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Abstract: The worldwide spread of COVID-19 has caused significant damage to people’s health and
economics. Many works have leveraged machine learning models to facilitate the control and treat-
ment of COVID-19. However, most of them focus on clinical medicine and few on understanding the
spatial dynamics of the high-risk population for transmission of COVID-19 in real-world settings. This
study aims to investigate the association between population features and COVID-19 transmission
risk in Hong Kong, which can help guide the allocation of medical resources and the implementation
of preventative measures to control the spread of the pandemic. First, we built machine learning
models to predict the number of COVID-19 cases based on the population features of different tertiary
planning units (TPUs). Then, we analyzed the distribution of cases and the prediction results to find
specific characteristics of TPUs leading to large-scale outbreaks of COVID-19. We further evaluated
the importance and influence of various population features on the prediction results using SHAP
values to identify indicators for high-risk populations for COVID-19 transmission. The evaluation of
COVID-19 cases and the TPU dataset in Hong Kong shows the effectiveness of the proposed methods.
The top three most important indicators are identified as people in accommodation and food services,
low income, and high population density.

Keywords: COVID-19; high-risk population; population features; tertiary planning unit; explainable
machine learning; SHAP

1. Introduction

The World Health Organization has declared coronavirus infectious disease 2019
(COVID-19) a pandemic since 11 March 2020 [1]. As a result of the epidemic, hospitals are
overburdened and face significant issues in terms of people staffing, personal protective
equipment availability, and intensive care unit bed allocation during the fifth wave in Hong
Kong [2]. In this case, slowing down or even cutting off the spread of COVID-19 is vital
to relieve the heavy burden on medical systems [3]. As all countries worldwide strive
to prevent the growing threat of coronavirus, data on populations, their relative traits,
livelihoods, and geography have proven to be invaluable for response efforts to a disease
with substantial unknowns [4,5].

Moreover, Hong Kong began administering the fourth round of COVID-19 vaccines to
residents aged 18 to 59 in April 2022, with some health experts proposing that the fourth
dose be given only to specific groups. The COVID-19 vaccines are unquestionably effective
at alleviating the disease, particularly severe symptoms [6]. However, the spatial dynamics
of high-risk populations for COVID-19 transmission, which can be helpful for health
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experts in guiding response efforts such as emergency funding allocation and preventative
measures, remain to be further studied.

The development of machine learning algorithms makes it feasible to learn from the
available data for accessing the evolving risk factors and the newly exposed areas. Several
studies have used supervised machine learning algorithms to identify patients at risk
of developing severe COVID-19 symptoms [7]. For example, Assaf et al. [8] predicted
risk for critical COVID-19 based on status at admission using machine learning models.
Yan et al. [9] developed a machine learning-based model to predict the survival of severe
COVID-19 patients with clinical features. In [10], researchers built a machine learning-
based model to estimate patients’ health conditions and mortality risk with COVID-19.
The majority of them, however, focused on the association between machine learning
algorithms and clinical medicine [11], lacking the understanding of spatial dynamics of the
high-risk population for COVID-19 transmission. Hyper-local knowledge of what may put
people at risk and where to find vulnerable groups can help plan preventative measures
and facilitate medical resource allocation, significantly improving the pandemic response to
a disease that affects people on a global scale. Therefore, this study aims to investigate the
association between population features and COVID-19 transmission risk in Hong Kong.

