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Abstract: Since December 2019, COVID-19 has been raging worldwide. To prevent the spread
of COVID-19 infection, many countries have proposed epidemic prevention policies and quickly
administered vaccines, However, under facing a shortage of vaccines, the United States did not
put forward effective epidemic prevention policies in time to prevent the infection from expanding,
resulting in the epidemic in the United States becoming more and more serious. Through “The COVID
Tracking Project”, this study collects medical indicators for each state in the United States from 2020
to 2021, and through feature selection, each state is clustered according to the epidemic’s severity.
Furthermore, through the confusion matrix of the classifier to verify the accuracy of the cluster
analysis, the study results show that the Cascade K-means cluster analysis has the highest accuracy.
This study also labeled the three clusters of the cluster analysis results as high, medium, and low
infection levels. Policymakers could more objectively decide which states should prioritize vaccine
allocation in a vaccine shortage to prevent the epidemic from continuing to expand. It is hoped that if
there is a similar epidemic in the future, relevant policymakers can use the analysis procedure of this
study to determine the allocation of relevant medical resources for epidemic prevention according to
the severity of infection in each state to prevent the spread of infection.

Keywords: COVID-19; clustering analysis; classification validation; vaccine distribution; machine learning

1. Introduction

Since the emergence of the new coronavirus COVID-19 in December 2019, it has spread
through the world at a rapid rate, causing a catastrophe in the field of human public health.
This virus not only affects world transportation but also causes irreparable economic and
human losses. The United States, which dominates the global economic system, has failed
to make timely corresponding policies for epidemic prevention [1]. Although the number
of infections continues to rise, the United States seems to have failed to take effective
vaccine distribution and isolation measures [2]. According to [3] who investigated vaccine
allocation, it is important for a region to prioritize who receives vaccines. According to [4],
reasonable vaccine distribution protocols are needed in the case of regions with unstable
resources. The authors used more than 100 countries to conducted data analysis of more
than 100 countries and found that problems with vaccine distribution are a main cause of
the spread of influenza. In [5], authors collected the global coronavirus collective infection
data, used the cluster technique to analyze, and found that virus transmission is related
to family and community infection. The authors in [6] found data on influenza, used
feature dimension reduction to extract important information from the data, and finally
used classification algorithms to evaluate the outcome.
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Clustering is the disassembly of a dataset from group to group, and the comparison
between clusters shows whether the difference within the cluster is small and the difference
between the groups is significant; the difference is measured by the distance between
observations. Academic studies in all areas often use clustering to help analyze data and
reach conclusions. For example, in [7], the authors detected gas leaks by monitoring mass
spectrometer data and cluster analysis. Because of disputes between tourism development
and natural landscape protection, various stakeholders were included in a cluster anal-
ysis, and the analysis results were divided into four groups: conservative to radical [8].
According to financial strategies of different companies [9], non-financial companies are
often analyzed by clusters. Some strategies are suitable for high-tech economic industries,
while others are suitable for basic industries.

Classification refers to establishing a data classification model based on known data
and their category attributes, which can help predict which label the target data will be
assigned. According to [10], sonar datasets are selected through the short-time Fourier
transform, and then the sonar targets are classified by few-shot learning in the small sample
learning method, which improves classification accuracy. In [11], a support vector machine
was used to classify different hand movements according to experimental subjects’ real-
time and non-real-time EMG data, and the results showed that the human muscles set
were as repetitive as fingerprints or retinas. Dritsas and Trigka [12] using different machine
learning techniques to predict stroke, found that ensemble machine learning was the
best approach.

In the face of the shortage of vaccines during the COVID-19 pandemic, the United
States did not put forward effective epidemic prevention policies in time to prevent the
infection from further expanding, resulting in an increasingly serious epidemic in the
United States. This study mainly uses the COVID-19 infection case indicators collected
by the COVID Tracking Project in various states of the United States. Through cluster
analysis, we can distinguish the severity of infection (low, medium, and high) in each
state and further allocate vaccines to states with high infection rates to carry out priority
epidemic prevention measures. In this study, the data mining software WEKA is used to
conduct cluster analysis and classification. After the experiment, the cluster is named after
confirming the classification accuracy of the confusion matrix with classification verification.
This study hopes that understanding the indicators of infection cases in each state can help
allocate medical resources in the future and provide a reference for decision makers in
vaccine distribution.

The structure of this study is as follows. Section 2 is a preliminary description of
COVID-19, medical indicators, and vaccine distribution, combined with machine learning
processes, which include feature selection, clustering method, and classification verification.
Section 3 describes the dataset and the experimental process. Section 4 is the result of
grouping analysis and classification verification. Section 5 is the discussion, and Section 6
is the conclusion.

