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Abstract: Alcohol consumption is linked to urinary sodium excretion and both of these traits are
linked to hypertension and cardiovascular diseases (CVDs). The interplay between alcohol consump-
tion and sodium on hypertension, and cardiovascular diseases (CVDs) is not well-described. Here,
we used genetically predicted alcohol consumption and explored the relationships between alcohol
consumption, urinary sodium, hypertension, and CVDs. Methods: We performed a comparative
analysis among 295,189 participants from the prospective cohort of the UK Biobank (baseline data
collected between 2006 and 2010). We created a genetic risk score (GRS) using 105 published genetic
variants in Europeans that were associated with alcohol consumption. We explored the relationships
between GRS, alcohol consumption, urinary sodium, blood pressure traits, and incident CVD. We
used linear and logistic regression and Cox proportional hazards (PH) models and Mendelian ran-
domization in our analysis. Results: The median follow-up time for composite CVD and stroke were
6.1 years and 7.1 years respectively. Our analyses showed that high alcohol consumption is linked to
low urinary sodium excretion. Our results showed that high alcohol GRS was associated with high
blood pressure and higher risk of stroke and supported an interaction effect between alcohol GRS
and urinary sodium on stage 2 hypertension (Pinteraction = 0.03) and CVD (Pinteraction = 0.03), i.e., in
the presence of high urinary sodium excretion, the effect of alcohol GRS on blood pressure may be
enhanced. Conclusions: Our results show that urinary sodium excretion may offset the risk posed by
genetic risk of alcohol consumption.

Keywords: genetics of alcohol; urinary sodium; cardiovascular traits

1. Introduction

Cardiovascular disease (CVD) is a global public health problem, killing 17 million peo-
ple annually [1]. Alcohol consumption plays a role in the development of hypertension and
CVD [2—-4] and reducing alcohol consumption has been shown to lower blood pressure [5].

The sodium balance plays an important role in blood pressure regulation [6,7]. Urinary
sodium excretion is associated with blood pressure [8]. We have previously shown that
higher genetic risk of urinary sodium is associated with higher systolic blood pressure
(SBP) and diastolic blood pressure (DBP) [9]. Alcohol consumption has been reported to
decrease urinary sodium excretion [10]. A recent cross-sectional study [11] used data from
older adults in northern China and found that the combination of alcohol consumption
and sodium intake imposed a greater risk of hypertension. This implies that there might be
a synergic effect between alcohol consumption and sodium on the risk of hypertension.
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Advances in genetic data acquisition and analysis have improved our understanding
of complex relationships and the biological mechanisms underpinning complex diseases.
Recent genome-wide association studies (GWASs) among Europeans identified genetic
variants in the form of single nucleotide polymorphisms (SNPs) associated with alcohol
consumption [12,13] and urinary sodium [9].

To better understand the relationships between alcohol consumption, urinary sodium,
hypertension, and CVDs, we constructed a genetic risk score (GRS) for alcohol consump-
tion based on 105 SNPs associated with alcohol consumption in Europeans [12,13]. We
explored the relationship between GRS and alcohol consumption and the effect of GRS
on blood pressure, risk of hypertension, and CVDs in relation with urinary sodium ex-
cretion. We performed our study using individual-level data from 295,189 UK Biobank
(UKB) participants.

2. Materials and Methods
2.1. Ethics Approval

Ethical approval was obtained centrally by the UKB from the UKB Research Ethics
Committee and Human Tissue Authority. All participants whose data was used in this
study gave informed consent. We additionally obtained ethics approval from Brunel
University London to work on secondary data from the UKB (25527-A-Jun/2021-32860-1).