Moreover, although many state-of-the-art machine learning models achieve remark-
able performance in various domains, they are difficult to interpret, hindering their appli-
cation, especially in healthcare [12]. Fortunately, the recent development of explainable
machine learning has enabled the explanation of many complex machine learning algo-
rithms. By leveraging various methods such as feature importance scores, counterfactual
explanations, and influential training data, explainable machine learning provides insights
into model behaviors [13]. For example, in [14], an explainable machine learning pipeline
was proposed to predict material properties. Han et al. proposed a novel degree of locality
preservation approach to enhance the explainability of manifold learning [15]. SHAP (SHap-
ley Additive exPlanation) [16] is a game-theoretic approach measuring the importance
of features and interpreting the output of machine learning models, which is powerful
and has been utilized to explain various techniques and applied to different domains
(e.g., healthcare, Internet of Things, and transportation) [17]. For example, Wang et al. pro-
posed an explainable machine learning framework based on SHAP for intrusion detection
systems [18]. Ng et al. assessed the mortality and recurrence risk factors of clostridioides
difficile infection patients using an explainable machine learning prediction system based
on SHAP [19]. SHAP quantifies the contribution of each player (feature) in a collaborative
game (the machine learning model) [16]. Unlike many traditional importance analysis
methods, the SHAP values can explain the model output globally and locally [20], not only
reflecting the importance rank of features in the prediction for each sample but also pre-
senting the different effects of different features on the prediction results in a quantitative
way [21].

Therefore, in this work, we first obtained the number of COVID-19 cases and popula-
tion features for each tertiary planning unit (TPU) (a TPU is a geographic reference system
demarcated by the Planning Department for the Territory of Hong Kong, identifying the
boundaries of living areas of all individuals [22], detailed in Section 2). Second, we built
regression models based on machine learning algorithms to predict the number of cases
using population features. Third, we used SHAP values to explain the model output and
analyzed the importance and influence of different population features. In this way, the
COVID-19 transmission risk of different TPUs can be estimated, and the indicators for
high-risk populations can be identified.

We organized our paper as follows. First, we introduce the background, motivation,
and objectives of this study in Section 1. Then, we describe the datasets and methodology in
Section 2 and report the experiment results in Section 3. Next, we discuss the key findings,
implications, limitations, and future work in Section 4. Finally, we conclude this study in
Section 5.
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2. Materials and Methods

In this section, we first describe the datasets we used in this study and the data
processing procedure. Then, we introduce the machine learning algorithms used for
predicting the number of COVID-19 cases based on population features and the feature
importance analysis.

2.1. Dataset Description and Processing

The datasets used in this study include the COVID-19 case dataset and the TPU dataset.
The data source of COVID-19 is a surveillance system titled “Together, we fight the virus!”
designed by the Department of Health of Hong Kong SAR to capture the COVID-19-related
vaccination history and provide an update on the infection situation for all residents [23].
The tertiary planning unit (TPU) is a geographic reference system demarcated by the
Planning Department for the Territory of Hong Kong [22]. It identifies the boundaries of
living areas of all individuals in Hong Kong. Under this boundary system, the whole land
area of Hong Kong is divided into 291 TPUs according to the 2016 Population By-census.
Each TPU has its socioeconomic features, including demographic, educational, economic,
household, and housing variables, characterizing different dimensions of the respective
area. Therefore, we explored the relationships between these population features and
COVID-19 transmission risk. In this way, high-risk populations for COVID-19 transmission
can be timely identified, and corresponding strategies can be implemented to prevent the
pandemic outbreak. The study did not require ethical approval because all existing data
were retrieved retrospectively and anonymized.

The COVID-19 case dataset contains 10,603 COVID-19 cases in Hong Kong SAR from
January 2020 to January 2022, including the age, sex, residential address, and travel history
of the cases. There are 5518 females and 5085 males. Their ages range from 12 days to
100 years old (mean (M) = 44.54, standard deviation (SD) = 19.99, in years). We further
divided the cases into imported cases, local cases, and unknown cases according to their
residential addresses and travel history. It resulted in 1297 imported cases, 9274 local cases,
and 32 unknown cases.

The TPU dataset includes the population features in each TPU. Each TPU is identified
by a unique three-digit number. As shown in Table 1, these features describe the demo-
graphic, economic, industry, housing type, and place of work of the population in TPUs.
The total population of TPUs ranges from 1032 to 286,232 (M = 35,784, SD = 41,490). We
also calculated the population density for each TPU according to their total population and
areas. The household per room is obtained by dividing the number of households by the
number of rooms (excluding kitchens, toilets, and bathrooms). Besides the absolute values
of different types of populations, we also calculated the proportions of the total population.

