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Abstract: Sign language has played a crucial role in the lives of impaired people having hearing and
speaking disabilities. They can send messages via hand gesture movement. Arabic Sign Language
(ASL) recognition is a very difficult task because of its high complexity and the increasing intraclass
similarity. Sign language may be utilized for the communication of sentences, letters, or words
using diverse signs of the hands. Such communication helps to bridge the communication gap
between people with hearing impairment and other people and also makes it easy for people with
hearing impairment to express their opinions. Recently, a large number of studies have been ongoing
in developing a system that is capable of classifying signs of dissimilar sign languages into the
given class. Therefore, this study designs an atom search optimization with a deep convolutional
autoencoder-enabled sign language recognition (ASODCAE-SLR) model for speaking and hearing
disabled persons. The presented ASODCAE-SLR technique mainly aims to assist the communication
of speaking and hearing disabled persons via the SLR process. To accomplish this, the ASODCAE-
SLR technique initially pre-processes the input frames by a weighted average filtering approach.
In addition, the ASODCAE-SLR technique employs a capsule network (CapsNet) feature extractor
to produce a collection of feature vectors. For the recognition of sign language, the DCAE model
is exploited in the study. At the final stage, the ASO algorithm is utilized as a hyperparameter
optimizer which in turn increases the efficacy of the DCAE model. The experimental validation of
the ASODCAE-SLR model is tested using the Arabic Sign Language dataset. The simulation analysis
exhibit the enhanced performance of the ASODCAE-SLR model compared to existing models.

Keywords: quality of life; disabled persons; sign language recognition; deep learning; atom
search optimization

1. Introduction

Communication is the major component of interpersonal relationships that acts as an
important connection between individuals and describes human existence. Additionally,
it is a prominent basis to promote the growth of the human population. Communication
is classified into verbal and nonverbal forms, and its core is to exchange data between
the sender and the receiver [1]. As the component of communication, verbal and non-
verbal forms are considered spontaneous and disguised spontaneous communications,
the initial one is demonstrated as an intentional communication from the motivation
emotional state, and the last one is demonstrated as an instinctive intentional strategic
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operation [2]. Communication is an indispensable tool in the existence of human beings.
It is an effective and fundamental method of sharing opinions, thoughts, and feelings.
However, a considerable fraction of the world population lacks this capability [3]. A lot
of people suffer from speaking impairment, hearing loss, or both. A complete or partial
disability to hearing in one or both ears is called hearing loss. In contrast, being mute is
an inability that impairs speaking and makes people have difficulty speaking [4]. During
childhood, if deaf–mute happens, their language learning capability could be hindered and
leads to language impairment, otherwise called hearing mutism.

Sign language (SL) is the major adaptation for people with hearing and speech dis-
abilities. Additionally, it is called a visual language. In general, it contains five key
characteristics: orientation, hand shape, location, movement, and components such as eye-
brow movements and mouth shape [5]. Studies had been carried out on voice generation
using smart gloves that may provide a voice to SL movement. However, those who do not
know SL generally reject or undervalue persons with disability due to the lack of proper
communication among themselves. The procedure of translating the gestures and signs
portrayed by the user into text is called SL detection [6]. It links the communication gap
between the general public and people who could not speak. Image processing algorithms
and neural networks are used for mapping the gesture to proper text in the training dataset
and thus raw videos or images are transformed into relevant text that cannot be understood
and read [7].

Existing models have used statistical approaches and machine learning (ML) models
for SL recognition. The ML models are based on handcrafted features which could not
determine insignificant regions in every frame, and the existence of temporal misalignment
makes it difficult for traditional approaches to determine robust features. The derived
features encode temporal dependency among frames, position, and orientation of hands,
face, etc. Background noise and varying lighting conditions also result in occlusions and
clutter, which have to be considered. They are tedious to extract with traditional ML
models. Therefore, in this study, we have proposed a deep learning (DL)-based model
as a solution for SL recognition. The primary objective of the DL technique is automated
feature engineering. The concept behind this is to learn a set of features automatically from
raw information that is beneficial during SL detection [8]. In such a way, it prevents the
manual method of hand-crafted features by automatically learning as a set of features. With
the emergence of the DL method, end to end model has been constructed for numerous
challenges that only need the image as input [9]. Lately, a large number of studies have
been ongoing in developing a system that is capable of classifying signs of various SLs in
the class. This system has found application in natural language communications, games
virtual reality environments, and robot controls [10].

This study designs an atom search optimization with a deep convolutional autoencoder-
enabled Arabic Sign Language recognition (ASODCAE-SLR) model for speaking and
hearing disabled persons. The presented ASODCAE-SLR technique preprocesses the
input frames by a weighted average filtering approach. In addition, the ASODCAE-SLR
technique employs a capsule network (CapsNet) feature extractor. For the recognition
of sign language, the DCAE model is exploited in the study. At the final stage, the ASO
algorithm is utilized as a hyperparameter optimizer which in turn increases the efficacy
of the DCAE model. The experimental validation of the ASODCAE-SLR model is tested
using the Arabic Sign Language dataset.