2.2. Study Population and Exclusion Criteria

UKB is a large prospective cohort set up in 22 centers across the United Kingdom. It
consists of over 500,000 participants aged 40 to 69 recruited between 2006 and 2010 [14]. Ge-
netic data on 487,409 participants were available for analysis. We applied several exclusion
criteria (Figure 1). We excluded participants who withdrew consent (N = 109), partici-
pants of non-European ancestry (N = 28,547), first- or second-degree relatives (N = 34,876),
pregnant women or women unsure of pregnancy status at baseline (N = 232), prevalent
CVD cases (N = 25,561), sex mismatch (N = 140), participants with health-related change in
drinking habits (N = 65,579), non-alcoholic drinkers or participants with missing alcohol
consumption data (N = 36,023), and participants with missing data regarding the main
study variables (N = 1153). A total of 295,189 participants remained for analysis. Partici-
pants with health-related change in drinking habits included participants who self-reported
to reduce/stop their drinking for one of the following reasons on a touch screen question:
(1) illness or ill health, (2) doctor’s advice, or (3) health precaution.

Genetic Risk for alcohol consumption calculated for UKB
participants 1
N =487,409

Participants who withdrew consent (N = 109) |

N =487,300

N =458,753
N =423,_877

Non-European ancestry (N = 28,547) |

15t and 274 degree relatives (N = 34,876) |

Pregnant women/unsure of pregnancy at baseline (N = 232) |

Self-reported / doctor diagnosed heart disease at baseline (N = 24,780) I

N =398,865

N =398,084
N =397,944

Hospital record of prevalent stroke, MI and CVD (N =781) I

Sex mismatch (N = 140) |

Stopping or reducing alcohol consumption due to health reasons (N = 65,579) |

Nondrinkers / missing alcohol data (N = 36,023) |

Missing data in the main covariates (N = 1153) |

N =295,189

Figure 1. Exclusion flowchart. Exclusion criteria and the final UKB sample size used in the analysis.
MI, myocardial infarction; CVD, cardiovascular diseases.
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2.3. Blood Pressure and Definition of Hypertension

Supplementary Table S1 lists the UKB data fields used in our analyses. Blood pressure
was measured centrally by the UKB [15]. We have described details about the blood
pressure phenotype previously [16]. In brief, for every participant, SBP and DBP was each
measured twice at the UKB assessment center by an automated device (Omron HEM-7015IT
digital BP monitor) or a manual device when automated readings could not be taken. Where
multiple values for blood pressure existed, we used the mean of all available measurements.
We adjusted the blood pressure for participants taking blood-pressure-lowering medication
by adding 15 mmHg to their SBP and 10 mmHg to their DBP measurements according to
Tobin et al. [17].

We defined hypertension as stage 1 or stage 2 according to the American Heart
Association (AHA) guideline [18]. Stage 1 hypertension includes individuals with SBP
between 130 and 139 mmHg or DBP between 80 and 89 mmHg [18]. Stage 2 hypertension
includes individuals with SBP > 140 mmHg and/or DBP > 90 mmHg or using blood-
pressure-lowering medications [18].

2.4. Cardiovascular Diseases

We have described the definitions and methods for assessment of CVD events in
detail previously [16]. In summary, CVD was defined as an episode of stroke, myocardial
infarction, or coronary heart disease.

Nonfatal and fatal records of CVD were extracted from Hospital Episode Statistics
(HES). We used the International Classification of Diseases 9 and 10 codes provided in
Supplementary Table S2 to extract CVD cases. We used the HES-recorded episode date
as the date of CVD event or death. If the episode date was missing, we used the hospital
admission date. For participants with multiple hospital admissions for the same condition,
we used the first recorded date.

Prevalent CVD cases were defined as a hospital record of CVD cases that occurred
prior to the UKB baseline assessment date for each participant. Prevalent CVD cases were
additionally identified from the UKB self-reported questionnaire at the baseline assessment
for participants who self-reported previous diagnosis of CVDs (Supplementary Table S2).
Incident cases were defined as newly diagnosed cases after the UKB baseline assessment
date. The follow-up time for each participant was defined as the time from the UKB baseline
assessment date for each participant until 31 March 2015.

2.5. Assessment of Lifestyle Factors

Urinary sodium excretion was measured from spot urine samples collected at the UKB
baseline assessment center [19]. The concentration of sodium in the urine was measured by
ion-selective electrode analysis using a Beckman Coulter AU5400.