2. Preliminary
2.1. COVID-19

Severe Special Infectious Pneumonia (SARS-CoV-2) aka Novel Coronavirus (COVID-19)
has seriously affected people’s lives worldwide, and many scholars have conducted related
studies on COVID-19. A survey [13] of seriously ill patients collected many characteristics
of COVID-19 symptoms, found it to be a dangerous virus, and conjectured that early
pulmonary fibrosis was a substantial basis. As the epidemic became more serious, some
scholars began to explore factors closely related to the death of patients. Zhou et al. [14]
used univariate and multivariate logistic regression to explore factors associated with
in-hospital mortality. Zheng et al. [15] analyzed the clinical characteristics of severe and
non-severely ill COVID-19 patients in 13 articles with a total of 3027 patients to identify
risk factors for developing severe disease or death in COVID-19 patients to predict disease
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progression effectively, respond to treatment early, and allocate medical resources in a
better way.

2.2. Medical Indicators and Vaccine Allocation

According to [16], a survey of Taiwanese medical institutions found that the quality
of medical care and its organization and management are highly correlated. The Taiwan
Quality Indicators Project (TQIP), which collected hospital datasets from 1998 to 2004, used
this dataset and a survey in the United States to conduct data envelopment analysis and
found that improvements in medical quality services could reduce costs [17]. In [18], the
authors analyzed common disease characteristics to improve the quality of medical care in
the country and found that data analysis could help the hospital to make better decisions.

According to [19], research on vaccine distribution has studied how to stop disease
transmission effectively and found that when the number of transmissions is reduced, the
number of deaths can be effectively reduced. The vaccine allocation study in [20] found
that 5 to 15% of people worldwide die each year from epidemics. To counter this threat,
the United States mass produces a variety of vaccines. However, these vaccines have no
effect on newly emergent diseases. COVID-19 required the development and production of
a completely new vaccine. Then the problem of vaccine distribution had to be considered.

2.3. Feature Selection Techniques

In the clustering process, if there are too many variables, the problem will often become
more complicated; therefore, feature selection or feature extraction becomes very important.
It can reduce the dimension of variables and make the problem simpler. The following are
some commonly used feature selection methods.

2.3.1. Principal Component Analysis (PCA)

According to the discussion of the principal component analysis in [21], this technique
is mainly aimed at finding the vector after the data projection, hoping to maximize the
data variation, find the C (covariance) value, and finally get the covariance. Algorithm 1 is
shown below:

Algorithm 1 PCA based Feature Selection.

Inputs: X = {x1, x2, . . . . . . , xD} // D-dimension training dataset
Outputs: Y = {y1, y2, . . . . . . , yd} // lower dimensionality d-dimensional feature set where d <= D
1 Do PCA on X for dimensionality reduction
2 Compute mean of input dataset (x)’
3 Calculate the covariance matrix Cov (x)
4 Find spectral decomposition of Cov (x) and the corresponding Eigen vectors and values E1, E2,

. . . ED to get the principal components P = (x1′ , x2′ , . . . . . . , xn′ ) which is a subset of X.

The purpose of using PCA to extract features is to generate a new collection of
dimensionally reduced features compared to the original dataset. This will convert a
D-dimensional dataset to a new lower d-dimensional dataset where D <= d, as shown in
Equation (1). Let X be the original dataset and xi be the individual variables in the dataset:

Consider a D− dimensional dataset X = (x1, x2, x3, . . . . . . , xN) (1)

In this study, PCA was used to reduce the dimension of the data, and the specific
steps were as follows. The first step was to calculate the mean value of X with Equation (2),
N = number of observations.

(x)′ =
1
N ∑N

i=1 .(xi) (2)

This will help standardize the data and calculate the covariance. Standardization
places variables and values of data within a given range to achieve unbiased results.
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The next step is computing the covariance matrix. The covariance matrix is used to
identify the correlation and dependencies among the features as shown in Equation (3).

Cov(x) = 1/N ∑N
i=1 .

(
xi− xi′

)(
xi− xi′

)
T (3)

The last phase is spectral decomposition of the covariance matrix using eigenvectors £1,
£2, . . . . . . , £D and eigenvalues λ1, λ2, . . . . . . , λD. This gives Y as shown in Equation (4). Let
Y be the lower dimensional set and yi be the variables.

Y = (y1, y2, y3, . . . . . . , yP) (4)

such that Y is the lower d-dimensional dataset and has the principal components, as shown
in Equation (5).

(Y =
(
£T1

(
x− xi′

)
, £T2

(
x− xi′

)
, £T3

(
x− xi′

)
, . . . . . . , £Td

(
x− xi′

)
)T
)

(5)

such that for the original dataset X, the new dimensional representation is Y which has
principal components.

2.3.2. Information Gain

Information gain uses a feature sorting method to rank the variables in the dataset. It
mainly uses an entropy principle to measure a set of randomly generated variables [22].
The information gain-based feature selection is shown in Algorithm 2:

Algorithm 2 Information gain-based feature selection

Inputs: Dataset D
Outputs: Selected Features FS
1 Start
2 Initialize threshold for gain gt
3 Initialize feature -gain map G
4 Get attributes from D into A provided c
5 for each attribute a in A
6 Find gain g
7 IF (g > gt) THEN
8 Add attribute a and g to G
9 End IF
10 End For
11 For each element in G
12 IF feature is found useful THEN
13 Update FS with the feature
14 END IF

As can be seen in Algorithm 2, the information gain-based approach finds the infor-
mation gain pertaining to the importance of features in the dataset. Equations (6) and (7)
are used to compute the entropy of x and y.