2. Literature Review

Sruthi and Lijiya [11] proposed a signer-independent DL-based method to build a
sign language (SL) static alphabet detection technique. Now, the study examines many
prevailing models in SL detection and carries out a CNN structure for ISL static alphabet
detection from the binary silhouette of the signer hand area. Wen et al. [12] developed
an AI-assisted SL detection and transmission method encompassing a virtual reality in-
terface, sensing gloves, and DL block. Segmentation and non-segmentation enabled DL
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algorithm to accomplish the detection of 20 sentences and 50 words. The segmentation
technique classifies whole sentence signals into word units. Next, the DL method identifies
each word element and reversely recognizes and reconstructs sentences. Khan et al. [13]
aimed to illustrate a user-friendly method for Bangla SL for converting text via CNN and
personalized ROI segmentation. By utilizing the ROI selection approach, the technique
illustrates improved performance when compared to traditional methodologies.

In [14], the authors developed an SL fingerspelling alphabet detection technique with
an image processing technique, supervised deep learning, and machine learning. Especially,
twenty-four alphabetical symbols are developed by different integrations of static gestures
(not including two motion gestures Z and J). Local binary pattern (LBP) and histogram of
oriented gradients (HOG) features of every gesture would be extracted from the training
image. Next, the multi-class support vector machine (SVM) is employed for training
the extracted dataset. Mannan et al. [15] applied a deep convolution neural network for
ASL alphabet detection to resolve ASL detection problems. The study proposed an ASL
detection technique with a DCNN. The efficiency of the DCNN method enhances the
quantity of the given dataset; for these purposes, we employed the data augmentation
method for expanding the size of the trained dataset from the current dataset.

Sharma et al. [16] introduce a DCNN method for recognizing different symbols in
ISL, which belongs to thirty-five classes. Such classes comprise cropped images of hand
gestures. Different from other feature selection-based models, DCNN has the benefit of
automated feature extraction in the training. It is named end-to-end learning. A lightweight
transfer learning (TL) structure makes the model training faster which provides 100%
accuracy. Furthermore, a web-based method was proposed which could simply decode the
symbol. In [17], a proposed novel architecture for signer-independent SL detection with
different DL architectures encompassing DRNN, hand semantic segmentation, and hand
shape feature representation. Extracting hand shape features can be accomplished by a
single-layer convolution self-organizing map (CSOM) rather than depending on the TL of
pretrained DCNN. Then, the series of extracted feature vectors are identified by utilizing
deep BiLSTM-RNN.

Though several ML and DL models for sign language recognition are available in the
literature, it is still needed to enhance classification performance. Owing to the continual
deepening of the model, the number of parameters of DL models also increases quickly
which results in model overfitting. Since the trial and error method for hyperparame-
ter tuning is a tedious and erroneous process, metaheuristic algorithms can be applied.
Therefore, in this work, we employ the ASO algorithm for the parameter selection of the
DCAE model.

3. The Proposed Model

In this study, a new ASODCAE-SLR technique has been developed for recognizing
sign languages to assist the communication of speaking and hearing disabled persons. The
ASODCAE-SLR technique initially pre-processes the input frames by a weighted average
filtering approach. Next, the ASODCAE-SLR technique employed a CapsNet feature
extractor to produce a collection of feature vectors. To identify and classify sign language,
ASO with the DCAE model is exploited in the study.

3.1. Image Pre-Processing

The ASODCAE-SLR technique initially pre-processes the input frames by a weighted
average filtering approach. The weighted average filter was planned to pre-process that
suppresses noise and improves spatial domain features efficiently [9]. This filter Wη was
determined as a matrix, whereas η refers to the odd number. All the element values of
the matrix were defined as the distance between the present place and the center of the
matrix, as demonstrated in Equation (1). The center of the matrix was determined as
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w(η+1)/2,(η+1)/2 = 2/η2. The presented filter continues edges but suppresses speckle noise
related to another filter namely the mean filter and maintains the continuity of images.

wi j =
1

η2
√
( η+1

2 − i)
2
+ ( η+1

2 − j)
2

; i = 1, 2, η; j = 1, 2 η; (1)

whereas I1, I2 ∈ RNr×NC , the convolutional of all the images utilizing Wη is obtained for
acquiring 2 images Iw

1 (η) = I1 ∗Wη and Iw
2 (η) = I2 ∗Wη , whereas ∗ signifies the 2D

convolutional function.

3.2. Feature Extraction: CapsNet Model

Next to pre-processing, the ASODCAE-SLR technique employs the CapsNet model to
generate feature vectors. A major benefit of CapsNet is that they hold the characteristics
of more concrete features which can be interpreted to understand what and how is the
network learning. The CapsNet has the ability for encoding spatial data and differentiate
among several poses, textures, and orientations [18]. The capsule is a set of neurons, thus
all the capsules have an activity vector connected to it that captures several instantiation
parameters to recognition of a certain kind of object or its part. The length and orientation
of the vector present the probability or possibility of the presence of that object and its gen-
eralization pose. These vectors were passed on to the upper-level capsules in lower-layer
capsules. The coupling coefficients occur among these layers of capsules. When the forecast
by the lower-level capsule equals the outcome of current capsules, the value of coupling
coefficient amongst them improves, calculated with utilize of softmax function. Specifically,
when the present capsule identifies a tight cluster of preceding prediction, strongly repre-
senting the occurrence of that object, its outcomes in a higher probability is also recognized
as routing by agreement. Figure 1 depicts the framework of the CapsNet method.
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Initially, the prediction vector (Equation (2)) was calculated as:

ûj|i∧ = Wijui, (2)

whereas ûj|i refers to the outcome of the forecast vector of upper-level jth capsule, Wij

and ui implies the weighted matrix and forecast vector of capsules i from the lower layer
correspondingly. It can capture spatial connections and interactions among sub-objects and
objects. In Equation (3), dependent upon the degree of agreement amongst neighboring
layer capsules, the coupling coefficients were calculated using the softmax function,

cij = exp
(
bij
)
/ ∑ exp(bik), (3)
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In which bij signifies the log probability amongst two capsules, initialization to zero,
and k represents the number of capsules. The input vector sj to jth layer capsule that a
weighted sum of ûj|i∧ vectors learned by routing technique is computed as:

sj = ∑
i

cijûj|i , (4)

Lastly, a squashing function that integrates squashing and unit scaling (Equation (5))
was executed for confining the value of results from the range amongst zero and one,
therefore calculating the probability as,

‖sj‖2vj = 1 + ‖sj‖2 sj

‖sj‖
, (5)

The loss function (as calculated by Equation (6)) was connected to capsules from the
final layer, whereas m + arιd m- are fixed to 0.9 and 0.1 resp.

lk = Tk max (0, m+ − ||vk||)
2
+ λ(1− Tk) max (0, ||vk|| −m−)2, (6)

whereas the value Tk is 1 for correct labels and 0 else, λ refers to the constant whose value is
0.5. The 1st term is calculated to correct labels, and the second term calculates to incorrect
labels. If Tk will be 1, the second term develops 0, and for Tk as 0, the first term develops
0. Similarly, the loss value 1k is 0 for correct forecasts with vk being superior to 0.9 and
non-zero otherwise.

3.3. Sign Language Recognition: DCAE Model

To identify and classify sign language, the DCAE model is exploited in the study. AE
is a conventional DNN structure that makes use of its input as a label. Later, the network
attempts to recreate its input in the learning mechanism [19]; for these purposes, it generates
and automatically extracts the representation feature in suitable time iterations. This kind
of network is created by stacking deep layers in AE forms consisting of two major parts of
decoder and encoder. DCAE is a kind of AE applying a convolution layer to determine the
inner data of an image. In CAE, structure weight is shared amongst each location within
every feature map, thereby reducing parameter redundancy and preserving the spatial
locality. For extracting deep features, consider D, W, and H as the depth, width, and height
of the dataset, correspondingly, and n refers to the pixel count. For every member of the
X set, the image patches with the size 7× 7× D are extracted, where χj denotes the central
pixel. Consequently, the X set is characterized as an image patch, every patch, x∗i , is given
into the encoder blocks. For an input x∗i , the hidden layer mapping of kth feature map is
shown below:

hk = σ
(

x∗i ∗Wk + bk
)

(7)

In Equation (7), b refers to the bias; σ denotes an activation function, and the symbol
∗ corresponds to the 2D convolution layer and it is attained by the following expression:

y = σ

(
∑

k∈H
hk ∗ W̃k + b̃k

)
(8)

In Equation (8), there exists bias b̃ for every input channel, and h denotes the set of
latent feature maps. The W̃ corresponding to the flip operation over both dimensions
of weight W. y denotes the prediction value. In order to define the parameter vector
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depicting the complete DCAE architecture, one could minimalize the subsequent cost
function signified as follows:

E(θ) =
1
n

n

∑
i=1
‖x∗i − yi‖2

2 (9)

For minimizing this function, we need to evaluate the gradient of cost function con-
cerning the convolutional kernel

(
W, W̃

)
and bias

(
b, b̃

)
parameter:

∂E(θ)
∂Wk = x∗ ∗ δhk + hk ∗ δy (10)

∂E(θ)
∂bk = δhk + δy (11)

Now, δh and δy denote the deltas of the hidden state and the reconstruction, corre-
spondingly. Then, the weight is upgraded by the optimization methodology. At last, the
DCAE parameter is evaluated when the loss function convergence is accomplished. The
output feature map of the encoder block is regarded as a deep feature. In the study, batch
normalization (BN) was employed for tackling the internal covariant shift phenomenon and
enhancing the efficiency of the network via the normalization of input layers by re-centering
and rescaling. The BN assists to increase accuracy and learn faster.

3.4. Hyperparameter Tuning: ASO Algorithm

In this study, the ASO algorithm is exploited to finely adjust the hyperparameter
values related to the DCAE model. The molecular dynamics simulate the mathematical
process of the ASO technique. In ASO, the place of all the atoms from the searching space
that is affected by their mass signifies the solutions [20]. ASO begins the optimization by
creating a group of arbitrary particles from N-dimensional space. Afterward, the solution
of all the atoms was estimated as dependent upon the main function. Atoms upgrade their
place and velocity from all the iterations, and the place of the optimum atom was upgraded
from all the iterations. The velocity of particles is a function of their acceleration, and the
acceleration of atoms is estimated based on Newton’s second law dependent upon the ratio
of forces executed to the mass of particles. The mass of ith atom from the iteration of t, mi(t)
was computed by the subsequent formulas:

Mi(t) = e
Fiti(t)−FitBest(t)

FitBest(t)−FitWorst (12)

mi(t) =
Mi(t)

∑N
j=1 Mj(t)

