
Citation: Kumar, V.; Lalotra, G.S.;

Sasikala, P.; Rajput, D.S.; Kaluri, R.;

Lakshmanna, K.; Shorfuzzaman, M.;

Alsufyani, A.; Uddin, M. Addressing

Binary Classification over Class

Imbalanced Clinical Datasets Using

Computationally Intelligent

Techniques. Healthcare 2022, 10, 1293.

https://doi.org/10.3390/

healthcare10071293

Academic Editor: Andrea Tittarelli

Received: 18 May 2022

Accepted: 7 July 2022

Published: 13 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

healthcare

Article

Addressing Binary Classification over Class Imbalanced
Clinical Datasets Using Computationally Intelligent Techniques
Vinod Kumar 1 , Gotam Singh Lalotra 2 , Ponnusamy Sasikala 3, Dharmendra Singh Rajput 4,* ,
Rajesh Kaluri 4 , Kuruva Lakshmanna 4 , Mohammad Shorfuzzaman 5 , Abdulmajeed Alsufyani 5

and Mueen Uddin 6,*

1 Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram 522302, India;
vinodkumarfbkp@gmail.com

2 Government Degree College Basohli, University of Jammu, Basohli 184201, India; singh.gotam@gmail.com
3 New Media Technology, Makhanlal Chaturvedi National University of Journalism and Communication,

Bhopal 462011, India; sasikala@mcu.ac.in
4 School of Information Technology and Engineering, Vellore Institute of Technology, Vellore 632014, India;

rajesh.kaluri@vit.ac.in (R.K.); lakshman.kuruva@vit.ac.in (K.L.)
5 Department of Computer Science, College of Computers and Information Technology, Taif University,

P.O. Box 11099, Taif 21944, Saudi Arabia; m.shorf@tu.edu.sa (M.S.); a.s.alsufyani@tu.edu.sa (A.A.)
6 College of Computing and IT University of Doha for Science and Technology, Doha P.O. Box 24449, Qatar
* Correspondence: dharmendrasingh@vit.ac.in (D.S.R.); mueenmalik9516@gmail.com (M.U.)

Abstract: Nowadays, healthcare is the prime need of every human being in the world, and clinical
datasets play an important role in developing an intelligent healthcare system for monitoring the
health of people. Mostly, the real-world datasets are inherently class imbalanced, clinical datasets
also suffer from this imbalance problem, and the imbalanced class distributions pose several issues in
the training of classifiers. Consequently, classifiers suffer from low accuracy, precision, recall, and a
high degree of misclassification, etc. We performed a brief literature review on the class imbalanced
learning scenario. This study carries the empirical performance evaluation of six classifiers, namely
Decision Tree, k-Nearest Neighbor, Logistic regression, Artificial Neural Network, Support Vector
Machine, and Gaussian Naïve Bayes, over five imbalanced clinical datasets, Breast Cancer Disease,
Coronary Heart Disease, Indian Liver Patient, Pima Indians Diabetes Database, and Coronary Kidney
Disease, with respect to seven different class balancing techniques, namely Undersampling, Random
oversampling, SMOTE, ADASYN, SVM-SMOTE, SMOTEEN, and SMOTETOMEK. In addition to this,
the appropriate explanations for the superiority of the classifiers as well as data-balancing techniques
are also explored. Furthermore, we discuss the possible recommendations on how to tackle the
class imbalanced datasets while training the different supervised machine learning methods. Result
analysis demonstrates that SMOTEEN balancing method often performed better over all the other
six data-balancing techniques with all six classifiers and for all five clinical datasets. Except for
SMOTEEN, all other six balancing techniques almost had equal performance but moderately lesser
performance than SMOTEEN.

Keywords: classification; balancing techniques; clinical dataset; machine learning