En(x) = −∑ p(x) log p(x) (6)

En(y) = −∑ p(y) log p(y) (7)

Once entropy is computed, the difference is computed to know the gain value. In fact,
the gain from x on y is the reduction in entropy values and is computed using Equation (8).

IG(y, x) = En(y)− En(y/x) (8)
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2.3.3. Gain Ratio

Karegowda et al. [23] introduced the extension technique of information gain in which
after the information gain result appears, it will branch it separately, and then find the best
score from it. The information gain metric is used to select test attributes at each node of
the decision tree. Let s be a set consisting of s data samples with m distinct classes. The
expected information needed to classify a given sample is given by Equation (9).

I(s) = −∑m
i=1 Pi log2(Pi) (9)

Pi is the probability that an arbitrary sample belongs to class Ci and is estimated by
si/s. Attribute A has v distinct values. Let sij be the number of samples of class Ci in a
subset Sj. Sj contains those samples in S that have value aj of A. The entropy information
based on the partitioning into subsets by A, is shown in Equation (10).

E(A) = −∑m
i=1 I(S)

S1i + S2i + · · · Smi
s

(10)

The encoding information that would be gained by branching on A is shown in
Equation (11)

Gain(A) = I(S)− E(A) (11)

The gain ratio which applies normalization to information gain using a value defined
is shown in Equation (12)

SplitIn f oA(S) = −∑v
i=1(|Si|/|S|) log 2(|Si|/|S|) (12)

The above value represents the information generated by splitting the training dataset
S into v partitions corresponding to v outcomes of a test on the attribute A. Finally, the gain
ratio is defined as shown in Equation (13).

Gain Ratio (A) =
Gain(A)

SplitIn f oA(S)
(13)

2.4. Cluster Analysis

Cluster analysis aims to divide samples into different groups to maximize homogeneity
within each group and maximize heterogeneity between groups. This concept is similar to
“intra-group homogeneity and inter-group heterogeneity” in market segmentation. There
are two commonly used clustering methods introduced as follows.

2.4.1. K-Means

According to [24], K-means clustering consists of two independent stages: the first
stage is to select k centers, where the k value is pre-fixed, and the next stage is to bring
each data object to the nearest center. Supposing that the target object is x, xi indicates the
average of cluster Ci. The criterion function is defined as shown in Equation (14).

E = ∑k
i=1 ∑x∈Ci

|x− xi|2 (14)

E is the sum of squares of errors of all objects in the dataset. The distance of the
criterion function is the Euclidean distance, which is used to determine the closest distance
of each data object to the cluster center. The distance between one vector x = (x1, x2, . . . xn)
and another vector y = (y1, y2, . . . yn), is the Euclidean distance d

(
xi, yj

)
. It can be calculated

as shown in Equation (15).

d
(

xi, yj
)
=
[
∑n

i=1

(
xi − yj

)2
]1/2

(15)
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2.4.2. Cascade K-Means

Another clustering is based on [25], in which there is a Calinski–Harabasz metric that
evaluates the number of clusters, calculates the distance, and then uses the metric to decide
whether to continue the cluster and find the optimal number of clusters. The matrices WG{k}

are square symmetric matrices of size p × p. Let WG denote their sum for all the clusters as
shown in Equation (16).

WG = ∑K
k=0 WG{k} (16)

The matrices WG{k} represent a positive semi-definite quadratic form Qk, and their
eigenvalues and their determinant are greater than or equal to 0. The within-cluster
dispersion, noted as WGSS{k} or WGSSk, is the trace of the scatter matrix WG{k}, as shown
in Equation (17).

WGSS{k} = Tr
(

WG{k}
)
= ∑i∈ Ik

∣∣∣∣∣∣M{k}i − G{k}
∣∣∣∣∣∣2 (17)

The within-cluster dispersion is the sum of the squared distances between the obser-
vations M{k}i and the barycenter G{k} of the cluster. Finally, the pooled within-cluster sum
of squares WGSS is the sum of the within-cluster dispersions for all the clusters as shown
in Equation (18).

WGSS = ∑K
k=0 WGSS{k} (18)

The between-group dispersion measures the dispersion of the clusters between each
other. This sum is the weighted sum of the squared distances between the G{k} and G, the
weight being the number nk of elements in the cluster Ck, as shown in Equation (19).

BGSS = ∑K
k=1 nK

∣∣∣∣∣∣G{k} − G
∣∣∣∣∣∣2 (19)

Using the notations of Equations (18) and (19), the Calinski–Harabasz metric is shown
as in Equation (20).

CH =
BGSS/(K− 1)

WGSS/(N−K)
=

N−K
K− 1

BGSS
WGSS

(20)

2.5. Classification

Classification is a critical method of data mining. The classification concept is to learn
a classification function or construct a classification model (usually called a classifier) based
on existing data. The function or model can map data records in the database to one
of the given categories, and apply it to data prediction. The classifier is a general term
for classifying samples in data mining, including decision tree, logistic regression, naive
Bayes, neural networks, and other algorithms. The following is an introduction to the two
classifiers used in this study.