(13)

whereas FitBest(t) and FitWorst signifies atoms with optimum and worse values from the
tth iteration and Fiti(t) implies the value of ith atom main function from the Tth iteration,
correspondingly. Regarding the minimize problems, FitBest and FitWorst were assumed
dependent upon the subsequent connections:

FitBest(t) = min (Fiti(t)), i ∈ {1, 2, . . . , N} (14)

FitWorst(t) = max (Fiti(t)), i ∈ {1, 2, . . . , N} (15)

During all the periods, the count of neighbors of all the atoms that interact is defined
utilizing Equation (16):

K(t) = N − (N − 2)×
[

T
T

]
(16)

In which T defines the entire amount of iterations of the technique, or in another word,
the life of systems. As is noted, the parameter K is a function of time, slowly reducing
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the iterations. The forces executed on all the particles contain two kinds of interaction
forces and internal constraint forces. The interaction force that is determined utilizing the
Lennard–Jones potential method and the internal constraint force that is connected to the
bond length potential and differs depending upon the distance amongst all the atoms to
optimum atoms were computed utilizing Equations (17) and (18), correspondingly.

Fd
i (t) = ∑

j∈KBest

randjFij(t)
d (17)

Fij(t) = −α(1− t− 1
T

)
3
e−

20t
T [2(hij(t))

13 −
(

hij(t))7
]

Gd
i (t) = −λ(t)

(
xd

best(t)− xd
i (t)

)
, λ(t) = βe

(
−20

T
T

)
(18)

whereas F and G define the communication and internal constrain forces correspondingly,
randj depicts an arbitrary number amongst 0 and 1, and KBest refers to the subset of the atom
population containing K atoms with optimum main function values. Additionally, xd

best(t)
demonstrates the place of an optimum atom from the tth iteration from the d dimensional
space, λ(t) illustrates the Lagrangian coefficient, α stands for the depth coefficient, and β
implies the weighted coefficient. Figure 2 illustrates the flowchart of the ASO technique.
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As follows, the acceleration of i particle from the dimensional d and period τ was
computed in Equation (19):

ad
i (t) =

Fd
i (t)

md
i (t)

+
Gd

i (t)
md

i (t)
=

−α(1·e(−20 T
T ) × ∑

j∈Kbest

ri [2×( (hij(t))13−hij(t))7]
mi(t)

(Xd
j (t)−Xd

i (‖))
||Xi(t),Xj(t)||2

+
βe(−20 T

T )(Xd
best(t)−Xd

i (t))
mi(t)

(19)
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The last step in all the iterations is for updating the particle velocity and location that
is achieved in the subsequent formulas:

vd
i (t + 1) = randd

i vd
i (t) + ad

i (t) (20)

xd
i (t + 1) = xd

i (t) + vd
i (t + 1) (21)

Every update and compute were carried out constantly still the termination condition
is met. Lastly, the location and value of the main function of an optimum atom were
assumed as the optimum estimate of problems.

The ASO approach derives a fitness function to achieve an enhanced performance of
the classification. It defines a positive integer to signify the performance of the candidate
solution. The minimization of the classification error rate is considered as the fitness
function in this study as follows.

itness(xi) = Classi f ierErrorRate(xi)

= number o f misclassi f ied samples
Total number o f samples ∗ 100

(22)

4. Result Analysis

The proposed model is simulated using Python 3.6.5 tool on PC i5-8600k, GeForce
1050Ti 4GB, 16GB RAM, 250GB SSD, and 1TB HDD. The parameter settings are given as
follows: learning rate: 0.01, dropout: 0.5, batch size: 5, epoch count: 50, and activation:
ReLU. This section inspects the sign language recognition outcomes of the ASODCAE-SLR
model using the Arabic Sign Language dataset. In this study, a total of 1100 samples under
11 class labels are used. Table 1 depicts the detailed description of the dataset.

Table 1. Dataset details.

Label Arabic Word Meaning No. of Samples

1
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4. Result Analysis 

The proposed model is simulated using Python 3.6.5 tool on PC i5-8600k, GeForce 

1050Ti 4GB, 16GB RAM, 250GB SSD, and 1TB HDD. The parameter settings are given as 

follows: learning rate: 0.01, dropout: 0.5, batch size: 5, epoch count: 50, and activation: 

ReLU. This section inspects the sign language recognition outcomes of the ASODCAE-

SLR model using the Arabic Sign Language dataset. In this study, a total of 1100 samples 

under 11 class labels are used. Table 1 depicts the detailed description of the dataset.  

Table 1. Dataset details. 

Label Arabic Word Meaning No. of Samples 

1  Friend 100 

2  Neighbor 100 

3  Guest 100 

4  Gift 100 

5  Enemy 100 

6 
 

To Smell 100 

7  To Help 100 

8  Thank You 100 

9  Come in 100 

10  Shame 100 

11  House 100 

Total Number of Samples 1100 

The confusion matrix generated by the ASODCAE-SLR model on the entire dataset 

is demonstrated in Figure 3. The figure depicted that the ASODCAE-SLR model has ac-

curately recognized all the 11 class labels on the entire dataset. 