1. Introduction

For the past few years, imbalanced data have attracted a significant amount of atten-
tion from learners in the machine learning area. Different challenges occur at various stages
of data mining applications [1]. The development in technology and computational science
has assisted the availability and growth of the data obtained from real-world problems
such as medical diagnosis [2,3], credit card fault detection [4], intrusion detection, culture
modeling [5], text classification, oil spill detection [6], land mine detection [7], etc., at an ex-
plosive rate [8]. A classification dataset with skewed class proportions is called imbalanced.
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Classifying imbalanced data is an important and frequently occurring challenge of data
mining. Classes that comprise a maximum part of the dataset are known as majority classes;
on the other hand, minority classes comprise a minor proportion. The major challenge that
imbalanced datasets suffer is that majority of the machine learning algorithms are inclined
toward the majority class. It is noteworthy that minority class has a serious concern from
a learning perspective and cost significantly on misclassification [9–11]. Acquiring new
understanding from imbalanced datasets is posing a new challenge for various data mining
applications. This challenge reveals itself in two forms: minority interests and uncommon
examples [12,13]. Standard learning algorithms have to compromise their performance
while dealing with imbalanced learning problems [14]. It has been proved by most of the
state-of-the-art classifiers that biased class distribution is the major reason for the significant
loss of performance which is demonstrated by the imbalance ratio (IR) is the ratio of the
number of instances in the majority class to the number of instances in the minority class.
Many algorithms are employed to get rid of class imbalance problems, such as data sam-
pling and boosting [15,16]. Data sampling has its own merits and demerits in terms of time
safety and information loss. In various applications of supervised learning, a substantial
difference among the prior probabilities of different classes is absorbed. The condition is
known as the imbalance problem of class [17]. Most machine learning algorithms have
faced challenges in countering the problem of classification of imbalanced data [18–20].
Data imbalance is the result of the nature of dataspace. The summarized details of various
significant clinical datasets are presented in Table 1. Imbalance data classification is one
of the top ten challenging issues of data mining [21]. The medical datasets often face the
problem of imbalance. Herein, we used five clinical datasets for our study. In women,
after skin cancer, breast cancer is the second most common cancer. In 2018, World Health
Organization informed 2.09 million persons suffering from breast cancer, and 627,000 died
because of this disease. It develops in breast cells, and females are the major sufferers
than males. A block in the breast, discharge (bloody) from the nipple and breast shape
changes are the main symptoms [22]. Coronary Heart Disease (CHD) grows in a condition
where arteries are unable to supply sufficient oxygen-rich blood to the heart. Generally, it
is caused due to the plague (a waxy substance) building up in the larger coronary arteries,
and consequently, the flow of the blood in larger arteries is blocked. In 2017, CHD, a very
common heart disease, killed 365,914 people. About 20% of deaths due to CHD are in
adults below 65 years of age [23]. Liver disease causes almost 2 million deaths in a year
across the globe. Some of the causes of liver disease are alcohol, obesity, viruses, or it can be
inherited genetically. A deadly condition where the liver is failed by the scarring (cirrhosis)
result of the damaged liver) [24]. Coronary kidney disease (CKD) means the kidneys are
unable to filter the blood. Persons with high blood pressure or diabetes are at higher risk
for kidney disease. High blood pressure and heart disease are the results of extra water
and waste in the body caused due to the malfunctioning of the kidney. As per the study,
37 million people, which is around 15% of US adults suffering from CKD and 90% of the
adults with CKD, are unaware of it, and 50% of the persons who are at low kidney function
are not aware of the CKD if they are not at dialysis. According to current estimates: CKD
is more common in the age group of 65 years or older (38%) than in persons of the age
group of 45–64 years (13%) or 18–44 years (7%), women (15%) are badly sufferer than men
who are 12% with CKD). Dialysis and kidney transplant are the treatments for kidney
failure [25,26]. Diabetes is a chronic disease and is caused when insulins are not produced
by the pancreas or the insulin produced is not properly used in the body. The occurrence of
diabetes in 2019 is assessed to be 9.3% (463 million people) globally, amounting to 10.2%
(578 million) by 2030 and 10.9% (700 million) by 2045. The effect is higher in urban areas
(10.8%) than in rural (7.2%) areas and in rich (10.4%) than poor countries (4.0%), and 50.1%
of persons suffering from diabetes are not aware of having the disease. The prevalence
of impaired glucose tolerance is assessed to be 7.5% (374 million) in 2019 globally and is
predicted to reach 8.0% (454 million) by 2030 and 8.6% (548 million) by 2045 [26]. World-
wide, lung cancer remains the major reason for the deaths of women and men suffering
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from cancer. Worldwide, the third most common cancer is lung cancer. The uncontrolled
growth of abnormal cells in one or both lungs leads to lung cancer. The abnormal cells are
unable to function normally and don’t grow into healthy lung tissue. With the growth of
abnormal cells, the tumors can be formed and obstruct the normal function of the lungs,
which supplies oxygen to the body via the blood. World Health Organization reported
1.76 million deaths out of 2.09 million total cases of lung cancer in 2018, and 10% of the
deaths in cancer are due to lung cancer. The survival of lung cancers is decided by the stage
of the diagnosis. Survival is poorer if diagnosed at a late stage [27].

In this paper, the seven algorithms are used for balancing the imbalanced data over
the five clinical datasets. The six well-known classifiers are implemented to classify the
data. To evaluate the performance, the four parameters—accuracy, precision, recall, and
F1—score are used in this study. What is imbalanced? The response ranges from mild to
extreme, as shown in Table 2. The imbalance ratio (IR) for binary class data is the ratio of
number of samples of the majority class to the number of samples of the minority class.

IR = (No. of samples in Majority Class)/(No. of samples in Minority Class) (1)

Class imbalance learning approaches can be divided into three major categories:
(1) data-level strategy, (2) algorithm-level strategy, and (3) hybrid strategies as shown in
Figure 1. At the data-level strategy, the resampling procedure is used to handle class imbal-
ance issues in imbalanced datasets. Further, the data-level strategy is divided further into
random undersampling, oversampling, and the hybrid approach, which is a combination
of undersampling and oversampling. For dealing with imbalanced data, an algorithm-level
strategy may develop or update current algorithms and evaluate the consequences of minor
classes. The hybrid strategy combines both data-level strategy and algorithm-level strategy
to deal with the class imbalance problem.

Figure 1. Categorization of class imbalance learning.

The data level strategy for balancing the class data is more successful, and it is im-
plemented prior to the learning process during the data preprocessing stage. Hence, the
main contribution of this paper is to design a performance evaluation setup and analyze
the performance effects of important data-balancing techniques with various classification
methods on five imbalanced clinical datasets: Breast Cancer Disease, Coronary Heart Dis-
ease, Indian Liver Patients, Pima Indians Diabetes Database, and Coronary Kidney Disease.

The paper is organized as follows: Section 2 outlines the related work dealing with the
imbalanced data. Section 3 of this paper discusses the various algorithms used for balancing
the clinical data. Section 4 talks about the experimental setup and gives a description of the
dataset. The results are discussed in Section 5 of this paper. The conclusion is discussed
in Section 6.
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Table 1. Summarized details of various clinical datasets [28].

SL Name Data Types Default Task Attribute Types #Instances Class
Distribution #Attributes Imbalance Ratio

1 Breast Cancer Multivariate Classification Categorical 286 0:201,1: 85 9 2.36

2 Breast Cancer Wisconsin (Original) Multivariate Classification Integer 699 0: 458, 1:241 10 1.9

3 Breast Cancer Wisconsin (Prognostic) Multivariate Classification,
Regression Real 198 0:151, 1:47 34 3.21

4 Breast Cancer Wisconsin (Diagnostic) Multivariate Classification Real 569 0:357, 1:212 32 1.69

5 Heart Disease Multivariate Classification Categorical,
Integer, Real 303 0:164,1:55,2:36,3:35,4:13 75 –

6 Hepatitis Multivariate Classification Categorical,
Integer, Real 155 0:133, 1:32 19 4.15

7 Pima Indians Diabetes Database Multivariate Classification Integer 768 0: 500, 1:268 8 1.9

8 Liver Disorders Multivariate Classification Categorical,
Integer, Real 345 0:145,1:200 7 1.37

9 Lung Cancer Multivariate Classification Integer 32 0:23, 1:9 56 2.55

10 SPECT Heart Multivariate Classification Categorical 267 0:55,1: 212 22 3.85

11 SPECTF Heart Multivariate Classification Integer 267 0:55,1:212 44 3.85

12 Thyroid Disease Multivariate,
Domain-Theory Classification Categorical, Real 7200

1:166,
2:368,
3:6666

21 –

13 Breast Tissue Multivariate Classification Real 106

Car:21
Fad:15
Mas:8,
Gla:16,
Con:14,
Adi:22

10 –

14 Fertility Multivariate Classification,
Regression Real 100 N:88,

O:12 10 7.33

15 Diabetic Retinopathy
Debrecen Dataset Multivariate Classification Integer, Real 1151 0:540, 1:611 20 1.131
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Table 1. Cont.