Then, we mapped the COVID-19 cases to TPUs according to the residence of cases
and finally had 215 TPUs with COVID-19 cases. The number of cases in each TPU ranges
from 1 to 708 (M = 49.32, SD = 75.92).

Table 1. Population features.

Type of Features Features

General Information Total population
Population density
Household per Room (excluding kitchens and toilets/bathrooms)

Population by Sex Male
Female

Population by Age <15
[15, 24]
[25, 44]
[45, 64]
≥65



Healthcare 2022, 10, 1624 4 of 13

Table 1. Cont.

Type of Features Features

Population by Type of Housing Public rental housing
Subsidised homeownership housing
Private permanent housing
Non-domestic housing
Temporary housing

Population by Monthly Income <6000
from Main Employment [6000, 9999]
(excluding unpaid family workers, in HKD) [10,000, 19,999]

[20,000, 29,999]
[30,000, 39,999]
[40,000, 59,999]
≥60,000

Population by Place of Work Work in the same district in Hong Kong
Work in another district in Hong Kong
No fixed place/marine
Work from home
Places outside Hong Kong

Population by Industry Manufacturing
Construction
Import/export, wholesale and retail trades
Transportation, storage, postal, and courier services
Accommodation and food services
Information and communications
Financing and insurance
Real estate, professional, and business services
Public administration, education, human health, and social work
activities
Miscellaneous social and personal services
Others

2.2. COVID-19 Case Prediction and Feature Importance Analysis

To investigate the association between population features and COVID-19 transmission
risk, we built the regression model to bridge the population features and the number of
COVID-19 cases in TPUs. Then we analyzed the importance and influence of features on
the prediction results to identify important population features. The pipeline is shown in
Figure 1.

Figure 1. The pipeline of identifying indicators for high-risk COVID-19 transmission population.

We divided the 215 TPUs into a training set (172 TPUs, 80%) and a test set (43 TPUs,
20%), and trained regression models on the training set using the following algorithms.
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• Linear Regression (LR) is a linear approach for modeling the relationship between
features and output [24]. The objective is to minimize the residual sum of squares
between the ground-truth values and the predicted values by the linear approximation.
It is low-cost and easy to implement.

• K-Nearest Neighbor Regression (KN) only consider the k-nearest data samples assuming
that the predicted value should be in the neighborhood. It averages the observations
in the same neighborhood to model the relationship between features and output [25].
It requires few parameters, is easy to implement, and can be applied to various linear
or non-linear regression tasks.

• Decision Tree (DT) is a model with a tree structure including the root node, internal
nodes, leaf nodes, and branches, aiming to make a rational decision based on the fea-
tures of the training set by answering all the questions on root and internal nodes [26].
The leaf nodes can be categories or real numbers, making it applicable to both classifi-
cation and regression problems. Since every decision is made by all the information
on each layer of the tree, it has good interpretability and is easy to understand.

• Random Forest (RF) consists of several randomly created decision trees, and the output
prediction is aggregated from predictions of these decision trees, i.e., the average of
outputs [27]. A random forest regression model is trained by constructing multiple
decision trees with the training dataset in parallel. When testing the model, a new data
point will go through all the decision trees, and the result will be the average value
across all the predicted values. It can achieve high accuracy and is a robust algorithm.

• XGBoost (XGB) is eXtreme Gradient Boosting, an efficient implementation of dis-
tributed gradient boosting that can be used for building regression model [28]. It
provides parallel tree boosting and has achieved outstanding performance in var-
ious domains. It stands out from other algorithms due to its high efficiency, low
computational cost, good performance, and generalization [29].

The above-mentioned algorithms have been applied to various domains and achieved
remarkable performance. Compared with many other machine learning and deep learning
algorithms, they are easier to implement, more efficient, explainable, and require less data
for training. We trained models based on these algorithms and selected the one with the
best performance for further analysis.