We calculated the alcohol intake in grams per day (g/day) for each UKB participant
based on self-reported alcohol intake from the UKB touchscreen questionnaire at the
baseline assessment. We used answers from questions on the alcohol intake frequency
and average weekly intake of red wine, white wine, beer/cider, spirits, and fortified wine,
respectively (Supplementary Table S1). Details of our alcohol intake (g/day) calculation
were described previously [12]. In brief, for participants with complete responses to the
alcohol questions listed above, we multiplied the quantity of the average weekly intake
of each alcoholic beverage by its standard drink size and reference alcohol content. We
then summed up the drink-specific intake based on the reported drinking frequency and
converted alcohol consumption to gram per day.

As alcohol consumption was not normally distributed, we transformed alcohol con-
sumption (g/day) on the natural logarithm scale. All subsequent mentions of alcohol
consumption in this study refer to transformed alcohol consumption.

Smoking status was recorded based on a UKB self-reported questionnaire [19]. Meth-
ods of assessment for sedentary lifestyle were mentioned in our previous publication [16].
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We measured the sum of hours per day each participant spent sitting (watching TV, driving,
and using a computer). Greater values indicated more hours spent sedentary.

To assess participants” dietary intake, we calculated a Dietary Approaches to Stop
Hypertension (DASH) score based on methods published elsewhere [16,20]. In brief, the
DASH score was calculated using the UKB self-reported food questionnaire at baseline.
We scored and ranked the participants based on the selected dietary components listed in
Supplementary Table S1 and derived an overall DASH score for each participant.

The Townsend deprivation score used UK national census data on car ownership,
household overcrowding, owner-occupation, and unemployment for each UK region/
area [21]. The UKB assigned each participant a score based on the residence postcode the
participant provided at the baseline assessment.

2.6. Genotyping, Imputation, and Genetic Calculations in the UKB

Genotyping and imputation were conducted centrally by the UKB. Detailed method-
ologies were provided elsewhere [14,15]. In brief, participants’ blood samples were col-
lected at the UKB assessment center and DNA was extracted and genotyped using the
UKB Axiom Array. Genotype imputation used 3 reference panels, including Haplotype
Reference Consortium, UK10K, and 1000 Genomes phase 3. The imputation was performed
using the IMPUTE4 program. UKB calculated the genetic principal components and kin-
ship coefficients centrally. These were used to account for population stratification and to
identify related individuals [14].

2.7. GRS for Alcohol Consumption

We calculated a GRS for alcohol consumption based on 105 published SNPs
(Supplementary Table S3) associated with alcohol consumption in Europeans [12,13]. The
SNP selection process is illustrated in Figure 2. To summarize, we obtained SNPs (N = 145)
identified from two large-scale GWAS meta-analyses on alcohol consumption [12,13]. After
removing duplicates, we assessed the linkage disequilibrium (LD) among the remaining
SNPs using LDlink [22] and PLINK version 1.9 (Shaun Purcell, Christopher Chang, Boston,
MA, USA, URL:www.cog-genomics.org/plink/1.9/ accessed on 12 July 2022) [23]. We
defined SNP pairs with R? > 0.1 as correlated SNPs. Within each SNP pair, we removed
the SNP with the weaker association with alcohol consumption as indicated by a larger
p value. As a result of these exclusions, 105 SNPs (Supplementary Table S3) remained for
the alcohol GRS calculation.

SNPs associated with alcohol consumption SNPs associated with alcohol consumption
reported in Liu et al. (N =99) reported in Evangelou et al. (N = 46)

i

[ N=145 | Duplicated SNPs(N=6) |

LD pruning using LDlink for
N =139 SNPs tagged by other SNPs
in the list (N = 32)

Additional LD pruning using
individual level data of the
UKB for SNPs tagged by
other SNPs in the list (N = 2)

Figure 2. SNPs selection flowchart for the alcohol consumption genetic risk score. Flowchart
detailing the SNPs selection process prior to being used in the calculation of the alcohol consumption
genetic risk score for UKB participants. We obtained SNPs identified for alcohol consumption from
Liu et al. [13] (99 SNPs) and Evangelou et al. [12] (46 SNPs). We first removed duplicates (1 = 6). We
then assessed LD (R? > 0.1) among the SNPs and identified LD pairs using the LDmatrix function in
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LDlink [22]. Within each SNP pair, SNPs with a stronger association with alcohol consumption
were moved forward (32 SNPs removed). The remaining SNPs underwent extra LD pruning using
individual-level data of the UKB (see methods; 2 SNPs removed). Eventually, 105 SNPs were
selected to calculate the alcohol genetic risk score. SNP, single nucleotide polymorphism; LD, linkage
disequilibrium; UKB, UK Biobank.