SL Name Data Types Default Task Attribute Types #Instances Class
Distribution #Attributes Imbalance Ratio

16 HIV-1 protease cleavage Multivariate Classification Categorical 6590 0:5232
1:1358 1 3.85

17 Breast Cancer Coimbra Multivariate Classification Integer 116 0:52,1:65 10 1.25

18 Parkinson’s Disease Classification Multivariate Classification Integer, Real 756 0:192,
1:564 754 2.94 s

19 Hepatitis C Virus (HCV) for
Egyptian patients Multivariate Classification Integer, Real 1385

1:336,
2:332,
3:355,
4:362

29 –

20 Heart failure clinical records Multivariate
Classification,

Regression,
Clustering

Integer, Real 299 0:203,1:96 13 2.11

The bold represents to class labels.
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Table 2. Classification of degree of imbalance in data.

Class Imbalance Degree Proportion of Minority Class

Extreme <1% of the dataset

Moderate 1–20% of the dataset

Mild 20–40% of the dataset

2. Related Works

In machine learning, data is crucial for training the model. In the real world, we
constantly encounter the problem of imbalanced data. This section discusses the work
completed towards the efficiency of some of the machine learning techniques while deal-
ing with the different clinical datasets, as most of the clinical datasets are inherently
imbalanced in nature. Various algorithms are designed to get rid of the consequences of
imbalance. The very popular algorithms are studied and analyzed for the balancing of
the datasets, and afterward, the different techniques of machine learning are employed to
check their performances.

Undersampling and random oversampling (ROS) for majority and minority instances
can ease the change of distribution for the original dataset. To conquer the downsides
of the elementary sampling techniques, such as the overfitting risk involved in oversam-
pling and menace of information loss for undersampling method, the Synthetic Minority
Oversampling Technique (SMOTE) is implemented [29].

M. Mostafizur Rahman and D. N. Davis proposed a modified cluster-based under-
sampling method for balancing the data, and a training set of good quality is generated for
constructing classification models [17]. SMOTE offers a new technique for oversampling.
The blend of undersampling and SMOTE gives better performance than plain undersam-
pling. SMOTE was applied on various datasets having variable imbalance degree and
training datasets in different amounts, which provides a diverse test field [29].

Adaptive Synthetic (ADASYN) can produce synthetic data samples adaptively for
minority classes to decrease the favoritism generated by the imbalanced data distribution.
Moreover, the Learning performance is improved because of the capabilities of ADASYN
to change boundaries for concentrating more on tough-to-learn examples [12].

With the help of data sampling and deep neural networks, frauds can be detected
in highly imbalanced data rather than big data. Random undersampling (RUS), Random
oversampling (ROS), and amalgamation of the two (ROS–RUS) are implemented to learn
how different class imbalance levels influence the training and performance of the model.
ROS–RUS and ROS outperform RUS and baseline models with average Area Under Curve
(AUC) scores of 0.8505 and 0.8509. It is confirmed from the results that when training data
are imbalanced, the default decision threshold is not optimal at 0.5, and it is recommended
that the threshold be used for optimizing the performance of imbalanced classes [30].

Undersampling based on clustering (SBC), here, all samples in the datasets are divided
into clusters. SBC has a very fast execution time along with a high accuracy of classification
in predicting the minority class samples. Sampling methods based on SBC are used to
select the majority class sample from the cluster based on the distance between minority
and majority class samples [31].

Applying TOMEK links as a data cleaning technique over the oversampled training
set for creating better-defined class clusters. Instances from both the classes are eliminated;
consequently, not only majority class examples that form TOMEK links are removed.

In the beginning, the original dataset (a) is oversampled with SMOTES (b), and then
TOMEK links are acknowledged (c) and removed, generating a balanced dataset with
well-defined class clusters (d). SMOTE + ENN (Edited Nearest Neighbor), the inspiration
behind this method is similar to SMOTE + TOMEK links. ENN facilitates more in-depth
data cleaning as ENN removes more instances than TOMEK links. Contrarily from an
under-sampling method, i.e., Neighborhood Cleaning Rule (NCL), ENN is implemented
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to eliminate instances of both classes. consequently, instance that is misclassified by its
three nearest neighbors is eliminated from the training set [32]. SMOTE has over one
hundred variants [33]. Hien M. Nguyen et al. proposed a technique where the SVM
is applied to the original dataset to make a distinction between the classes B-SMOTE is
implemented to find the minority sample ear the hyperplane to eliminate these samples [34].
Support vector machine (SVM) was first introduced by Vapnik in 1995, and it was a great
success in widespread series of applications, but while encountering imbalanced data,
the performance of SVM was significantly reduced. SVM handles and works very fine
with linear as well as nonlinear datasets. The important training tuples help in forming a
hyperplane for defining the data separation in a higher dimensional space known as support
vectors [35]. For the classification of the datasets, prominent classification techniques are
used. A. Endo et al. [8] implemented seven classifiers, namely, Artificial Neural Network
(ANN), Decision Trees with naive Bayes, Naive Bayes, Bayes Net, Logistic Regression
(LR), ID3, J48. They proved maximum accuracy by a logistic regression model. A decision
tree (DT) constructs the structure of the flow-chart; here, every node denotes a test on an
attribute value, while each branch represents a result of the test work, and leaf nodes of the
tree symbolize classes. In a decision tree, the classification is done with less computation,
and understandable rules can be generated easily [36]. If in a dataset most of the attributes
are continuous, then Gaussian Naive Bayes (GNB) is used. It is assumed in this algorithm
that predictor values are samples from Gaussian distribution [37]. k-Nearest Neighbor
(k-NN) prediction model is generally acknowledged as lazy learning (no learning) approach-
based estimation mechanism, and it predicts on the account of k nearest numbers provided
to it [37]. An Artificial Neural Network (ANN) is formed with the combination of artificial
neurons which receive input, alters the internal state (activation) as per the input, and
produces output [38]. From this brief literature review, it can be inferred that no single
algorithm for balancing the dataset can be considered the state-of-the-art algorithm for
all the datasets in all circumstances. Moreover, there is no denying the fact about not
having a single machine learning technique that can be put at the top of the hierarchy in
terms of performance. They can produce the best results in domain-specific applications.
Summary of significant and related works from literature for balancing techniques are
given in Table 3.