For each model, the parameters are determined by grid search and validated through
five-fold cross validation [30] on the training set. Then, we compared the performance of
the models on the test set and select the one with the best performance for further analysis.
Specifically, for LR and KN, we used principal components analysis (PCA) to reduce the
influence of multicollinearity [31]. The explained variance in PCA is set to 95%. We used
the R2 score as the coefficient of determination, which is commonly used to evaluate the
performance of a regression model. It depends on the ratio of total deviation of results
described by the model. A higher R2 score value indicates a higher proportion of data
points within the line created by the regression equation. Therefore, a higher R2 score
means better performance. The formula for the R2 score is given as follows:

R2 = 1− Sr/St. (1)

Here, Sr is the sum of squares of the residual errors and St is the total sum of
the errors.

We also report the mean absolute error (MAE) of the prediction results. MAE measures
the errors between the predicted and observed values. It is calculated as the sum of the
absolute errors divided by the sample size, detailed as follows:

MAE =
∑n

i=1 |y
predicted
i − ygroundtruth

i |
n

, (2)
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where ypredicted
i , ygroundtruth

i , and n are the predicted value, ground truth value, and the size
of the test set.

After selecting the model with the best performance, we conducted the feature im-
portance analysis on the regression model leveraging SHAP [16] to rank the importance
of different population features and analyze the influence of important features on the
prediction results. More specifically, suppose X = {(xi, yi)|i = 1, 2, . . . , N} is the training
dataset, where xi and yi are the input and output of ith sample, and N is the number of
samples. We denote the jth feature of xi by xij, and the number of features is M. Then, the
SHAP values follow the equation below:

yi = E[ f (X)] +
M

∑
j=1

f (xij), i = 1, 2, . . . , N, (3)

where E[ f (X)] is the baseline value of the whole model (the expected output, which is
usually the mean of the predicted value of all samples), and f (xij) is the SHAP value of
xij, denoting the contribution of the jth feature in the prediction of ith sample to yi. The
SHAP values of features reflect their impacts on the model output. A positive SHAP value
( f (xij) > 0) increases the number of COVID-19 cases predicted, while a negative SHAP
value decreases the output. The mean values of the absolute SHAP values for features are
used to rank the importance of features [32]. By analyzing the SHAP values and importance
rank of features, we can figure out the influence of different features on the prediction
results so as to identify indicators for COVID-19 transmission risk in TPUs and select the
most important features required to achieve good performance.

Furthermore, we normalized the SHAP values of features with the following equation:

˜SHAP(i) =
SHAP(i)

∑N
j=1 SHAP(j)

, (4)

where ˜SHAP(i) and SHAP(i) are the normalized SHAP value and raw SHAP value of
feature i, and N is the number of original features (N = 74). Therefore, ∑N

j=1 SHAP(j) is
the sum of the SHAP values of the 74 original features, and the normalized SHAP value

of feature i ( ˜SHAP(i)) is the proportion of the raw SHAP value of feature i in the sum of
SHAP values of all features. Then, we selected the top n features when their cumulative
normalized SHAP values account for more than 90% of the sum of all normalized SHAP
values, i.e., ∑n

i=1
˜SHAP(i) > 0.9, and retrained the models based on the selected impor-

tant features. In this way, the redundant features can be excluded to reduce the model
complexity [19].

3. Results

In this section, we elaborate on the results of COVID-19 case prediction and feature
importance analysis.