To calculate the GRS for each UKB participant, we sought the effect estimates for
the 105 alcohol SNPs from the alcohol GWAS meta-analysis study by Liu et al. [13]. To
avoid sample overlap with the UKB data, we specifically extracted the effect estimates
from the summary statistics excluding UKB and 23andMe provided by Liu et al. [13]. We
also checked that this summary statistics dataset used the same genome build assembly
(GRCh37) as the UKB genotype data [14]. To calculate the GRS, we multiplied the effect
estimates by the number of risk alleles each UKB participant carries on the alcohol SNPs.
The products were then summed across all SNPs to produce an overall weighted GRS for
each participant. We standardized the weighted GRS for further analysis.

2.8. Secondary Analyses

To better understand the etiology behind our findings, we performed a series of
secondary analyses, including regression analyses, between urinary sodium and various
alcoholic beverages and various outcomes such as diabetes, myocardial infarction, stroke,
and CVD. We additionally performed Mendelian randomization (MR) analysis between
urinary sodium and alcohol consumption. MR uses genetic variants (SNPs) that are robustly
associated with an exposure of interest as instrumental variables to assess the causal effect
of the exposure on an outcome [24]. In our analysis, the frequency of alcohol consumption
was considered as the exposure and urinary sodium was considered as the outcome. The
alcohol SNP selection process is illustrated in Figure 2. To further process these SNPs for
MR analysis, we clumped these SNPs at a distance = 10,000 kb and R2 =0.001 [25] to ensure
the independence of SNPs according to the MR guidelines. This removed 27 additional
SNPs. Consequently, to identify any weak alcohol instruments that could lead to weak
instrument bias in the MR analysis [26], a parameter called F-statistics was used, where
if <10 indicates a weak instrument [27,28]. We calculated F-statistics using a published
formula [29]:

F= R2(N—2)/(1 —RZ)

where R? is the variance in alcohol consumption explained by each SNP and was calcu-
lated using a published formula [30]; N is the size of the sample in which SNP-alcohol
consumption association test statistics were calculated. After removal of the weak instru-
ments, we were eventually left with 33 SNPs for the two-sample MR analysis. We obtained
the corresponding test statistics for the association of these SNPs with urinary sodium
within the UKB from Pazoki et al. [9]. We performed SNP harmonization across the alcohol
and urinary sodium datasets and checked the strand orientation prior to analysis. To
derive the MR estimates, we used the inverse variance weighted (IVW) method, which
calculates the MR causal estimate with the highest precision [31]. However, these meth-
ods assume no horizontal pleiotropy. Horizontal pleiotropy occurs when the SNPs affect
urinary sodium through traits other than alcohol consumption and these traits are not
in the causal pathway from alcohol consumption to urinary sodium. When horizontal
pleiotropy is left unbalanced, it can bias the MR causal estimate [32]. To detect the presence
of unbalanced horizontal pleiotropy and correct the MR estimate for any bias due to this,
we performed additional sensitivity tests such as the MR-Egger [32], weighted median [33],
and the weighted mode tests [34]. An MR-Egger intercept p value < 0.05 suggests overall
unbalanced horizontal pleiotropy [32]. To claim significance on MR analyses, we used a
p value threshold of 0.05.
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2.9. Statistical Analysis

We assessed the variance in alcohol consumption explained by GRS using the adjusted
R? estimate from a linear regression model regressing alcohol consumption on GRS. To
assess the predictability of the GRS at different alcohol consumption levels, we compared
the percentage variation in alcohol consumption explained by the GRS across alcohol
consumption quintiles comprising 5 equal groups.