Table 3. Summarized related works from literature for balancing techniques.

S. No Author and Year Techniques Applied Claims in the Study Cons

1

N. Chawla, K.
Bowyer, L. Hall,

and W.
Kegelmeyer
(2002) [29]

SMOTE: Synthetic Minority
Oversampling Technique

An amalgamation of technique of
oversampling the minority class and
undersampling the majority class can

attain better performance in classification.
Creating synthetic minority class

instances implicates the oversampling of
the minority class.

Suffers from over
fitting problem

2
M. Mostafizur

Rahman and D. N.
Davis (2013) [17]

1. Smote oversampling
2. Cluster-based

undersampling
3. Modified cluster-based

undersampling method

The traditional methods of balancing,
such as undersampling and oversampling,
may not prove to be effective and suitable

over these Imbalanced datasets. The
technique discussed in this paper shows

better results for datasets where class
level is not certain. A modified

cluster-based undersampling technique
produces good quality training sets in

addition to balancing the datasets.

Computational costs
increase

3

Haibo He, Yang
Bai, Edwardo A.

Garcia, and
Shutao Li
(2008) [12]

Adaptive Synthetic
(ADASYN)

1. ADASYN can reduce the bias made
by the imbalanced data distribution.

2. ADASYN moves the classification
decision boundary nearer to the
difficult examples.

Because of its
adaptability,

ADASYN’s precision
may degrade.
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Table 3. Cont.

S. No Author and Year Techniques Applied Claims in the Study Cons

4

Justin M. Johnson,
Taghi M.

Khoshgoftaar
(2019) [39]

1. ROS
2. RUS
3. ROS-RUS

Data sampling and deep neural networks
are implemented for detecting fraud in

highly imbalanced datasets.

ROS may increase the
likelihood of

overfitting and
computational costs

In RUS, sample of the
majority class chosen

could be biased

5
Show-Jane Yen,

Yue-Shi Lee
(2009) [31]

1. Clustering-based
undersampling

2. Clustering and
distances between
samples based
undersampling

Back propagation neural network for
imbalanced class distribution by Cluster

based undersampling approaches.
1. SBC executes fast and provides high

accuracy of classification for minor-
ity classes.

2. BCMD is stable and generates better
accuracy while handling disordered
and exceptional data samples.

Computational costs
increase

6
G. Batista, R. C.

Prati, M. C.
Monard

(2004) [32]

SMOTEEN,
SMOTETOMEK

Random over sampling techniques gives
meaningful results over other techniques

at less computational rate.

SMOTE is not
suitable for

high-dimensional
data

7
Hien M. Nguyen,
Eric W. Cooper,
Katsuari Kamei

(2009) [34]
SVMs and B-SMOTE

This technique targets the borderline area
where establishing the decision boundary
is critical rather than sampling the whole

of the minority class.

It could not provide
big savings regarding

the number of
synthetically

generated examples,
trading to the
classification

accuracy

3. Description of Data-Balancing Algorithms

The prime focus of our study is to analyze the various balancing techniques over
five clinical datasets, having varying imbalance degree. In our experiment, we used
seven different balancing techniques, Undersampling, ROS, SMOTE, ADASYN, SVM
SMOTE, SMOTEEN, and SMOTETOMEK, for balancing the datasets. After balancing the
imbalanced datasets, six machine learning techniques, LR, DT, SVM, GNB, k-NN, and
ANN, are employed over Five Clinical datasets Breast Cancer Disease, Indian Liver Patient
Dataset (ILPD), Kidney Disease, Coronary heart disease (CHD), and Pima Indians Diabetes.

3.1. Undersampling

In undersampling, the randomly selected samples are deleted from the training
datasets, but random undersampling throw-outs potentially large number of samples.
It could be very challenging to define the decision boundary between minority instance
and majority instance because of the discarded samples, consequent upon which the
performance of classification is reduced. Algorithm 1 shows the pseudo code for the
undersampling approach.

Algorithm 1: Pseudo code for Under Sampling

Input: Original Training dataset
1. Select instance(xi) from the dataset (i.e., xi ∈D)
2. Randomly delete member (xi) if it belongs to the majority class in dataset
3. Continue the process until pre-set threshold is reached
4. Stop

Output: Balanced Dataset
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3.2. Random Oversampling

In random oversampling, the samples are chosen from minority classes randomly
and, with the help of replacement, are further added to the training dataset. It can be put
in other ways that, in random oversampling, the instances are duplicated from minority
class in the training dataset, which may result in the overfitting of some machine learning
techniques. Algorithm 2 shows the pseudo code for oversampling approach.

It has been observed in many studies that random selection of samples performs quite
well if not better than many processes where samples are removed intentionally. Figure 2
portrays the semantic of undersampling and oversampling strategy for class balancing.

Figure 2. Oversampling and undersampling process.

Algorithm 2: Pseudo code for oversampling

Input: Original Training dataset
1. Select instance(xi) from the dataset (i.e., xi ∈D)
2. Randomly duplicate examples in the minority class
3. Continue the process until pre-set threshold is reached
4. Stop

Output: Balanced Dataset

3.3. SMOTE

Considering an imbalanced dataset of a very smaller number of minority samples
in comparison to the majority samples, which are large in numbers, a vector space is a
collection of feature vectors that represents each sample. k nearest neighbors are selected
from the minority sample for every minority sample

→
xi, after that

→
n a minority sample

is selected randomly. A point is chosen randomly between
→
n and

→
xi.

