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Abstract: With the impact of the COVID-19 pandemic, the number of patients suffering from depres-
sion is rising around the world. It is important to diagnose depression early so that it may be treated
as soon as possible. The self-response questionnaire, which has been used to diagnose depression in
hospitals, is impractical since it requires active patient engagement. Therefore, it is vital to have a
system that predicts depression automatically and recommends treatment. In this paper, we propose
a smartphone-based depression prediction system. In addition, we propose depressive features based
on multimodal sensor data for predicting depressive mood. The multimodal depressive features were
designed based on depression symptoms defined in the Diagnostic and Statistical Manual of Mental
Disorders (DSM-5). The proposed system comprises a “Mental Health Protector” application that
collects data from smartphones and a big data-based cloud platform that processes large amounts of
data. We recruited 106 mental patients and collected smartphone sensor data and self-reported ques-
tionnaires from their smartphones using the proposed system. Finally, we evaluated the performance
of the proposed system’s prediction of depression. As the test dataset, 27 out of 106 participants
were selected randomly. The proposed system showed 76.92% on an f1-score for 16 patients with
depression disease, and in particular, 15 patients, 93.75%, were successfully predicted. Unlike previ-
ous studies, the proposed method has high adaptability in that it uses only smartphones and has a
distinction of evaluating prediction accuracy based on the diagnosis.

Keywords: depressive symptoms feature; depression prediction; machine learning; smartphone

1. Introduction

The COVID-19 pandemic has caused problems in a variety of aspects of daily living.
It caused economic difficulties, decreased external activities, disconnection of relation-
ships, and fear of infection, which resulted in many people suffering from anxiety or
depression [1,2]. If left untreated, depression can lead to serious consequences, such as
suicide. Studies have shown that people with mental disorders, such as depression and
schizophrenia, are particularly vulnerable to COVID-19 [3]. In addition, the U.S. Centers
for Disease Control and Prevention (CDC) defined people with mental problems, including
depression, as a group at high risk for COVID-19 [4]. It is important to diagnose and treat
depression as soon as possible so that it does not result in severe consequences. Self-report
questionnaires are one of the most common tools for identifying depression. However, this
strategy is impractical, since patients must actively assess if they are suffering symptoms of
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depression on their own. Consequently, a system that automatically identifies depression
without user intervention is required.

Recently, mobile device research has been conducted to identify depression automat-
ically. In real-time, mobile devices such as smartphones and wearable devices generate
a variety of data. Mobile devices may generate and transmit data at any time and place.
The user’s behavior can be inferred by designing a derived feature with a high correlation
between the generated data and the behavior. Consequently, it is feasible to automatically
estimate a user’s behavior without regard to time or place when utilizing a mobile device.
In this paper, depression is predicted based on the relationship between mobile device data
and representative depressive symptoms. The Diagnostic and Statistical Manual of Mental
Disorders, Fifth Edition (DSM-5) [5] identifies nine symptoms of major depressive disorders.
We aim to predict automated behavior based on the presence of severe depression disorder
symptoms using smartphone data. Consequently, detecting the user’s behavior type is
important for automated assessment.

Wang et al. [6] proposed a system for collecting mobile sensor data and self-report ques-
tionnaire data from smartphones for 48 college students, showing significant prediction of
depression through the system. In addition, based on the prediction of depression through
smartphones, many studies have proposed various derived feature design methods related
to depression. Colbaugh et al. [7] predicted depression by measuring the amount of activity
through GPS and WiFi data. Ware et al. [8] used metadata obtained from an institution’s
WiFi infrastructure beyond GPS and WiFi data for college students to predict depression. In
addition, existing studies [9,10] confirmed that the derived features related to depression
through sensor data showed a correlation. Furthermore, many studies have used additional
devices such as smartwatches beyond smartphones to collect more sophisticated and di-
verse sensor data. Narziev et al. [11] predicted depression by estimating five symptoms
from data collected from smartphones and smartwatches for four weeks in 20 ordinary
people. Wang et al. [12] predicted depression by designing features for poor concentration
and depressed mood using smartphones and smartwatches for 83 college students. In sum-
mary, related studies design derived features associated with DSM-5-defined depressed
symptoms using smartphone data. However, existing papers often have a small number of
recruiters for gathered datasets [13,14]. Moreover, since datasets are collected for ordinary
people, it often has a “data imbalance” problem in which participants with depression have
extremely few [8]. In addition, research involving extra devices, such as wearable devices,
is difficult to implement in regular activities.