We investigated the association of the GRS with SBP, DBP, Stage 1 hypertension, Stage
2 hypertension, and incident CVDs. We used linear regression for SBP and DBP, logistic
regression for Stage 1 and Stage 2 hypertension, and performed survival analysis using
Cox proportional hazards (PH) regression that takes the follow-up time into account for
incident CVD traits. In our survival analyses, individuals who were lost to follow-up,
died of diseases not under study, or did not develop diseases of interest at the end of the
follow-up were censored. We assessed the PH assumption for every Cox model using
statistical tests that used Schoenfeld residuals [35] against the follow-up time. When the
p value for the PH assumption global test was <0.05, i.e., the overall PH assumption was
violated, we examined which specific covariate violated the PH assumption in the model.
For time-varying continuous covariate(s), we added interaction terms, with the follow-up
time split into groups. The interaction term was modeled on a multiplicative scale in a
linear regression model for blood pressure, logistic model for hypertension, and Cox model
for CVDs.

We tested two statistical models in all analyses. We adjusted model 1 for age, age?,
and sex. In model 2, we additionally adjusted for major known cardiovascular and ge-
netic confounders, including smoking status, DASH diet, Townsend deprivation score,
sedentary lifestyle, and genetic principal components. We adjusted the analyses for the
interaction between alcohol GRS and urinary sodium, where the interaction term was
statistically significant.

2.10. Power Calculation

We calculated the statistical power for the associations of alcohol GRS with hyper-
tension and CVDs using Quanto (version 1.2.4, Los Angeles, CA, USA) [36,37]. Using
a two-sided significance threshold of 0.05 and a range of a number of cases and effect
estimates from 0.9-1.3, we obtained an estimation of the statistical power for our analyses.

2.11. Software and Packages

We calculated alcohol GRS using PLINK version 1.9 [23]. We conducted all statistical
analyses in R studio (R version: 3.5.1, Vienna, Austria). We used the ‘survival” package for
survival analysis and “TwoSampleMR’ package for the causal inference analysis.

3. Results

We included 295,189 UKB participants in the current analysis after applying the
exclusion criteria (Figure 1). At baseline (Table 1), participants had a mean age of 56.3 years
at recruitment. Approximately 54.5% of the sample were female (N = 161,020). Stage 1
hypertension was present among 23.1% of the sample (N = 68,284; 23.5% male vs. 22.8%
female) while stage 2 hypertension was present in 52% of the sample (N = 153,474; 59.4%
male vs. 45.8% female). The median follow-up time for composite CVD and stroke was 6.1
and 7.1 years, respectively. During the follow-up time, 8688 participants (2.9%) developed
CVD and 1857 (0.6%) developed stroke.
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Table 1. Baseline characteristics and incident events of cardiovascular diseases for participants of the

UKB stratified by sex.
Overall Males Females

(N =295,189) (N =134,169) (N =161,020)
Age at recruitment, mean (SD), years 56.3 (8) 56.4 (8.1) 56.2 (7.9)
Males, N (%) 134,169 (45.5) NA NA
Smoking, N (%)
Current 30,388 (10.3) 16,341 (12.2) 14,047 (8.7)
Past 148,209 (50.2) 70,575 (52.6) 77,634 (48.2)
Never 116,592 (39.5) 47,253 (35.2) 69,339 (43.1)
Healthy diet score (DASH), mean (SD) 2.7 (1) 24 (1) 29 (1)
Sedentary lifestyle, median [IQR), hours/day 4(3,6) 5, 6) 4(3,5)
SBP *, median (IQR), mmHg 138.5 (125.5, 153.5) 142 (130, 156) 135 (122, 150.5)
DBP *, mean (SD), mmHg 84.2 (11.2) 86.5 (11) 82.2(11)
Stage 1 Hypertension t, N (%) 68,284 (23.1) 31,492 (23.5) 36,792 (22.8)
Stage 2 Hypertension ¥, N (%) 153,474 (52) 79,680 (59.4) 73,794 (45.8)
Townsend Deprivation Index, median (IQR) —2.4(—3.8, —0.06) —2.4(—3.8; —0.02) —2.4(-3.8;, —0.1)
Urinary sodium, median (IQR) § 68 (42.7,102.8) 81.9 (534, 117.5) 57.6 (36.5, 88.3)
Composite cardiovascular disease, N (%) 8688 (2.9) 5808 (4.3) 2880 (1.8)
Stroke, N (%) 1857 (0.6) 1048 (0.8) 809 (0.5)