→
syn is the new

synthesized sample, which is further added to the dataset. Bal is the balancing parameter
for controlling the synthesized samples. Bal = 1, indicates equal number of samples from
minority and majority classes. G_all is the total number of samples to be synthesized
while G denotes the number of samples to be synthesized from one minority sample? The
synthesis of minority samples from

→
xi is repeated G times. Algorithm 3 displays the pseudo

code for SMOTE [29].
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Algorithm 3: Pseudo code of SMOTE

Input: X (original training data), bal (balance parameter), k (number of nearest neighbors)
1. S_min ← a set of minority samples in X
2. S_maj← a set of majority samples in X

3. G_all ←
∣∣∣S_maj

∣∣∣× Bal− |S _min|
4. G ← int( G _all/| S _min |)
5. Syn ← ∅ /∗ a set of synthesized minority samples */

6. for each
→
xi ∈ S _min do

6.1 Ki ← k nearest neighbor o f
→
xi in S_min

6.2 Forj = 1 to G do
6.2.1

←
n ← a sample randomly chosen from Ki

6.2.2
→

di f f ← →
n −→xi

6.2.3 Gap ← random value between [0, 1]

6.2.4
→

syn← →
xi + Gap ×

→
di f f

6.2.5 Syn ← Syn ∪
{ →

syn
}

6.3 End For
7. End For
8. Return X′ = X ∪ Syn
Output :

3.4. ADASYN

In ADASYN, more samples are generated near borderline from minority samples.
r [i] is the ratio of the majority samples in the k nearest neighbor of a minority sample
→
xi. It calculates the likeliness of closeness to the borderline. It further is normalized
for calculating r̂[i] and then G[i] the number of samples to be synthesized from

→
xi [12].

Algorithm 4 displays the pseudo code for ADAYSN method [13].

Algorithm 4: Pseudo code for ADAYSN method

Input: X (original training data), bal (balance parameter), k (number of nearest neighbors)
1. S_min← a set of minority samples in X
2. S_maj← a set of majority samples in X

3. G_all ←
∣∣∣S_maj

∣∣∣× bal− |S_min|

4. For each
→
xi ∈ S_min do

4.1 NNi ← k nearest neighor o f
→
xi in X

4.2 r[i]← | NNi∩S _maj|
k

5. End for
6. For each

→
xi ∈ S_min do

6.1 r̂[i]← r[i]
∑i r[i]

6.2 G[i]← int (r̂[i]× Gall)
7. End For
8. Syn ← ∅
9. For each

→
xi ∈ S_min do

9.1 Ki ← k nearest neighbor o f
→
xi in S_min

9.2 Forj = 1 to G[i] do
9.2.1

→
n ← a sample randomly chosen from Ki

9.2.2
→

di f f ← →
n −→xi

9.2.3 Gap ← random value between [0, 1]

9.2.4
→

syn← →
xi + Gap ×

→
di f f

9.2.5 Syn ← Syn ∪
{ →

syn
}

9.3 End For
11. End For
12. Return X′ = X ∪ Syn
Output: X′ (new training data)
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3.5. SVM-SMOTE

In this method, the borderline area is figured out by the support vectors after training
SVMs method on the original training set. Artificial data are randomly generated along the
borderline linking each minority class support vector with a number of its closest neigh-
bors. Thus, it establishes a clear boundary between minority and majority classes [34,40].
Algorithm 5 presents the pseudo code for SVM-SMOTE

Algorithm 5: Pseudo code of SVM-SMOTE

Borderline Oversampling (X, N, k, m)
Input:
• X: Training set
• N: Sampling level (100, 200, 300, . . . percent)
• k: Number of nearest neighbors
•m: Number of nearest neighbors to decide sampling type (interpolation or extrapolation)
Variables:
• SV+ : Set of positive support vectors (SVs)
• T : Total number of artificial instances to be created
• amount: Array contains the number of artificial instances corresponding to each positive SV
• nn Array contains k positive nearest neighbors of each positive SV
1. Start
2. T← (N/100) × |X|
3. Compute SV+ by training SVMs on X
4. Compute amount by evenly distributing T among SV+

5. Compute nn
6. For each sv+i ∈ SV+, compute m nearest neighbors on X.
7. If less than a half of the m nearest neighbors come from the negative class, along the lines

joining sv+i with its k positive nearest neighbors (in the first to k-th nearest neighbor order),
create amount[i] artificial positive instances using the following formula (extrapolate to
expand positive class area):

x+new = sv+i + ρ
(
sv+i − nn[i][j]

)
,

where nn[i][j]is the jth positve nearest neighbor of sv+i σ is a random number in the range [0, 1].
8. Otherwise, use the following formula (interpolate like in SMOTE to consolidate the current

boundary area of the positive class):

x+new = sv+i + ρ
(
nn[i][j]− sv+i

)
9. Xnew = X ∪

{
x+new

}
10. Stop
Output : Xnew : Over− sampled training set

3.6. SMOTEEN

Firstly, SMOTE determines the k-Nearest Neighbors (k-NNs), which is denoted by
ψxi

for each minority sample xi ∈ αmin. To generate a synthetic data sample xnew for xi
SMOTE randomly selects an element x̂i in ψxi

and x̂i in αmin. The feature vector of xnew is
the sum of the feature vectors of xi and the value, which can be obtained by multiplying
the vector difference between x̂i and xi and a random value δ which is between 0 and 1. By
doing so, we obtain a synthetic point along the line segment joining xi and x̂i. Further, the
Edited Nearest Neighbour (ENN) is applied to clean the overlapping of classes. Algorithm
6 contains the pseudo code for SMOTEEN [33].
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Algorithm 6: Pseudo code of SMOTEEN

Input: Imbalance Training Data
1. Randomly select xi in minority classes
2. Identify k− nearest neighbor of xi : ψxi

3. Generate xnew = xi + (x̂i−xi)× δ
4. Does balancing ratio satisfy if no goto 1

else
5. Remove noise sample using ENN

ENN {
For every observation O
Find the three nearest neighbors of O
If O gets misclassified by its three nearest neighbors
Then delete O

End IF
End For

}
6. End
Output: Balanced Training Data

3.7. SMOTETOMEK

It is another modified version of SMOTE, where the TOMEK links are used for remov-
ing the noisy data. The TOMEK links are defined as if instance l is the nearest neighbor of
instance m and m is the nearest neighbor of l, further l and m belong to different classes [32].
Algorithm 7 shows the pseudo code for SMOTE.