3.1. COVID-19 Case Prediction

The prediction results of COVID-19 cases are shown in Table 2 (R2
0,0 and R2

0,1). We
can find that the R2 scores of all algorithms are less than 0.5, indicating a disappointing
regression performance. However, after looking into the prediction results, we find that the
model achieves good performance except for some TPUs with extremely high COVID-19
cases, as shown in Figure 2. We look into the top three TPUs with the highest number of
COVID-19 cases. The TPU with the most COVID-19 cases (TPU ID: 326, 667 local cases,
37 imported cases, and 4 unknown cases) is located in Kwai Chung where there was a
large-scale outbreak in a few housing estates, including Kwai Chung Estate, Tai Wo Hau
Estate, and Kwai Shing West Estate. There were many cases involving residents working at
hospitals and elderly homes. Residents also complained that they had to queue for a long
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time to get tested at mobile testing stations, increasing the cross-contamination risk [33].
The TPU with the second highest cases (TPU ID: 281, 495 local cases, 2 imported cases)
is located in Tsz Wan Shan, which belongs to Wong Tai Sin District with a high poverty
rate and a large number of public housing estates for lower socioeconomic groups [34].
The TPU with the third highest cases (TPU ID: 225) is located in Yau Ma Tei, which is an
older and well-known district attracting many tourists and locals. Based on the above
observations, we believe that the environment of the housing estates may play a more
significant role than the general regional characteristics of the TPU. Further studies should
be conducted on these special cases. Therefore, we removed the top three TPUs with the
highest COVID-19 cases and retrain the model. In this case, the performances of KN, RF,
and XGB significantly improve, achieving R2 scores above 0.8 (R2

1,0 and R2
1,1 in Table 2).

Table 2. Results of COVID-19 cases prediction.

Results LR KN DT RF XGB

R2
0,0 0.421 0.343 0.491 0.398 0.470

R2
0,1 0.429 0.333 0.445 0.383 0.444

R2
1,0 0.047 0.615 0.687 0.631 0.695

R2
1,1 0.394 0.801 0.248 0.812 0.830

R2
0,0,s 0.464 0.347 0.512 0.416 0.428

R2
0,1,s 0.471 0.357 0.382 0.390 0.440

R2
1,0,s 0.364 0.641 0.456 0.624 0.698

R2
1,1,s 0.688 0.811 0.321 0.812 0.838

R2
0,0 and R2

0,1 are the R2 scores of the local case and total case prediction for all TPUs. R2
1,0 and R2

1,1 are the R2

scores of the local case and total case prediction for TPUs excluding the top 3 TPUs. R2
0,0,s and R2

0,1,s are the R2

scores of the local case and total case prediction with reduced features (the top 20 most important features) for all
TPUs. R2

1,0,s and R2
1,1,s are the R2 scores of the local case and total case prediction with reduced features (the top 20

most important features) for TPUs excluding the top three TPUs. In KN, n_neighbors = 8. In DT, max_depth = 8
and min_samples_split = 9. In RF, max_depth = 8, min_samples_split = 4, and n_estimators = 450. In XGB, for
training on all TPUs, n_estimators = 450, learning_rate = 0.06; for training on TPUs excluding the top 3 TPUs,
n_estimators = 200, learning_rate = 0.01; moreover, max_depth = 2, min_child_weight = 1, subsample = 0.8,
colsample_bytree = 0.8, reg_alpha = 0, reg_lambda = 0. Other parameters followed the default setting.

(a)

(b)

Figure 2. The prediction results of XGB for all TPUs. (a) Prediction results of local cases for all
TPUs (R2

0,0 = 0.470, MAE = 31.931). (b) Prediction results of all cases for all TPUs (R2
0,1 = 0.444,

MAE = 34.566).
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In general, XGB achieves the best performance with R2 scores of 0.695 and 0.830 for
local cases and all cases, respectively, as shown in Figure 3. The MAE local case prediction
is 34.566, and the MAE on the prediction of all cases is 10.490. Specifically, we find that for
the TPU with ID = 951, the model shows high accuracy in terms of total case prediction,
while in terms of local case prediction, there is a big gap between the ground-truth value
(2 cases) and prediction value (99 cases). This TPU is Chek Lap Kok, which has many hotels
and an international airport. Therefore, it has many imported cases (105 cases) and only
two local cases. However, as shown in Figure 4, the larger number of hotels increases the
population working in accommodation and food services, and thus increases the number
of COVID-19 cases predicted. This case shows that the model performs better in total case
prediction, and more features about the environment of TPUs are required to predict the
number of cases in a more fine-grained manner.