Friend 100

2
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(22) 

4. Result Analysis 

The proposed model is simulated using Python 3.6.5 tool on PC i5-8600k, GeForce 

1050Ti 4GB, 16GB RAM, 250GB SSD, and 1TB HDD. The parameter settings are given as 

follows: learning rate: 0.01, dropout: 0.5, batch size: 5, epoch count: 50, and activation: 

ReLU. This section inspects the sign language recognition outcomes of the ASODCAE-

SLR model using the Arabic Sign Language dataset. In this study, a total of 1100 samples 

under 11 class labels are used. Table 1 depicts the detailed description of the dataset.  

Table 1. Dataset details. 

Label Arabic Word Meaning No. of Samples 

1  Friend 100 

2  Neighbor 100 

3  Guest 100 

4  Gift 100 

5  Enemy 100 

6 
 

To Smell 100 

7  To Help 100 

8  Thank You 100 

9  Come in 100 

10  Shame 100 

11  House 100 

Total Number of Samples 1100 

The confusion matrix generated by the ASODCAE-SLR model on the entire dataset 

is demonstrated in Figure 3. The figure depicted that the ASODCAE-SLR model has ac-

curately recognized all the 11 class labels on the entire dataset. 

Neighbor 100

3
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∗ 100  

(22) 

4. Result Analysis 

The proposed model is simulated using Python 3.6.5 tool on PC i5-8600k, GeForce 

1050Ti 4GB, 16GB RAM, 250GB SSD, and 1TB HDD. The parameter settings are given as 

follows: learning rate: 0.01, dropout: 0.5, batch size: 5, epoch count: 50, and activation: 

ReLU. This section inspects the sign language recognition outcomes of the ASODCAE-

SLR model using the Arabic Sign Language dataset. In this study, a total of 1100 samples 

under 11 class labels are used. Table 1 depicts the detailed description of the dataset.  

Table 1. Dataset details. 

Label Arabic Word Meaning No. of Samples 

1  Friend 100 

2  Neighbor 100 

3  Guest 100 

4  Gift 100 

5  Enemy 100 

6 
 

To Smell 100 

7  To Help 100 

8  Thank You 100 

9  Come in 100 

10  Shame 100 

11  House 100 

Total Number of Samples 1100 

The confusion matrix generated by the ASODCAE-SLR model on the entire dataset 

is demonstrated in Figure 3. The figure depicted that the ASODCAE-SLR model has ac-

curately recognized all the 11 class labels on the entire dataset. 

Guest 100

4
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∗ 100  

(22) 

4. Result Analysis 

The proposed model is simulated using Python 3.6.5 tool on PC i5-8600k, GeForce 

1050Ti 4GB, 16GB RAM, 250GB SSD, and 1TB HDD. The parameter settings are given as 

follows: learning rate: 0.01, dropout: 0.5, batch size: 5, epoch count: 50, and activation: 

ReLU. This section inspects the sign language recognition outcomes of the ASODCAE-

SLR model using the Arabic Sign Language dataset. In this study, a total of 1100 samples 

under 11 class labels are used. Table 1 depicts the detailed description of the dataset.  

Table 1. Dataset details. 

Label Arabic Word Meaning No. of Samples 

1  Friend 100 

2  Neighbor 100 

3  Guest 100 

4  Gift 100 

5  Enemy 100 

6 
 

To Smell 100 

7  To Help 100 

8  Thank You 100 

9  Come in 100 

10  Shame 100 

11  House 100 

Total Number of Samples 1100 

The confusion matrix generated by the ASODCAE-SLR model on the entire dataset 

is demonstrated in Figure 3. The figure depicted that the ASODCAE-SLR model has ac-

curately recognized all the 11 class labels on the entire dataset. 

Gift 100

5
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(22) 

4. Result Analysis 

The proposed model is simulated using Python 3.6.5 tool on PC i5-8600k, GeForce 

1050Ti 4GB, 16GB RAM, 250GB SSD, and 1TB HDD. The parameter settings are given as 

follows: learning rate: 0.01, dropout: 0.5, batch size: 5, epoch count: 50, and activation: 

ReLU. This section inspects the sign language recognition outcomes of the ASODCAE-

SLR model using the Arabic Sign Language dataset. In this study, a total of 1100 samples 

under 11 class labels are used. Table 1 depicts the detailed description of the dataset.  

Table 1. Dataset details. 

Label Arabic Word Meaning No. of Samples 

1  Friend 100 

2  Neighbor 100 

3  Guest 100 

4  Gift 100 

5  Enemy 100 

6 
 

To Smell 100 

7  To Help 100 

8  Thank You 100 

9  Come in 100 

10  Shame 100 

11  House 100 

Total Number of Samples 1100 

The confusion matrix generated by the ASODCAE-SLR model on the entire dataset 

is demonstrated in Figure 3. The figure depicted that the ASODCAE-SLR model has ac-

curately recognized all the 11 class labels on the entire dataset. 

Enemy 100

6
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∗ 100  

(22) 

4. Result Analysis 

The proposed model is simulated using Python 3.6.5 tool on PC i5-8600k, GeForce 

1050Ti 4GB, 16GB RAM, 250GB SSD, and 1TB HDD. The parameter settings are given as 

follows: learning rate: 0.01, dropout: 0.5, batch size: 5, epoch count: 50, and activation: 

ReLU. This section inspects the sign language recognition outcomes of the ASODCAE-

SLR model using the Arabic Sign Language dataset. In this study, a total of 1100 samples 

under 11 class labels are used. Table 1 depicts the detailed description of the dataset.  