Algorithm 7: Pseudo code of SMOTETOMEK

Input: Imbalance Training Data
1. Randomly select xi in minority classes
2. Identify k− nearest neighbor of xi : ψxi

3. Generate xnew = xi + (x̂i−xi)× δ
4. Does balancing ratio satisfy IF No goto 1

Else
5. Remove noise sample using TOMEK

TOMEK (l, m)
{

l is the nearest neigbhour of m.
m is the nearest neigbhour of l.

l and m belong to different classes.
}

6. End
Output: Balanced Training Data

4. Description of Classification Methods

An explanation in brief for every classification technique implemented in this study is
given below so as to give the fundamental information regarding these classification methods:

4.1. Logistic Regression

Logistic regression yields probabilistic approximations rather than predictive anal-
ysis [41,42]. The relation between one or more variables (independent) is described and
is also used for explaining the data. In more simple terms, it presents a model that gives
a probability of events happening as a linear function of a set of predictor variables. The
estimated regression model can be represented by Equation (1)

p̂ =
eβ0+β1x1

1 + eβ0+β1x1 (2)

4.2. Decision Tree

A flow-chart-like tree structure, wherein every internal node represents a test on an
attribute, every branch gives an outcome of the test, and class distribution is represented by
a leaf node is classed as a decision tree. The peak node in a tree is called the root node. A
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decision tree can produce understandable rules easily and performs classification in lesser
computation [43]. It is shown in Figure 3.

Figure 3. Decision making in personal health.

4.3. Support Vector Machine

A very powerful and widespread mechanism of classification was developed by V.
Vapnik [44]. A division between two data levels is made with a hyperplane, and these two
data levels fall on both sides of the hyperplane. The effort is always made to maximize the
margin and thereby to make the sufficient probable gap amid the instances and segregating
the hyperplane on either side of it.

Equation (3) is a representation of segregating hyperplane.

(W • X + b = 0) (3)

Here, W = { w1, w2, w3 . . . . . . wn} represents the weight vector, X is n-dimensional
vector, ‘n’ is number of attributes, and ‘b’ stands for a scalar (a bias) [43].

For a given dataset D = {(xi, yi /xi ∈ Rn, yi ∈ (−1, 1)),

[W • Xi + b ≥ 1] (4)

for yi = 1 (Label: class 1)
[W • Xi + b ≤ −1] (5)

for yi = −1 (Label: class −1).

4.4. k-Nearest Neighbour

k-Nearest Neighbor (k-NN) prediction model is generally acknowledged as lazy
learning (no learning) approach-based estimation mechanism, and it predicts on account
of k nearest numbers provided to it. Generally, the neighborhood is measured using the
Euclidian distance formula [37], but as per the requirement, other distance measures such as
Minkowski, Hamming, and Manhattan distances are also used [43]. The distance between
two points x and y is measured by the formula given by the Equation (6).

dist(x, y) =
√

∑n
i=0(xi− yi)2 (6)
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4.5. Gaussian Naïve Bayes

Gaussian Naïve Bayes is used if most of the attributes in the examples are continues.
The conditional probability is given by the formula given in Equation (7):

p(xi|y) =
1√

2 ∏ σ2
exp

(
(xi − µy)

2

2σ2
y

)
(7)

where µy and σy are mean and variance of predictor distribution.

4.6. Artificial Neural Network

Artificial Neural Networks simplify and imitate the brain behavior. ANN is a network
of modules known as artificial neurons which receive input, vary their internal state (activa-
tion) in line with that of input, and produce output as per the input and activation [38,43].

Weights (W): { w1, w2, w3 . . . . . . wn} represents the neuron strength.
Bias (b): It aids in the modification of the curve of the activation function.
Input Layer: The input layer incorporates inputs and weights.
Activation Function: A very important part is activation function, which gives non-

linear characteristics to the neural networks. It mainly converts any input of an artificial
neuron (AN) as output. Thereafter, the obtained output is served as input to the next layer
of AN [45,46]. There are many activation functions, such as the sigmoid function Equation (8).

Sigmoid(x) =
ex

1 + ex =
1

1 + e−x (8)

Hidden Layer: Many hidden layers may be there in ANN. Basically; hidden layer has
both summation as well as activation function.

Output Layer: The output layer has the set of outcomes generated by the preceding layer.

5. Performance Metrics of Classifiers

Confusion Matrix (CM): The confusion matrix is a tabular representation that de-
scribes the brief assessment of the performance of a classification model [43]. The diagonal
values are ones where the learning algorithm gives the correct results.

True Positive (TP): The training instances of which the true class is positive and which
also have been positively hypothesized by us. They can be called true positives.

False Positive (FP): Those training instances which are negative but wrongly classified
as positive by learning algorithm.

True Negative (TN): The training instances which are actually negative and are also
hypothesized as negative.

False Negative (FN): The training instances are positive, but the learning algorithm is
classifying these instances wrongly as negative.

Accuracy: -It is defined as the proportion of all true results to the total number of
cases checked.

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(9)

Precision: Precision speaks about how trustable is the model prediction.

Precision = TP/TP + FP (10)

Recall: Ability of the model to detect the class

Recall = (TP)/(TP + FN) (11)
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F-Score/F-Measure: It combines the precision and recall for the assessment of
the classifier.

F1− Score = 2 ∗ (precision ∗ recall)
( precision + recall)

(12)

It can be put in a more simplified way:

1. Accuracy alone is not a sufficient metric to evaluate a classification model time it
is misleading.

2. High recall and high precision—This is a good model.
3. Low recall and high precision—Model cannot detect the classes, but it is highly

trustable when it does.
4. High recall and low precision—Model can detect the classes but includes points of

other classes in it.
5. Low recall and precision—Poor model.

6. Experimental Setup

To accomplish the goal of comprehensive empirical performance analysis of different
classifiers with several data-balancing techniques over the clinical datasets, the experi-
ments were conducted to evaluate the efficiency and effectiveness of the algorithms in
terms of classifier accuracy (CA), precision, recall, F1 score/F measure. The whole ex-
periment was conducted using python programming language on the ‘Google Colab’
environment that runs entirely in the cloud. Figure 4 depicts the experimental workflow of
the proposed work.

Figure 4. Experimental setup for evaluation of classifiers over clinical datasets.

Clinical Datasets

The clinical datasets are medical records collected from different patients for a spe-
cific disease. The clinical datasets are beneficial for providing cost-effective solutions for
healthcare and medical diagnosis software systems. The five clinical datasets, Breast Cancer
Disease, Indian Liver Patient, Coronary Kidney Disease, Coronary Heart Disease, and Pima
Indians Diabetes Database, under this study have been downloaded from the UCI Machine
Learning repository and detailed with their set of features, instances, imbalance ratio (IR),
degree of imbalance in Table 4.
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Table 4. Dataset description before applying data-balancing technique.