2.5.1. Random Forest

According to [26], the generation technology of random trees evolved from decision
trees. In addition, the pattern generation method of a tree can also be used without
selecting the data target first. This technique is an ensemble learning algorithm that uses
bagging plus random feature sampling. The random forest training algorithm applies the
general bagging technique to tree learning. Given a training set X = x1, . . . , xn and a target
Y = y1, . . . , yn, the bagging method is repeated (B times) to sample from the training set
with replacement and then train a tree model on these samples:

For b = 1, . . . , B:

1. Sample, with replacement, n training examples from X, Y; call these Xb, Yb.
2. Train a classification or regression tree fb on Xb, Yb.

After training, the prediction for the unknown sample x can be achieved by averaging
the predictions of all individual regression trees on x as in Equation (21):
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f̂ =
1
B ∑B

b=1 fb
(
x′
)

(21)

2.5.2. Neural Network

According to [27], the neural network is one of the classic technologies inspired by
the human brain. human brain can process different information content because it has
different neurons. The includes hundreds of millions of neurons that can connect and
share. When a neuron can continuously connect to other neurons, it can trigger the brain
to control the human body to complete some behaviors. This behavior is essentially a
process of learning and absorbing knowledge, while new neural connections stimulate
the brain to learn new actions. The process mentioned above is similar to the one used in
neural networks, where neurons can be defined as one or more nodes used. The structure
of neurons is an input layer, a hidden layer, and an output layer which can be shown in
Equation (22), where σ() is called the activation or transfer function, N is the number of
input neurons, Vij is the weights, xj is inputs to the input neurons, and Thid

i is the threshold
terms of the hidden neurons.

Hi = σ
(
∑N

j=1 Vijxj + Thid
i

)
(22)

3. Material and Methods
3.1. Dataset

The dataset of this study was collected from various states in the United States (The
COVID Tracking Project). The dataset variables are divided into various levels. The
variables marked as grade A or above indicate that the information provided by this state
is relatively sufficient and complete and vice versa. There are 44 variables in the dataset,
roughly divided into cases, PCR tests, antibody tests, antigen tests, hospitalizations, death
outcomes, and the state metadata, as shown in Table 1.

Table 1. Dataset.

Item Variables Attribute Item Variables Attribute

1 date String 24 inlcucumulative Numerical

2 state String 25 inlcuCurrently Numerical

3 dataQualityGrade String 26 onVentilatorCumulative Numerical

4 positive Numerical 27 onVentilatorCurrently Numerical

5 positive Increase Numerical 28 death Numerical

6 probable Cases Numerical 29 death Increase Numerical

7 positiveScore Numerical 30 death Probable Numerical

8 positiveCasesViral Numerical 31 death Confirmed Numerical

9 positiveTestsViral Numerical 32 recovered Numerical

10 positiveTestsPeopleAntibody Numerical 33 totaltestResults Numerical

11 positiveTestsAntibody Numerical 34 totalTestResultsIncrease Numerical

12 positiveTestsPeopleAntigen Numerical 35 totalTestsViral Numerical

13 positiveTestsAntigen Numerical 36 totalTestsViralIncrease Numerical

14 negative Numerical 37 totalTestsPeopleViral Numerical

15 negativeTestsViral Numerical 38 totalTestsPeopleViralIncrease Numerical

16 negativeTestsPeopleAntibody Numerical 39 totalTestEncountersViral Numerical

17 negativeTestsAntibody Numerical 40 totalTestEncountersViralIncrease Numerical
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Table 1. Cont.

Item Variables Attribute Item Variables Attribute

18 negativeIncrease Numerical 41 totalTestsAntigen Numerical

19 Pending Numerical 42 totalTestsPeopleAntigen Numerical

20 hospitalized Numerical 43 totalTestsAntibody Numerical

21 hospitalized Increase Numerical 44 totalTestsPeopleAntibody Numerical

22 hospitalized Cumulative Numerical

23 hospitalized Currently Numerical

3.2. Conceptual Framework

The clustering analysis and classification scenario of this study is shown in Figure 1,
which are data preprocessing, cluster experiment, and classification verification. Feature
selection was performed before the dataset was clustered, and essential feature variables
were identified. The results of the two clustering methods were statistically compared for
these essential variables. Finally, after clustering analysis, the classification method was
used to verify the confusion matrix.
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3.3. A Brief Review of Clustering Techniques

Clustering is to group all data and classify similar data into the same group. A piece
of data only belongs to a particular group, and each group is called a cluster. Defining
the so-called similarity is usually judged by the distance between data points. The closer
the distance is, the more similar it is presumed to be. The denser the neighbors, the more
similar they are presumed to be. The clustering techniques are pretty diverse. In the
1970s, most of the published studies were performed with hierarchical-based algorithms.
In addition to generating a tree graph, these algorithms can also present the division of
relatively important and target clusters [28]. However, when the merge or split decision is
implemented in the pure hierarchical clustering method, the quality of the clustering will
be affected, and it will not undo previous operations. Moreover, an object cannot move to
another cluster [29]. The density-based algorithm plays a vital role in nonlinear shapes and
structures derived from density. The concepts of the density-based algorithm are density
accessibility and density connectivity. However, most of the indicators used to evaluate or
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compare cluster analysis results are not suitable for evaluating the results of density-based
clustering analysis [30].