(a)

(b)

Figure 3. The prediction results of XGB for TPUs excluding the top 3 TPUs. (a) Prediction results of
local cases for TPUs excluding the top 3 TPUs (R2

1,0 = 0.695, MAE = 10.136). (b) Prediction results of
all cases for TPUs excluding the top 3 TPUs (R2

1,1 = 0.830, MAE = 10.490).

Figure 4. The influence of population features of TPU with ID 951 on prediction.

3.2. Feature Importance Analysis

We explore the importance and influence of population features to find high-risk
populations for COVID-19 transmission using SHAP. The overview of the SHAP values of
the features for predicting local cases and total cases are shown in Figure 5a,b, respectively.
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(a) (b)

Figure 5. The overview of the features’ SHAP values. The features are ranked by importance (the
most important is at the top). Red color means higher feature values and blue means lower feature
values. Lower SHAP values mean lower COVID-19 cases. (a) Top 20 most important features and the
sum of 55 other features for the prediction of local cases. (b) Top 20 most important features and the
sum of 55 other features for the prediction of all cases.

We can find that the population working in accommodation and food services, the
population with a monthly income between 6000 and 9999, and the population density
are the top three most important features. For local case prediction as well as all case
prediction, the number of cases increases with the increase of the population working
in accommodation and food services, population density, and population with income
between 6000 and 9999 (a lower income in Hong Kong SAR). Moreover, the local cases
increase with the increasing population working in construction, manufacturing, and
population with age ≥65. The number of total cases increases with the increase of the
population with the population working in import/export, wholesale and retail trades,
construction, transportation, storage, postal and courier services, population with private
permanent housing, and public rental housing.

Then, we normalized the SHAP values according to Equation (4) and selected the top
n features when their cumulative normalized SHAP values account for more than 90% of
the sum of all normalized SHAP values. In this way, we selected the top 37, 41, 18, and
16 most important features for local case prediction on all TPUs, total case prediction for all
TPUs, local case prediction for TPUs excluding the top three TPUs, and total case prediction
for TPUs excluding the top three TPUs, respectively. We retrain the models based on the
selected important features, and the results are shown in Table 2 (R2

0,0,s, R2
0,1,s, R2

1,0,s, and
R2

1,1,s). We can find that the models based on the important features can achieve close or
even better performance compared with using the original 74 features, which shows the
effectiveness of the importance rank and the importance of these features, and the model
complexity can be significantly reduced.

4. Discussion

This study explored the impacts of population features on the transmission risk of
COVID-19. We built machine learning models to predict the number of COVID-19 cases
using the population features in TPUs and evaluated the influence of different features by
explaining the model using SHAP. The top three most important indicators for high-risk
COVID-19 transmission population are identified as people in accommodation and food
services, low income, and high population density.
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According to our findings, it is interesting that the population working in accommo-
dation and food services plays the most significant role, not healthcare workers [35]. TPUs
with more of this type of population are predicted to have more COVID-19 cases. Occupa-
tional exposure may be related to different characteristics of their works [36], particularly in
the accommodation and food service sub-sectors, where human interaction is essential [37].
There is a lot of interaction between customers and employees in restaurants and hotels.
The Designated Quarantine Hotel Scheme has been fully implemented since December
2020 in Hong Kong. Those designated hotels solely receive travelers arriving from foreign
places for compulsory quarantine. Therefore, the workers and their representatives in
the accommodation and food services sub-sectors are at risk of infection. Their irregular
operations at work may bring the virus from the quarantined passengers to local residents.
This is especially important today because ensuring workplace safety and health is critical
for managing the COVID-19 pandemic, particularly in these sub-sectors. It can also benefit
the monitoring and updating of the knowledge available about COVID-19, including pre-
vention of transmission and the management of suspected or confirmed cases. A checklist
has been designed as a tool to help implement and continuously improve practical action to
prevent and mitigate the spread of COVID-19 in accommodation and food service activities
established by the International Labour Organization [37]. Restaurant, hotel, and bar staff
should regularly practice hygiene practices (frequent handwashing, respiratory hygiene,
and frequent cleaning/disinfection of work surfaces and touch points) in accordance with
WHO COVID-19 guidance for food businesses on food safety [38].