Table 1. Dataset details. 

Label Arabic Word Meaning No. of Samples 

1  Friend 100 

2  Neighbor 100 

3  Guest 100 

4  Gift 100 

5  Enemy 100 

6 
 

To Smell 100 

7  To Help 100 

8  Thank You 100 

9  Come in 100 

10  Shame 100 

11  House 100 

Total Number of Samples 1100 

The confusion matrix generated by the ASODCAE-SLR model on the entire dataset 

is demonstrated in Figure 3. The figure depicted that the ASODCAE-SLR model has ac-

curately recognized all the 11 class labels on the entire dataset. 

To Smell 100

7
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∗ 100  

(22) 

4. Result Analysis 

The proposed model is simulated using Python 3.6.5 tool on PC i5-8600k, GeForce 

1050Ti 4GB, 16GB RAM, 250GB SSD, and 1TB HDD. The parameter settings are given as 

follows: learning rate: 0.01, dropout: 0.5, batch size: 5, epoch count: 50, and activation: 

ReLU. This section inspects the sign language recognition outcomes of the ASODCAE-

SLR model using the Arabic Sign Language dataset. In this study, a total of 1100 samples 

under 11 class labels are used. Table 1 depicts the detailed description of the dataset.  

Table 1. Dataset details. 

Label Arabic Word Meaning No. of Samples 

1  Friend 100 

2  Neighbor 100 

3  Guest 100 

4  Gift 100 

5  Enemy 100 

6 
 

To Smell 100 

7  To Help 100 

8  Thank You 100 

9  Come in 100 

10  Shame 100 

11  House 100 

Total Number of Samples 1100 

The confusion matrix generated by the ASODCAE-SLR model on the entire dataset 

is demonstrated in Figure 3. The figure depicted that the ASODCAE-SLR model has ac-

curately recognized all the 11 class labels on the entire dataset. 

To Help 100

8
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𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖) = 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒(𝑥𝑖) 
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∗ 100  

(22) 

4. Result Analysis 

The proposed model is simulated using Python 3.6.5 tool on PC i5-8600k, GeForce 

1050Ti 4GB, 16GB RAM, 250GB SSD, and 1TB HDD. The parameter settings are given as 

follows: learning rate: 0.01, dropout: 0.5, batch size: 5, epoch count: 50, and activation: 

ReLU. This section inspects the sign language recognition outcomes of the ASODCAE-

SLR model using the Arabic Sign Language dataset. In this study, a total of 1100 samples 

under 11 class labels are used. Table 1 depicts the detailed description of the dataset.  

Table 1. Dataset details. 

Label Arabic Word Meaning No. of Samples 

1  Friend 100 

2  Neighbor 100 

3  Guest 100 

4  Gift 100 

5  Enemy 100 

6 
 

To Smell 100 

7  To Help 100 

8  Thank You 100 

9  Come in 100 

10  Shame 100 

11  House 100 

Total Number of Samples 1100 

The confusion matrix generated by the ASODCAE-SLR model on the entire dataset 

is demonstrated in Figure 3. The figure depicted that the ASODCAE-SLR model has ac-

curately recognized all the 11 class labels on the entire dataset. 

Thank You 100

9
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∗ 100  

(22) 

4. Result Analysis 

The proposed model is simulated using Python 3.6.5 tool on PC i5-8600k, GeForce 

1050Ti 4GB, 16GB RAM, 250GB SSD, and 1TB HDD. The parameter settings are given as 

follows: learning rate: 0.01, dropout: 0.5, batch size: 5, epoch count: 50, and activation: 

ReLU. This section inspects the sign language recognition outcomes of the ASODCAE-

SLR model using the Arabic Sign Language dataset. In this study, a total of 1100 samples 

under 11 class labels are used. Table 1 depicts the detailed description of the dataset.  

Table 1. Dataset details. 

Label Arabic Word Meaning No. of Samples 

1  Friend 100 

2  Neighbor 100 

3  Guest 100 

4  Gift 100 

5  Enemy 100 

6 
 

To Smell 100 

7  To Help 100 

8  Thank You 100 

9  Come in 100 

10  Shame 100 

11  House 100 

Total Number of Samples 1100 

The confusion matrix generated by the ASODCAE-SLR model on the entire dataset 

is demonstrated in Figure 3. The figure depicted that the ASODCAE-SLR model has ac-

curately recognized all the 11 class labels on the entire dataset. 

Come in 100

10
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𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖) = 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒(𝑥𝑖) 

=
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
∗ 100  

(22) 

4. Result Analysis 

The proposed model is simulated using Python 3.6.5 tool on PC i5-8600k, GeForce 

1050Ti 4GB, 16GB RAM, 250GB SSD, and 1TB HDD. The parameter settings are given as 

follows: learning rate: 0.01, dropout: 0.5, batch size: 5, epoch count: 50, and activation: 

ReLU. This section inspects the sign language recognition outcomes of the ASODCAE-

SLR model using the Arabic Sign Language dataset. In this study, a total of 1100 samples 

under 11 class labels are used. Table 1 depicts the detailed description of the dataset.  

Table 1. Dataset details. 