In the past few years, there has been much work on graph-based clustering, and
theorists have extensively studied the properties of clustering and the quality measures of
various clustering algorithms using elegant mathematical structures established in graph
theory [31]. For example, the Markov Cluster Algorithm is a fast and scalable graph
(also known as a network) unsupervised clustering algorithm based on the simulation of
(random) flow in a graph [32]. A comparison table of different clustering techniques is
shown in Table 2. The pros and cons of different clustering techniques are also included.
This study employs a partitioning algorithm, a non-hierarchical approach, to evaluate
clustering results by constructing various partitions. Criteria are globally optimal or
efficient heuristics. K-means is the most commonly used method [33], which needs to
define the number of clusters in advance to meet the requirements of specific clusters.
The dataset in this study does not belong to a complex real network or shape, so the
cluster analysis in this study is performed by well-integrated K-means and modified
Cascade K-means.

Table 2. Comparison of different clustering techniques.

Category Hierarchical Density-Based Graph-Based Partitioning

Based on Linkage methods Density accessibility
Density connectivity Graph theory Mean Centroid

Mediod-Centriod

Type of Data Numerical Numerical Mix data Numerical

Pros Easy to implement
Good for small datasets

Found clusters of arbitrary
shapes and sizes

Perform well with
complex shapes of data

Easy to implement
Robust and easier to

understand

Cons
Fails on larger sets

Hard to find the correct
number of clusters

Doe not work well in high
dimensionality data.

Can be costly
to compute

Unable to handle noisy
data and outliers

3.4. Data Preprocessing
3.4.1. Feature Selection

According to [34], when the data are more complex, the readability is lower; therefore
the reduction of the data dimension becomes a matter of course, and the reduction of the
data dimension is also a method usually used for feature selection. Uğuz [35] used the
method of data dimension reduction to extract features in different mixed models using
two-stage testing and finally obtained better results. Therefore, this study used PCA, IG,
and GR to select essential variables and then sorted out co-occurring variables. The method
of feature selection and the detailed WEKA feature selection process is shown in Figure 2.
The selected common variables are used for the next step of cluster analysis.
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3.4.2. Clustering Analysis and Classification

This study mainly used the dataset from 2020 to 2021 in the COVID Tracking Project
to conduct cluster analysis. In the experiment, fearing that the single clustering method
was too subjective, we intentionally compared the clustering results of the two clustering
methods after data preprocessing. Both K-means and Cascade K-means were used in the
cluster experiments in this study. The classification verification after the cluster analysis
was completed. Previous research found that the random forest method (RF) and the
neural network (NN) have good performance [36]. We therefore used these two methods
to compare the confusion matrix in the classification results and verify the effect of cluster
analysis. The detailed WEKA cluster experiment and classification verification process are
shown in Figure 3.
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4. Results
4.1. Feature Selection and Clustering Analysis Result

The descriptive statistics such as the minimum, maximum, average, and standard
deviation of the data fields marked as grade A in The COVID tracking project dataset are
shown in Table 3.

Table 3. Dataset descriptive statistics.

Data Field Minimum Maximum Mean Standard Deviation

Death 3.563 20,146.993 3012.726 4063.720

deathConfirmed 0.000 11,873.819 1612.264 2564.015

deathIncrease 0.229 139.083 23.802 28.186

deathProbable 0.000 1557.983 116.001 241.290

Hospitalized 0.000 74,908.536 6795.447 12,375.868

hospitalizedCumulative 0.000 74,908.536 6795.447 12,375.868

hospitalizedCurrently 0.000 5706.697 1016.505 1178.133

hospitalizedIncrease −0.868 574.361 52.537 93.318

inIcuCumulative 0.000 4167.848 374.140 935.623

inIcuCurrently 0.000 1594.500 198.782 310.440

negative 3193.583 5,676,868.213 1,217,574.982 1,393,361.630
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Table 3. Cont.