* SBP and DBP adjusted for blood-pressure-lowering medication. ' Stage 1 hypertension defined as SBP
130-139 mmHg or DBP 80-89 mmHg. ¥ Stage 2 hypertension defined as SBP > 140 mmHg and/or
DBP > 90 mmHg or using blood-pressure-lowering medication. 8 Urinary sodium had missing values and
so the baseline statistics for urinary sodium were calculated based on an overall sample size of N = 286,806, men
N =130,894 and women N = 155,912. SBP, systolic blood pressure; DBP, diastolic blood pressure; DASH, Dietary
approaches to stop hypertension; NA, not available; N, sample size IQR, interquartile range.

One standard deviation (SD) addition of alcohol GRS corresponded to a 0.12-fold
increase in alcohol consumption (natural logarithm transformed equivalent to an increase
in alcohol consumption by 1.13 g/day; Figure 3A). GRS explained ~1% of the variation in
alcohol consumption (Figure 3).
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Figure 3. Relationship between the alcohol genetic risk score (GRS) and daily alcohol consumption.
(A) Scatterplot illustrates the relationship between alcohol consumption (on a natural logarithm scale)
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and alcohol GRS. The red dotted line shows the gradient of the fitted regression line. (B) Percent-
age variation in alcohol consumption explained by the alcohol GRS (adjusted R? estimate) within
alcohol consumption quintiles. Quintile 1: 0 to 3.65 g/day; Quintile 2: 3.6-10.7 g/day; Quintile 3:
10.7-17.9 g/day; Quintile 4: 17.9-31.3 g/day; Quintile 5: 31.3-964.5 g/day alcohol consumption.

Within the whole UKB sample (N = 295,189), we observed an association of the GRS
with SBP (B = 0.24 mmHg; 95% CI = 0.17,0.31; p = 2.73 x 10~!1), DBP (B = 0.13 mmHg; 95%
CI=0.09,0.17; p = 8.56 x 10~!1), stage 2 hypertension (odds ratio = 1.02; 95% CI = 1.01,
1.03; p=1.92 x 10~8), and stroke (hazard ratio= 1.06; 95% CI = 1.01, 1.11; p = 0.01). Similar
results were observed in the sex-specific analysis (Supplementary Table S4).

We observed an interaction between alcohol GRS and urinary sodium on stage 2
hypertension (Pinteraction = 0.03) and CVD (Pjnteraction =0.03) (Table 2). Among participants
with high urinary sodium excretion, alcohol GRS showed a greater effect on hypertension
and CVD (Figure 4).

Table 2. Overview of the association of alcohol GRS with blood pressure, hypertension, and
incident CVDs.

Regression Model N Non-Cases/N Cases Effect Estimates * 95% CI p Value for GRS * 4 Val.u e for PH?
Interaction Term

SBP Linear 286,306 0.25 0.18,0.32 3.12 x 10712 0.052 NR

DBP Linear 286,806 0.14 0.10,0.19 350 x 1012 033 NR

SHtage 1o Logistic 71,322/66,395 1.01 1.00, 1.02 0.10 032 NR
ypertension

Stagel Logistic 137,717/149,089 1.02 1.02,1.03 9.78 x 10~ 0.03 NR
ypertension

Stroke Cox PH 285,012/1794 1.06 1.01,1.11 0.02 0.72 0.23

Composite CVD Cox PH 278,418/8388 1.01 0.99,1.03 037 0.03 045

0.6

04

Predicted risk of HTN (logarithmic scale)