S. No Dataset #Instances #Attributes Class IR Minority
Class (%)

Degree of
Imbalanced

1 BCD [47] 699 9 0:458, 1:241 1.9 34.5 Mild

2 Chronic Heart Disease [48] 4238 14 0:3594, 1:644 5.58 15.2 Moderate

3 ILPD [49] 583 9 0:416, 1:167 2.49 28.6 Moderate

4 PIMA Diabetes [50] 768 8 0:500, 1:268 1.86 34.9 Mild

5 Chronic Kidney Disease [51] 400 24 0:150, 1:250 1.66 37.5 Mild

7. Results and Discussion

The experiments have been conducted for the review of seven balancing techniques
and six classification techniques over five class imbalanced clinical datasets, as described
in Table 4. Figure 5a–e demonstrates the effect of applying the various data-balancing
methods. To assess the results of classification, the evaluation has been performed on
the basis of well-known performance measures, namely Accuracy, Precision, Recall, and
F1 score.

Breast Cancer Disease dataset

The breast cancer disease dataset was first preprocessed, and then each of the seven
data-balancing procedures—undersampling, random oversampling, SMOTE, ADASYN,
SVM-SMOTE, SMOTEEN, and SMOTETOMEK—was applied separately. As illustrated
in Figure 4, the balanced dataset was then tested against six significant classifiers. The
following observations were noted:

• The balancing technique SMOTEEN with k-NN, SVM, LR, and ANN shows the
accuracy of 99.8%, 99.5%, 99.1%, and 99.1%, respectively. There is a 3% increase in the
accuracy as compared to classification without data imbalance (Refer to Figure 6).

• Precision value for both SVM and ANN with SMOTEEN was reported as 100%. LR
and k-NN also show a comparable precision value of 99.5% (Refer to Figure 7).

• Recall varies from 97.2 to 100% for all classifiers in general when SMOTEEN was
applied. SVM reported the 100% recall for the BCD dataset (Refer to Figure 8).

• F1 Score for k-NN, SVM, and ANN with SMOTEEN observed 99.8, 99.5, and 99.1%,
respectively (Refer to Figure 9).

• Thus, the balancing technique SMOTEEN for BCD provides the highest accuracy,
Recall, Precision, and F1 score over all the Machine learning techniques, especially
k-NN outperforms all others.

Indian Liver Patient Dataset

The ILPD dataset was also experimented with as BCD dataset. The following observa-
tions were seen-

• SMOTEEN for ILPD SMOTEEN as compared to other six data-balancing techniques–
Undersampling, ROS, SMOTE ADASYN, SVM-SMOTE, and SMOTETOMEK give
high Accuracy 89.4%, 89.4, 86.6%, 86.1 with k-NN, DT, GNB, and LR respectively
(Refer to Figure 10).

• Undersampling underperforms with all the classification methods due to loss in
significant data while data balancing in ILPD.

• SMOTEEN as compared to the other six data-balancing techniques shows better
precision for GNB, DT, KNN, LR, and ANN with 94.8%, 89.5%, 89.5, 89.5%, and 88.5%,
respectively (Refer to Figure 11).

• Likewise, recall for k-NN and DT was 86.7% and for LR it is 83.7% with SMOTEEN,
whereas SVM, GNB, and ANN give low values.
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• F1 score for all machine learning techniques with SMOTEEN as a balancing technique
also gives a high recall value of 88.1% for both k-NN and DT (refer to Figure 12),
whereas LR, GNB, and ANN give a poor performance with low F1-score values,
i.e., 84.5%, 83.4%, and 78.4%, respectively (refer to Figure 13).

• Thus, the experimental analysis recommends the balancing technique SMOTEEN
with k-NN is the most suitable for detecting liver disease compared to the other six
balancing techniques. Moreover, SMOTEEN with Decision Tree (DT) also projected
considerably equal performances for ILPD Dataset.

Figure 5. Class label counts before and after applying the various data-balancing techniques for
datasets: (a) Breast cancer disease, (b) Coronary heart disease, (c) Pima diabetes dataset, (d) Indian
liver patient disease, (e) Coronary kidney disease.
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Figure 6. Accuracy for breast cancer disease dataset of balancing algorithms over six classifiers:
Logistic regression (LR), Decision tree (DT), Support vector machine (SVM), Gaussian Naïve Bayes
(GNB), k-Nearest Neighbor(k-NN), Artificial Neural Network (ANN), Random oversampling (ROS),
Synthetic Minority Oversampling Technique (SMOTE),Adaptive Synthetic (ADASYN), SMOTE-
Edited Nearest Neighbor (SMOTEEN).

Figure 7. Precision for breast cancer disease dataset of balancing algorithms over six classifiers.

Figure 8. Recall for breast cancer disease dataset of balancing algorithms over six classifiers.
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Figure 9. F1 Score for breast cancer disease dataset of balancing algorithms over six classifiers.

Figure 10. Accuracy for ILPD dataset of balancing algorithms over six classifiers.

Figure 11. Precision for ILPD dataset of balancing algorithms over six classifiers.
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Figure 12. Recall for ILPD dataset of balancing algorithms over six classifiers.

Figure 13. F1 score for ILPD dataset of balancing algorithms over six classifiers.

Coronary Kidney Disease Dataset

When Coronary Kidney Disease dataset was experimented as BCD and ILPD dataset,
the following observations were noticed:

• SMOTE gives the highest value of Accuracy, i.e., 99.2% on LR and 98.4% on DT,
while ROS gives the highest value of 98.4% on SVM model, SMOTEEN gives the
highest value 98.2% over GNB, 96.9% over LR, 95.7% over SVM, and 94.5 over k-NN,
respectively (refer to Figure 14).

• ROS has outperformed all the balancing techniques over all the machine learning
algorithms while measuring precision (refer to Figure 15).

• Recall for the kidney disease dataset is highest for SMOTE over LR (99.2%), DT (99.2%)
and SVM (100%) (Refer to Figure 16) machine learning models, but recall value is
highest for undersampling technique over GNB, Highest for SMOTEEN over k-NN
and ANN gives the best result over imbalanced data without any balancing technique.

• ROS as compared to the other six data-balancing techniques shows better precision
for GNB, DT, LR, SVM, ANN, and k-NN with 100%, 99.2%, 99.2%, 99.2%, 98%, and
90.8%, respectively.