Data Field Minimum Maximum Mean Standard Deviation

negativeIncrease 225.347 66,790.590 10,430.280 13,289.475

negativeTestsAntibody 0.000 274,785.535 9939.138 42,390.124

negativeTestsPeopleAntibody 0.000 307,446.436 9400.504 44,786.195

negativeTestsViral 0.000 5,069,123.190 376,163.876 913,586.361

onVentilatorCumulative 0.000 1210.757 44.743 189.114

onVentilatorCurrently 0.000 383.805 77.040 115.523

positive 290.354 689,808.865 126,025.819 137,216.541

positiveCasesViral 0.000 644,108.814 99,837.740 122,787.805

positiveIncrease 16.833 6633.789 1390.662 1405.567

positiveScore 0.000 0.000 0.000 0.000

positiveTestsAntibody 0.000 32,553.559 2128.500 6739.150

positiveTestsAntigen 0.000 28,745.608 1748.258 5172.510

positiveTestsPeopleAntibody 0.000 30,843.331 969.265 4476.315

positiveTestsPeopleAntigen 0.000 19,372.812 912.666 3418.733

positiveTestsViral 0.000 746,688.084 69,991.507 149,301.079

recovered 0.000 548,376.917 56,375.980 91,104.014

totalTestEncountersViral 0.000 6,252,107.282 436,938.962 1,266,757.976

totalTestEncountersViralIncrease 0.000 70,634.798 4496.100 13,115.623

totalTestResults 3643.785 6,252,107.282 1,575,543.098 1,650,858.474

totalTestResultsIncrease 250.514 70,634.798 14,555.709 15,895.585

totalTestsAntibody 0.000 336,182.488 33,358.436 81,366.549

totalTestsAntigen 0.000 329,705.523 23,679.767 57,553.140

totalTestsPeopleAntibody 0.000 338,396.716 13,807.533 51,122.147

totalTestsPeopleAntigen 0.000 121,896.261 6203.051 21,180.165

totalTestsPeopleViral 0.000 3,939,157.669 424,758.638 718,630.307

totalTestsPeopleViralIncrease −251.653 31,530.365 3374.921 5665.766

totalTestsViral 0.000 5,972,478.403 1,244,215.985 1,591,549.099

totalTestsViralIncrease 0.000 52,143.061 11,304.525 14,366.747

We first performed principal component analysis (PCA) on the dataset and extracted
the first 20% of the variables from the PCA results. The detailed results are shown in
Table 4.

Table 4. PCA feature selection results.

Features

Group Pc1 Pc2 Pc3 Pc4 Pc5 Pc6 Pc7 Pc8 Pc9 Pc10 Pc11

Variation 15.89 6.05 4.69 2.64 1.90 1.38 1.11 0.92 0.64 0.54 0.49

Variation Percentage 0.42 0.16 0.12 0.07 0.05 0.04 0.03 0.02 0.02 0.01 0.01

Cumulative
contribution ratio 0.42 0.58 0.70 0.77 0.82 0.85 0.88 0.91 0.93 0.94 0.96
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Next, we continued to extract the feature variables from the IG and GR methods.
Feature variable selection of the IG and GR methods also takes the top 20% of the feature
variables and the top 20% of the PCA feature variables for sorting and comparison. The
results are shown in Table 4. The feature variables that repeatedly appear in Table 4 are
selected in this study. We list these important feature variables that repeatedly appear
in Table 5. Table 6 is the cluster feature variables selected for this study, and there are
10 variables in total.

Table 5. Feature selection sorting.

Rank PCA IG GR Average Rank

1 A30 A2 A39 2.7302

2 A19 A19 A11 2.7302

3 A21 A30 A13 2.7302

4 A31 A31 A16 2.7302

5 A8 A13 A18 2.7302

6 A15 A21 A19 2.7302

7 A24 A12 A38 2.7302

8 A34 A4 A12 2.7302

9 A14 A8 A9 2.7302

10 A36 A27 A22 2.6814

11 A9 A38 A8 2.4945

12 A33 A39 A3 2.4945

13 A6 A20 A4 2.4945

14 A7 A7 A5 2.3984

15 A23 A6 A6 2.3984

16 A3 A11 A7 2.3269

17 A5 A9 A21 2.3269

18 A39 A36 A20 2.2745

19 A29 A18 A2 1.9183

20 A18 A3 A31 1.9183

Table 6. Clustering variable.

Code Variable Definition

A3 deathConfirmed Number of confirmed deaths

A6 Hospitalized Number of hospitalizations

A7 hospitalizedCumulative Cumulative hospitalizations

A8 hospitalizedCurrently Number of people currently hospitalized

A9 hospitalizedIncrease New hospitalizations

A18 onVentilatorCurrently Number of respirators currently in use

A19 positive Number of confirmed cases

A21 positiveIncrease The number of new diagnoses

A31 totalTestResults Total number of tests

A39 totalTestsViralIncrease Number of new PCR tests

According to the critical cluster characteristics in Table 6, the number of confirmed
cases, the number of deaths, the number of hospitalizations, the number of PCR tests,
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and other variables are related. It can be seen from this information that the results of
future cluster analysis will have a positive relationship with the severity of the confirmed
outbreak, and age, hospitalization, and death are closely related [37].

This study next carried out cluster analysis. The variables after feature selection (FS)
in Table 5 were analyzed by K-means and Cascade K-means methods of WEKA. The results
of the cluster analysis of US states are shown in Table 7.

Table 7. Clustering results.

Method FS + K-Means Clustering FS + Cascade K-Means Clustering

Group Cluster1 Cluster2 Cluster3 Cluster3 Cluster1 Cluster2

Count 5 states 5 states 41 states 7 states 22 states 22 states

cluster
member

LA
MO
NC
PA
TN

IL
MA
MI
OH
TX

AK, AL, AR, AZ, CO, CT,
DC, DE, FL, GA, GU, HI,

IA, ID, IN,
KS, KY, MD, ME, MN,
MS, MT, ND, NE, NH,

NJ, NM, NV,
NY, OK, OR, PR, RI, SC,

SD, UT, VA, VT,
WA, WI, WY

IL
LA
MI
MO
NC
PA
TX

AL, AR, AZ,
CO, FL, GA,
IN, KY, MA,

MD, MN, MS,
NJ, NM, NY,
OH, OK, SC,

TN, UT, VA, WI

AK, CT,
DC, DE,

GU, HI, IA, ID,
KS, ME, MT,
ND, NE, NH,

NV, OR,
PR, RI, SD, VT,

WA, WY

It can be observed from Table 6 that the clustering results of these two types of cluster
analysis are not the same.