GRS and urinary sodium values were centered around the mean. * 3 value is given for linear models, odds ratios
are provided for logistic models, and hazard ratios are presented for Cox models. ¥ Models were fitted with
model 2 adjustments and an interaction between alcohol GRS and urinary sodium. ¥ Overall p value for the PH
assumption test from the Cox proportional hazard model derived from Schoenfeld residuals. N, sample size; GRS,
genetic risk score; CI, confidence interval; PH, proportional hazard; SBP, systolic blood pressure; NR, not relevant;
DBP, diastolic blood pressure; CVDs, cardiovascular diseases.
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Figure 4. Effect of the alcohol genetic risk score (GRS) on (A) hypertension and (B) cardiovascular
disease across urinary sodium excretion quintiles. X axis shows the median values of GRS in GRS
quintile 1, 3, and 5, respectively: —3.549, 0.058, and 2.312.
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In our secondary analyses to better understand the identified relationships, we ob-
served that urinary sodium was linked to more frequent hypertension, diabetes, and CVDs
(Supplementary Table S5). We additionally found that alcohol consumption is associated
with lower urinary sodium (Supplementary Table S5). Additionally, using MR to infer
causality between alcohol consumption and urinary sodium, we confirmed that an increase
in alcohol consumption decreased urinary sodium levels (random-effect IVW: 3 = —0.120;
95% CI = —0.216, —0.023; p = 0.015; Figure 5).

0.01-
| Inverse variance weighted
I MR Egger
/ Weighted median
0.00- Weighted mode

SNP effect on urinary sodium
o
=4

S

(=}

~
h

0.00 0.04 0.08 0.12 0.16
SNP effect on alcohol consumption

Figure 5. Two-sample MR for the relationship between alcohol consumption and urinary sodium.
Lines represent regression line for various MR tests used. Black dots with cross represent each SNP.
Effect of SNPs on alcohol consumption and urinary sodium are in the logarithmic scale. SNP, single
nucleotide polymorphism; MR, Mendelian randomization.

4. Discussion

In this large-scale longitudinal study, we used data from 295,189 alcohol drinkers
and provided insight into the interplay between genetic factors, alcohol consumption,
and urinary sodium on blood pressure and cardiovascular outcomes. We found that the
genetic factors underpinning alcohol consumption are linked to higher blood pressure and
stroke. Alcohol consumption lowers urinary sodium and the effect of genetic factors on
stage 2 hypertension and the risk of CVD is greater among participants with high urinary
sodium excretion.

Observational studies have demonstrated an association of alcohol consumption
(drinks per day) with blood pressure [38] and CVD [39]. Similarly genetic epidemiological
studies [40,41] focusing on genetic variants (rs671/rs1229984) within the aldehyde/alcohol
dehydrogenase (ALDH2/ADHI1B) gene demonstrated that individuals carrying the risk
allele for alcohol consumption had a higher risk of hypertension [40,41] and CVD [40]
compared to non-carriers. Our results additionally capture variation in the genetic under-
pinning of alcohol consumption and show that 105 variants identified thus far for alcohol
consumption collectively (in the form of a GRS) are associated with higher blood pressure
and risk of stroke. Moreover, our results suggest that a gradient increase in blood pressure
and CVD due to genetic risk may be altered by changes in sodium intake. We showed that



Healthcare 2022, 10, 1296

10 0f 13

higher GRS remains associated with higher blood pressure at all levels of urinary sodium
excretion. However, at lower vs. higher level of urinary sodium, GRS makes a smaller
difference in blood pressure.