Label Arabic Word Meaning No. of Samples 

1  Friend 100 

2  Neighbor 100 

3  Guest 100 

4  Gift 100 

5  Enemy 100 

6 
 

To Smell 100 

7  To Help 100 

8  Thank You 100 

9  Come in 100 

10  Shame 100 

11  House 100 

Total Number of Samples 1100 

The confusion matrix generated by the ASODCAE-SLR model on the entire dataset 

is demonstrated in Figure 3. The figure depicted that the ASODCAE-SLR model has ac-

curately recognized all the 11 class labels on the entire dataset. 

Shame 100

11
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𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖) = 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒(𝑥𝑖) 
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∗ 100  

(22) 

4. Result Analysis 

The proposed model is simulated using Python 3.6.5 tool on PC i5-8600k, GeForce 

1050Ti 4GB, 16GB RAM, 250GB SSD, and 1TB HDD. The parameter settings are given as 

follows: learning rate: 0.01, dropout: 0.5, batch size: 5, epoch count: 50, and activation: 

ReLU. This section inspects the sign language recognition outcomes of the ASODCAE-

SLR model using the Arabic Sign Language dataset. In this study, a total of 1100 samples 

under 11 class labels are used. Table 1 depicts the detailed description of the dataset.  

Table 1. Dataset details. 

Label Arabic Word Meaning No. of Samples 

1  Friend 100 

2  Neighbor 100 

3  Guest 100 

4  Gift 100 

5  Enemy 100 

6 
 

To Smell 100 

7  To Help 100 

8  Thank You 100 

9  Come in 100 

10  Shame 100 

11  House 100 

Total Number of Samples 1100 

The confusion matrix generated by the ASODCAE-SLR model on the entire dataset 

is demonstrated in Figure 3. The figure depicted that the ASODCAE-SLR model has ac-

curately recognized all the 11 class labels on the entire dataset. 

House 100

Total Number of Samples 1100

The confusion matrix generated by the ASODCAE-SLR model on the entire dataset
is demonstrated in Figure 3. The figure depicted that the ASODCAE-SLR model has
accurately recognized all the 11 class labels on the entire dataset.
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Figure 3. Confusion matrix of ASODCAE-SLR approach under entire dataset.

Table 2 report the sign language recognition outcomes of the ASODCAE-SLR model
on the entire dataset. The ASODCAE-SLR model has recognized samples under class 1
with accuy, precn, recal , F1score, and Jaccard index of 99.27%, 96.94%, 95%, 95.96%, and
99.23%. Additionally, the ASODCAE-SLR system has recognized samples under class 2
with accuy, precn, recal , F1score, and Jaccard index of 99.27%, 96.94%, 93%, 95.88%, and
92.08%. In line with this, the ASODCAE-SLR method has recognized samples under class 3
with accuy, precn, recal , F1score, and Jaccard index of 99.64%, 98%, 98%, 98%, and 96.08%.
Next, the ASODCAE-SLR system has recognized samples under class 4 with accuy, precn,
recal , F1score, and Jaccard index of 99%, 92.38%, 97%, 94.63%, and 89.81%.

Table 2. Result analysis of ASODCAE-SLR approach with distinct class labels under entire dataset.

Entire Dataset

Labels Accuracy Precision Recall F1-Score Jaccard Index

1 99.27 96.94 95.00 95.96 92.23

2 99.27 98.94 93.00 95.88 92.08

3 99.64 98.00 98.00 98.00 96.08

4 99.00 92.38 97.00 94.63 89.81

5 99.00 98.90 90.00 94.24 89.11

6 98.91 93.14 95.00 94.06 88.79

7 99.00 95.88 93.00 94.42 89.42

8 98.82 98.88 88.00 93.12 87.13

9 99.00 93.20 96.00 94.58 89.72

10 97.64 80.33 98.00 88.29 79.03

11 98.82 93.94 93.00 93.47 87.74

Average 98.94 94.59 94.18 94.24 89.19
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The confusion matrix generated by the ASODCAE-SLR approach on 70% of training
(TR) data is displayed in Figure 4. The figure depicted that the ASODCAE-SLR model has
accurately recognized all the 11 class labels on 70% of TR data.
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Figure 4. Confusion matrix of ASODCAE-SLR approach under 70% of TR data.

Table 3 illustrate the sign language recognition outcomes of the ASODCAE-SLR
methodology on 70% of TR data. The ASODCAE-SLR technique has recognized samples
under class 1 with accuy, precn, recal , F1score, and Jaccard index of 99.35%, 97.10%, 95.71%,
96.40%, and 93.06%. Additionally, the ASODCAE-SLR algorithm has recognized samples
under class 2 with accuy, precn, recal , F1score, and Jaccard index of 99.09%, 98.48%, 91.55%,
94.89%, and 90.28%. Similarly, the ASODCAE-SLR approach has recognized samples under
class 3 with accuy, precn, recal , F1score, and Jaccard index of 99.48%, 96.97%, 96.97%, 96.97%,
and 94.12%. At last, the ASODCAE-SLR system has recognized samples under class 4 with
accuy, precn, recal , F1score, and Jaccard index of 98.96%, 93.51%, 96%, 94.74%, and 90%.

Table 3. Result analysis of ASODCAE-SLR approach with distinct class labels under 70% of TR data.