To determine which cluster analysis results were better, we first performed an ANOVA
analysis of variance between clusters. Table 7 shows the results of the analysis of variance
(ANOVA) between clusters after using K-means for cluster analysis. Table 8 shows that 7
of the 10 selected variables are significant. Moreover, Table 9 shows the results of ANOVA
analysis between clusters after using Cascade K-means for cluster analysis. Table 9 shows
that all 10 variables are significant. Therefore, the preliminary analysis results show that
there are significant differences between clusters using Cascade K-means cluster analysis
results, and the effect of clustering is better.

Table 8. ANOVA analysis results with K-means clustering.

Source Sum of Squares df p-Value

deathConfirmed 96,309,899.004 2 0.000 ***

hospitalized 163,810,675.372 2 0.595

hospitalizedCumulative 163,810,675.372 2 0.595

hospitalizedCurrently 20,454,751.196 2 0.000 ***

hospitalizedIncrease 10,452.301 2 0.558

onVentilatorCurrently 171,650.041 2 0.001 ***

positive 297,933,527,997.266 2 0.000 ***

positiveIncrease 33,214,641.966 2 0.000 ***

totalTestResults 56,194,090,472,628.98 2 0.000 ***

totalTestsViral 73,640,463,254,532.75 2 0.000 ***

*** p < 0.001.

4.2. Classification Validation

Although the cluster analysis results verify that the clustering effect of Cascade
K-means is better, we still need more evidence to prove its clustering effect. Therefore, we
used two classifiers to train and test their classification effects in this section. The accuracy
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of the confusion matrix after classification by the classifiers can represent the clustering
effect after cluster analysis. The higher the accuracy is, the better the clustering effect.

Table 9. ANOVA analysis results with Cascade K-means clustering.

Source Sum of Squares df p-Value

deathConfirmed 92,467,765.941 2 0.000 ***

hospitalized 2,542,735,930.524 2 0.000 ***

hospitalizedCumulative 2,542,735,930.524 2 0.000 ***

hospitalizedCurrently 28,731,039.605 2 0.000 ***

hospitalizedIncrease 146,195.267 2 0.000 ***

onVentilatorCurrently 182,801.937 2 0.000 ***

positive 428,233,021,802.748 2 0.000 ***

positiveIncrease 47,433,754.861 2 0.000 ***

totalTestResults 62,516,522,292,791.39 2 0.000 ***

totalTestsViral 53,777,136,225,256.51 2 0.000 ***

*** p < 0.001.

4.2.1. Validation of Random Forest

This section verifies the clustering results of K-means through the confusion matrix
of the random forest classifier. As shown in Table 7, the clustering results of K-means are
divided into three groups, the first group has 5 states, the second group has 5 states, and
the third group has 41 states. This study uses WEKA’s random forest (RF) classifier for
training and testing. The confusion matrix of the test results is shown in Table 10. In the
classification of the first group, a total of five states were misclassified to the third group,
and four states of the second group were misclassified to the third group. The accuracy of
random forest classification using the clustering results of K-means was 82.35%.

Table 10. Random forest classification validation for K-means clustering.

Confusion Matrix

Clustering Class

Cluster1 Cluster2 Cluster3

a b c

Prediction Class

Cluster1 a 0/5 0 5

Cluster2 b 0 1/5 4

Cluster3 c 0 0 41/41

In addition, as can be seen from Table 7, the cluster analysis results of Cascade
K-means are also divided into three groups. The first group has 22 states, the second
group has 22 states, and the third group has 7 states. This study still uses WEKA’s random
forest (RF) classifier for training and testing. The confusion matrix of the test results is
shown in Table 11. In the classification of the first group, only one state was misclassified
to the third group, and the rest were classified correctly, with a classification accuracy rate
of 98.03%. This study again shows that the cluster analysis results of Cascade K-means are
better than the cluster analysis results of K-means.

4.2.2. Validation of Neural Network

In case the results of random forest are too subjective, in this section we will use
another neural network classifier to verify the results of cluster analysis again. Table 12
is the confusion matrix verified by the K-means cluster analysis results through neural
networks classification. As can be seen from Table 12, five states were misclassified to
the third group in the classification of the first group. In addition, the second group had
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three states misclassified, and the third group had two states misclassified from the second
group, and the classification accuracy for K-means clustering was 80.39%.

Table 11. Random forest classification validation for Cascade K-means clustering.

Confusion Matrix

Clustering Class

Cluster1 Cluster2 Cluster3

a b c

Prediction Class

Cluster1 a 21/22 1 0

Cluster2 b 0 22/22 0

Cluster3 c 0 0 7/7

Table 12. Neural network classification validation for K-means clustering.