High alcohol consumption, high alcohol GRS [42], and a higher sodium concentration
are all known to be linked to high blood pressure [8]. In a previously published study [9]
using the LD score regression method [43], we showed a genetic correlation exists between
urinary sodium excretion and the frequency of alcohol consumption. Our results in the
current study move a step forward and show a causal relationship, as confirmed by MR
analysis, between alcohol consumption and urinary sodium excretion. A decrease in
urinary sodium upon administration of ethanol was observed since decades ago [44]. For
example, rats who were sedated using ethanol had a lower urinary sodium and higher
plasma concentration of sodium compared to the control group. A study on human
participants in the early 1990s showed that after the ingestion of alcohol, urinary sodium
is lower whilst the sodium concentration in red blood cells is higher compared with the
control group [10]. This suggests that ethanol has an impact on sodium retention, and it
likely occurs through the kidneys as sodium retention in plasma occurs at the same time
as a decrease in urinary sodium excretion. In our causal inference analysis using MR, we
found similar findings and showed that alcohol consumption decreases urinary sodium.
We identified an interaction between urinary sodium and alcohol GRS on hypertension in
such a way that alcohol GRS has a higher effect on blood pressure among participants with
high urinary sodium excretion. It is likely that participants with higher urinary sodium
excretion have a higher capacity for sodium retention as the kidneys have access to a larger
pool of urinary sodium when exposed to alcohol and, thus, these participants show a larger
increase in blood pressure.

We should note that there are challenges involved in the estimation of sodium intake
from urinary sodium excretion. Although reducing sodium intake is important in reducing
blood pressure, monitoring sodium intake in patients is difficult. Most methods of estimat-
ing sodium intake rely on self-reported data and are at risk of recall bias and these methods
require a nutritionist to interpret them. The collection of 24 h urinary sodium has been
used for the estimation of sodium intake, but it is difficult for patients to collect, especially
in an accurate way. Equations have been created and used to estimate sodium intake from
sodium in spot urine [45]. However, these methods have been recently deemed as biased
by the European Salt Action Network [46]. Therefore, although spot urine is generally
regarded as a reliable proxy to reflect salt intake, we have been cautious in this study to
generalize results using the spot urinary sodium to sodium intake.

The large sample size of the UKB in addition to its rich phenotyping provides opti-
mal statistical power to investigate the relationship between genetic factors and complex
outcomes. The use of individual-level data allowed us to investigate the effect of potential
confounders and perform subgroup analyses. Additionally, our GRS for alcohol consump-
tion was created based on a total of 105 SNPs identified from the two largest-scale GWAS
meta-analysis studies for alcohol consumption thus far [12,13]. This is the largest number
of SNPs identified for alcohol consumption so far and allowed us to capture more variation
in alcohol consumption compared to previous studies that used a limited number of SNPs
in their analyses. Yet, these SNPs (although the largest currently available) capture less than
1% of the total variation in alcohol consumption [13]. Future large-scale GWASs would
be helpful to increase the number of SNPs identified for alcohol consumption. One of
our limitations is that UKB is a recently established study and thus has a relatively short
follow-up time to study outcomes and this might have affected the statistical power for
investigation of the survival data. It should be considered that alcohol consumption is as-
sessed using a self-reported questionnaire in the UKB and thus bias due to underreporting
or over-reporting may be present. It has been shown that self-reported alcohol data can
be more reliable if collected within a shorter time span prior to the completion of ques-
tionnaires [47]. The UKB has self-reported data available on the average monthly intake
and average weekly intake of alcohol. To reduce recall bias related to self-reported alcohol
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data, we used the weekly intake of alcohol instead of monthly intake. Another limitation
of our study was the fact that we used spot urine samples as this is the only available
source to quantify sodium excretion within the UKB while the gold standard for sodium
intake estimation is a 24 h collection or timed overnight collections. Sample handling and
storage of the urine samples was carried out centrally by the UKB. A spot urine sample
was obtained at the time of the clinic visit. These were scheduled throughout the day so
samples would have been obtained over the same period and timing was, therefore, not
standardized. A most recent study [48] has demonstrated that if drawn from a random and
representative sample of the population, the spot urinary sodium concentration accurately
reflects sodium excretion drawn from 24 h urine collection.

5. Conclusions

Our study shows that the genetic underpinning of alcohol consumption in the form
of a GRS is linked to high blood pressure and a higher risk of stroke and that the effect of
GRS is greater among participants with a higher amount of urinary sodium excretion. Our
current findings suggest the role of a reduction in sodium intake and alcohol consumption to
decrease blood pressure. Our study informs health policies in terms of alcohol consumption
and its interactions. Patients with high urinary sodium excretion should be cautioned on
the potential enhanced impact of alcohol consumption on hypertension.
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with alcohol consumption and various outcomes.
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