, and, thus, future studies to ascertain the efficacy of
VP-EOs on multi-species biofilms will be also of value. Additionally, further studies are
needed to explain the mechanisms of action of EOs and the possible toxicity associated
with the VP of these compounds to establish whether they can be safely used as antifungal
agents for therapy or prophylactic treatment for biofilm-related CVV.
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