Confusion Matrix

Clustering Class

Cluster1 Cluster2 Cluster3

a b c

Prediction Class

Cluster1 a 0/5 0 5

Cluster2 b 2 2/5 1

Cluster3 c 0 2 39/41

Table 13 is the confusion matrix verified by the Cascade K-means cluster analysis
results through neural networks’ classification. It can be seen from Table 13 that under the
classification and verification of the neural network method, there were three states in the
first group and the second group each with three misclassifications, and the classification
accuracy rate is 88.23%. Table 14 shows the comparison of classification verification of the
two clustering methods, and it can be seen that Cascade K-means has a better clustering
result in terms of accuracy, precision, and recall. The study results again show that the
cluster analysis results of Cascade K-means are still better than the cluster analysis results
of K-means.

Table 13. Neural network classification validation for Cascade K-means clustering.

Confusion Matrix

Clustering Class

Cluster1 Cluster2 Cluster3

a b c

Prediction Class

Cluster1 a 19/22 3 0

Cluster2 b 0 22/22 0

Cluster3 c 3 0 4/7

Table 14. Comprehensive comparison of two clustering methods.

Clustering K-Means Cascade K-Means

Validation RF NN RF NN

Accuracy 0.8235 0.8039 0.9803 0.8823

Precision 1 0.911 1 0.938

Recall 0.824 0.872 0.98 0.938

The above study results show that the cluster analysis results of Cascade K-means are
the best, so the following discussions are based on the cluster analysis results of Cascade
K-means for more in-depth discussions.
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5. Discussion

After classification and verification, this study uses the cluster analysis results of
Cascade K-means with the highest accuracy as the cluster basis. Figure 4 shows the charac-
teristics of the 10 feature variables of the 3 clusters. The proportion of variables in the first
cluster is all below 20%, The second cluster of variables is mainly characterized by (total
TestResults) and (deaths Confirmed). The third cluster of variables is mainly characterized
by hospitalization-related from (hospitalizedIncrease), (hospitalizedCurrently), and (hos-
pitalizedCumulative). Next, we will label the three clusters of the cluster analysis results.
In this study, the average of the 10 feature variables of the 3 clusters was used to label the
high, medium, and low severity of the epidemic infection in each state in the United States.
Table 15 is the cluster labeling result of this study.
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Table 15. Cluster labeling.

Severity States

Low AK, CT, DC, DE, GU, HI, IA, ID, KS, ME, MT, ND, NE, NH,
NV, OR, PR, RI, SD, VT, WA, WY

Medium AL, AR, AZ, CO, FL, GA, IN, KY, MA, MD, MN, MS, NJ, NM,
NY, OH, OK, SC, TN, UT, VA, WI

High IL, LA, MI, MO, NC, PA, TX

Nevertheless, Figure 5 is a color map of the severity of the outbreak in each US state
based on the findings of this study. California in the lower-left corner was omitted because
the data collected in California at the beginning of the outbreak were not sufficient and
were not listed as A-level. From the color map, it can be seen that the southeastern United
States was more serious. At the same time, the United States also had a large outbreak
of influenza in 2021, as shown in Figure 6, and the southeastern United States was also
the main infection area. That as an interesting finding. In the future, decision makers can
refer to these two graphs and deduce an epidemic prevention strategy after comparing the
severity to improve future epidemic prevention efficacy.

COVID-related vaccine supplies increased throughout 2021, but it will take months
to get enough vaccines for everyone who needs them; existing vaccines must be dis-
tributed to priority groups until there is a sufficient supply for all [37]. In this study, the
clustering variables include the number of confirmed cases, the number of deaths, PCR
tests used, and the number of respirators. In addition to determining possible priorities
through the clustering results, other external information can also be used to coordinate
vaccine allocation. for example, to older age groups, front-line workers, or vaccine dis-
tribution models [38,39]. Wingert et al. [40] used machine learning methods to establish
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a cluster analysis of regional severity, which may provide an alternative perspective for
future vaccine allocation by using multivariate analysis of the severity of risk factors to
allocate vaccine.
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6. Conclusions

COVID-19 has spread and ravaged worldwide since December 2019, but in the case
of vaccine shortage, how to distribute vaccines is a critical issue. This study uses machine
learning technique combined with the medical indicators of the COVID Tracking Project to
perform a cluster analysis of various states in the United States to distinguish the severity
of COVID-19 infection. The dataset of this study was collected from 2020 to 2021. After
features selection, and clustering methods, and then through the classification method to
verify the data, the verification results show that the clustering results of Cascade K-means
are better, and the classification accuracy is the highest. This study also marked the three
clusters of the analysis results of US states as high, medium, and low infection so that
policymakers can better objectively decide which states should prioritize vaccine allocation
to prevent the epidemic from continuing to expand in the event of a vaccine shortage. It
is hoped that, if there is a similar disease pandemic in the future, relevant policymakers
can use the procedure of this study to allocate relevant medical resources according to
the severity of infection in each state to prevent the spread of infection and the loss of
more lives. The clustering results from this study can also be combined with other external
information to shape a more careful vaccine distribution plan, helping back decision makers
in the event of a potential future outbreak.
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