Training Phase (70%)

Labels Accuracy Precision Recall F1-Score Jaccard Index

1 99.35 97.10 95.71 96.40 93.06

2 99.09 98.48 91.55 94.89 90.28

3 99.48 96.97 96.97 96.97 94.12

4 98.96 93.51 96.00 94.74 90.00

5 98.83 98.36 88.24 93.02 86.96

6 98.70 93.83 93.83 93.83 88.37

7 98.96 98.33 89.39 93.65 88.06

8 98.83 98.55 89.47 93.79 88.31

9 99.09 94.37 95.71 95.04 90.54

10 97.27 75.29 100.00 85.91 75.29

11 98.70 90.77 93.65 92.19 85.51

Average 98.84 94.14 93.68 93.67 88.23
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The confusion matrix generated by the ASODCAE-SLR approach on 30% of testing
(TS) data is represented in Figure 5. The figure depicted that the ASODCAE-SLR technique
has accurately recognized all the 11 class labels on 30% of the TS dataset.
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Figure 5. Confusion matrix of ASODCAE-SLR approach under 30% of TS data.

Table 4 demonstrates the sign language recognition outcomes of the ASODCAE-SLR
technique on 30% of TS data. The ASODCAE-SLR approach has recognized samples under
class 1 with accuy, precn, recal , F1score, and Jaccard index of 99.09%, 96.55%, 93.33%, 94.92%,
and 90.32%. Furthermore, the ASODCAE-SLR methodology has recognized samples under
class 2 with accuy, precn, recal , F1score, and Jaccard index of 99.70%, 100%, 96.55%, 98.25%,
and 96.55%. In addition, the ASODCAE-SLR system has recognized samples under class 3
with accuy, precn, recal , F1score, and Jaccard index of 100%, 100%, 100%, 100%, and 100%.
Afterward, the ASODCAE-SLR system recognized samples under class 4 with accuy, precn,
recal , F1score, and Jaccard index of 99.09%, 89.29%, 100%, 94.34%, and 89.29%.

Table 4. Result analysis of ASODCAE-SLR approach with distinct class labels under 30% of TS data.

Testing Phase (30%)

Labels Accuracy Precision Recall F1-Score Jaccard Index

1 99.09 96.55 93.33 94.92 90.32

2 99.70 100.00 96.55 98.25 96.55

3 100.00 100.00 100.00 100.00 100.00

4 99.09 89.29 100.00 94.34 89.29

5 99.39 100.00 93.75 96.77 93.75

6 99.39 90.48 100.00 95.00 90.48

7 99.09 91.89 100.00 95.77 91.89

8 98.79 100.00 83.33 90.91 83.33

9 98.79 90.62 96.67 93.55 87.88

10 98.48 91.89 94.44 93.15 87.18

11 99.09 100.00 91.89 95.77 91.89

Average 99.17 95.52 95.45 95.31 91.14
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The training accuracy (TRA) and validation accuracy (VLA) acquired by the ASODCAE-
SLR approach on the test dataset is shown in Figure 6. The experimental result stated that
the ASODCAE-SLR technique has achieved improved values of TRA and VLA. Particularly
the VLA seemed greater than TRA.
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The training loss (TRL) and validation loss (VLL) accomplished by the ASODCAE-SLR
system on the test dataset are depicted in Figure 7. The experimental result revealed that
the ASODCAE-SLR approach has obtained minimal values of TRL and VLL. Certainly, the
VLL is lesser than TRL.
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A clear precision–recall examination of the ASODCAE-SLR algorithm on the test
dataset is illustrated in Figure 8. The figure represented that the ASODCAE-SLR approach
has resulted in higher values of precision—recall values under all classes.
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Figure 8. Precision-recall analysis ASODCAE-SLR approach.

A detailed ROC analysis of the ASODCAE-SLR system on the test dataset is illustrated in
Figure 9. The outcomes represented by the ASODCAE-SLR algorithm have demonstrated
their capability in categorizing distinct classes on the test dataset.
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At last, comprehensive comparative results of the ASODCAE-SLR model with recent
models are given in Figure 10 [21]. The figure indicated that the GRU-LSTM model has
attained reduced classification results compared to existing techniques.
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Next, the GRU, RNN, and BiLSTM models have reported slightly enhanced classi-
fication performance whereas the LSTM model has shown reasonable classification per-
formance. Moreover, the LSTM-GRU model has accomplished near-optimal performance.
However, the obtained values implied that the ASODCAE-SLR model has accomplished
improved performance over other models.

5. Conclusions

In this study, a new ASODCAE-SLR technique has been developed for recognizing
sign languages to assist the communication of speaking and hearing disabled persons.
The ASODCAE-SLR technique initially pre-processes the input frames by a weighted
average filtering approach. Next, the ASODCAE-SLR technique employed a CapsNet
feature extractor to produce a collection of feature vectors. To identify and classify sign
language, the DCAE model is exploited in the study. At the final stage, the ASO algorithm
is utilized as a hyperparameter optimizer which in turn increases the efficacy of the DCAE
model. The experimental validation of the ASODCAE-SLR model is tested using the Arabic
Sign Language dataset. The simulation analysis exhibit the enhanced performance of
the ASODCAE-SLR model compared to existing models. Therefore, the proposed model
can be employed to assist communication between deaf and dumb people with ordinary
people. The proposed model can be extended to sign board recognition in real-time
applications. In the future, the performance of the proposed model can be tested on a
real-time large-scale dataset. In addition, a fusion of DL models can be derived to boost the
SL recognition performance.
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