• F1 score is highest for SMOTE over LR, DT, and SVM, giving the highest value of
99.2%, 98.4%, and 96.9%, respectively, whereas SMOTEEN gives the highest value of
97.9% over GNB and 96.5 for LR (refer to Figure 17).
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Figure 14. Accuracy for kidney disease dataset of balancing algorithms over six classifiers.

Figure 15. Precision for kidney disease dataset of balancing algorithms over six classifiers.

Figure 16. Recall for kidney disease dataset of balancing algorithms over six classifiers.



Healthcare 2022, 10, 1293 22 of 28

Figure 17. F1 score for kidney disease dataset of balancing algorithms over six classifiers.

Coronary Heart Disease dataset

When the CHD dataset was experimented, the following observations were noticed-

• k-NN gives the highest value of accuracy, i.e., 92.2% for SMOTEEN, and DT gives
84% for SMOTEEN as compared to all other classifiers and balancing techniques (refer
to Figure 18).

• SMOTEEN gives the highest value of 90% precision for k-NN, but DT, GNB, and SVM
are also found to be better (refer to Figure 19).

• SMOTEEN gives the highest value of recall, 98.6% over k-NN but GNB and ANN
underperform over CHD (refer to Figure 20).

• SMOTEEN reported the highest F1 Score value of 94.1%, whereas classifiers DT, SVM,
and LR with SMOTEEN displayed an F1 Score of 87.6%, 82.8%, and 82.5%, respectively
(refer to Figure 21).

Pima Indians diabetes dataset

When the diabetes dataset was experimented with the proposed experimental setup,
the following observations were noticed-

• SMOTEEN for k-NN, SVM, DT, LR, GNB, and ANN attains the accuracy of 96.2%,
92.5%, 91.3%, 90.6%, 87.5%, and 85.7%, respectively (Refer to Figure 22), whereas all
other six data-balancing techniques underperform in terms of accuracy with all six
classifiers over the Diabetes dataset.

• Precision values for k-NN and SVM with SMOTEEN displayed 94.8% and 93.9% (Refer
to Figure 23).

• k-NN with SMOTEEN yields a recall of 98.6% over the diabetes dataset (Refer
to Figure 24.

• F1 score for k-NN, SVM, DT, LR, GNB, and ANN yields 96.7%, 93.2%, 92.4%, 91.8%,
88.4%, and 87.9%, respectively (Refer to Figure 25).

• By and large, k-NN with SMOTEEN outperforms diabetes datasets compared to all
other balancing and techniques and all other classifiers.

It is quite evident from the result analysis that the SMOTEEEN balancing method often
performed better over all the other six data-balancing techniques for all five clinical datasets.
This is because SMOTEEN combines oversampling and under-sampling with SMOTE and
Edited Nearest Neighbors. Additionally, ENN leans towards removing a larger number of
instances as compared to the Tomek links. ENN works for the elimination of cases in all
classes, so any case which undergoes misclassification from all three nearest neighbors will
be disposed of in the training set. In many cases, undersampling underperformed because
it had discarded potentially useful instances from clinical datasets.
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Figure 18. Accuracy for coronary heart disease dataset of balancing algorithms over six classifiers.

Figure 19. Precision for coronary heart disease dataset of balancing algorithms over six classifiers.

Figure 20. Recall for coronary heart disease dataset of balancing algorithms over six classifiers.
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Figure 21. F1 score for coronary heart disease dataset of balancing algorithms over six classifiers.

Figure 22. Accuracy for diabetes dataset of balancing algorithms over six classifiers.

Figure 23. Precision for diabetes dataset of balancing algorithms over six classifiers.
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Figure 24. Recall for diabetes dataset of balancing algorithms over six classifiers.

Figure 25. F1 score for diabetes dataset of balancing algorithms over six classifiers.

ROS also underperformed with different classifiers because of making exact copies of
existing examples which posed overfitting to the model.

SMOTE moderately underperformed in some cases as compared to SMOTEEN because
of the lack of flexibility and overgeneralization done by it. It does not just replicate the
present minority cases as an alternative; SMOTE takes instances of feature space for each
target class and its neighbors and then makes new instances that syndicate the attributes of
the target cases with attributes of its neighbors.

ADASYN is a slight improvement over SMOTE by adding a random small value to
the points to make it more genuine.

The main attention of SVM-SMOTE was on producing the new minority class sam-
ples near the dividing line with the SVM approach to support establishing the borderline
between classes. Thus, wherever overfitting did not occur, the SVM-SMOTE gave a com-
parable result. Opposite class paired instances that are the closest neighbors to each other
come under the Tomek links. Hence, the majority of the class instances from these links
are eliminated as it is thought to rise the class segregation close to the decision boundaries.
Therefore, in place of removing the instance solely from the majority class, in general, in-
stances are removed from both the classes from the Tomek links. Consequently, sometimes
inappropriate operation causes poor results.
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8. Conclusions

The classification of data into specified class labels has always been a great challenge,
and it is even more persistent while dealing with imbalanced data. In this study, we
have implemented seven balancing techniques—Undersampling, Random oversampling,
SMOTE, ADASYN, SVM-SMOTE, SMOTEEN, and SMOTETOMEK—and six different
disease predication techniques—Logistic regression, Decision Tree, Support Vector Machine,
k-Nearest Neighbor, and Artificial Neural Network—over five different clinical datasets,
namely BCD, ILPD, CKD, CHD, and Pima Indians Diabetes Database.

SMOTEEN with k-NN provided the highest accuracy, Recall, Precision, and F1 score
over all the machine learning techniques all others for the BCD dataset and bagged a 3%
increase in the accuracy as compared to classification without data imbalance.

• SMOTEEN with k-NN was found the most suitable for detecting liver disease.
• Moreover, k-NN gives the highest value of accuracy of 92.2% over coronary heart

disease for SMOTEEN compared to all other classifiers and balancing techniques.
• As for as the diabetes dataset is concerned, SMOTEEN with k-NN was found the most

suitable, with accuracy of 96.2.
• SMOTE with Logistic regression (LR) gives the highest value of accuracy, 99.2%, over

the CHD dataset.

The performance of these balancing algorithms has been observed and it is concluded
that there is no single balancing technique that can generate the best results over all the
datasets. If dataspace is important, then machine learning techniques cannot be ignored,
and the balancing algorithms are equally important.
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