Moreover, special attention should be paid to areas with high population density
areas and lower-income populations. Co-locating overcrowdedness and residents from
unfavored socioeconomic classes usually synergistically increase the vulnerability among
them and result in the spread of within-neighborhood transmission [39–41]. Therefore, the
authority should provide more resources in the related lower-income and high-population
districts.

Furthermore, more prevention measures should be taken for the aged care centers
where there are many old people who are more likely to have severe symptoms gathering
together. Unfortunately, in the fifth wave of COVID-19 in Hong Kong, many aged care
centers witnessed the outbreak of the pandemic, causing a lot of deaths. As shown in our
analysis, the number of local cases is positively related to the population with age ≥65,
which is possibly because the elderly have a lower vaccination rate and are more susceptible
to the virus [42]. Another important feature is the population working in construction. This
may be due to sharing changing rooms and not wearing masks properly at work because of
the working environment [43]. Additionally, the number of cases increases with the increase
of the population working in import/export, wholesale and retail trades, transportation,
storage, postal and courier services, since they have to touch a lot of domestic and overseas
goods, increasing the risk of exposure to the virus. We suggest that those critical groups
should be eligible for vaccination with the fourth dose.

4.1. Implications

Our study demonstrates that the population features of TPUs can be used to accurately
predict the number of COVID-19 cases using machine learning algorithms. Apart from
the population features, more fine-grained environmental features of TPUs can be used to
improve the prediction performance. Furthermore, by leveraging the explainable machine
learning, we can find the influence of different population features on the transmission of
COVID-19 and identify indicators for high-risk populations for COVID-19 transmission
effectively and efficiently. The analysis provides implications for policymakers to pay more
attention to the populations with a high risk of COVID-19 transmission. The predicted
COVID-19 cases can be significantly reduced by improving the critical features. The
proposed pipeline can help investigate the dynamic feature importance and influence to
facilitate the update of preventative strategies adaptively.
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It also indicates the power of explainable machine learning, and the pipeline can
also be applied to other tasks in public health studies. For example, people’s contextual
information, such as demographics and environmental conditions, can be used to predict
their health status, and by explaining the prediction model, the influence of different
contexts can be analyzed. It can also be applied to classify the risk of pandemic transmission
for different areas based on environmental features, and by evaluating the influence of
environmental features, policymakers can take corresponding strategies to reduce the risk.

4.2. Limitations and Future Work

We discuss the following limitations of our work. First, we find that our model
performs well on most TPUs except for some TPUs with specific characteristics where
there were large-scale outbreaks of COVID-19, such as areas with many quarantine hotels
and aged care centers. To address this issue, besides the population features of TPUs, the
environmental features, such as points of interest and built-environment features, can be
incorporated to improve the prediction performance. Furthermore, we plan to improve
the existing machine learning algorithm to make it more adaptive to the prediction of
COVID-19 cases based on environmental features.

Second, it is difficult to directly figure out the non-monotonic association between
the population features and the number of COVID-19 cases based on the SHAP values.
However, the importance rank of features can help us prune some unimportant features. In
this case, we can target those crucial features to investigate their complex influences on the
prediction result.

Third, because of the limited data size and considering the interpretability of the
model, we use no deep learning-based methods [44]. However, the development of transfer
learning and explainable deep learning has made it possible to train a deep learning model
with a small dataset and explain it. In the future, we plan to compare the current model
with more state-of-the-art deep learning models. Additionally, most of the COVID-19
cases included in this study are from the first to fourth waves of COVID-19 in Hong Kong.
However, the COVID-19 cases significantly surge in the fifth wave. In the future, we plan
to conduct more analyses after collecting more COVID-19 cases.

5. Conclusions

We built machine learning models to predict COVID-19 cases accurately and identify
high-risk populations for COVID-19 transmission effectively. Response efforts such as
resource allocation and preventative measures can be implemented more efficiently. We
believe policymakers should pay more attention to the high-risk groups identified and
apply further interventions to reduce risk or prioritize vaccination for them.
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