In this paper, a system for predicting depression using only smartphones was proposed.
We design derived features for symptoms defined in DSM-5 using data generated from
smartphones and propose a new design method for deriving features for new deep learning-
based expression features. The proposed system consists of a big data-based cloud platform
that can develop a “Mental Health Protector” application that includes the ability to
collect datasets and process large amounts of data. Smartphone sensor data and self-
reported questionnaires of 106 participants who visited psychiatrists are collected and
evaluated to verify multimodal derived features and depression prediction systems for
the proposed depression prediction system. The depression prediction system we propose
has high versatility because it uses only smartphones without the need for additional
equipment. In addition, by comparing medical diagnosis and prediction, we confirm that
our proposed derived features and questionnaires are accurate and effective in detecting
patients with depression.

The aim of this paper is to predict depression automatically using smartphones. The
contributions of this paper are as follows:

• We obtained datasets from mental patients using smartphones. Since we collected data
for psychiatric patients, not ordinary people, there was no difference in the number
of depressed and non-depressed patients. Therefore, balanced data were collected to
represent the features of each group.
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• We only use smartphones to predict depression. In contrast to methods that need extra
wearable devices, the proposed system is easily accessible to many people.

• We propose a multimodal-based automatic depression prediction system. In the pro-
posed system, features extracted from images using deep learning are newly designed.
It was found that multimodal-based features enhance performance complementarily.

2. Materials and Methods

The proposed system collected multimodal smartphone data from 209 Korean mental
patients between 19 August and 2 October 2021. However, out of a total of 209 participants
who stated their intention to participate in the experiment, a total of 103 participants were
eliminated for various reasons, such as quitting during the study, missing sensor data,
and failing to complete a self-reported questionnaire. Consequently, we conducted the
study using data from 106 participants. We developed the Android-based “Mental Health
Protector” application to collect various data from smartphones. The application was used
to collect passive sensor data including GPS, Screen On/Off, Call logs, and SMS logs,
Activity Transition, Facial expression features, etc., and survey response data including the
Patient Health Questionnaire-9 (PHQ-9) [15], Center for Epidemiologic Studies Depression
Scale-Revised (CESD-R) [16], The Insomnia Severity Index (ISI), and Technology Acceptance
Model (smartphone use, app use). In the proposed system, ’IRIS’, a cloud-based big data
platform, was used to collect and store big data. Finally, the proposed derived features were
extracted from the collected data to predict depression in the user. The proposed system is
represented in Figure 1.

Figure 1. Proposed Architecture. This illustrates the architecture of the proposed depression predic-
tion system. The “Mental Health Protector” application installed on the participant’s smartphone
collects multimodal-based passive sensor data and active data, consisting of survey results. The
collected data are transmitted to a cloud-based platform for data processing and storage. The partici-
pant’s depression is predicted and monitored using the data transmitted to IRIS.
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2.1. Data Collection
2.1.1. Research Procedure

Our study was conducted for four weeks on psychiatric outpatients who consented
to the study’s purpose and data collecting. The collected data are “passive data” collected
from multimodal sensors on smartphones and “active data” obtained from responses
to self-reported questionnaires. At the stage of the hospital visit (V1), participants who
consented to participate in the research signed the experiment consented form, and a basic
survey was administered. In the basic survey (M1), participants installed the “Mental
Health Protector” application on their smartphones, where they responded to demographic
information and several mental health surveys. The mental health surveys include Patient
Health Questionnaire-9 (PHQ-9), Center for Epidemiological Studies Depression Scale-
Revised (CESD-R), Insomnia Severity Index (ISI), and Technology Acceptance Model
Questionnaire (TAM). When the basic survey was completed, the first data collection (M1–
M2) began. During the first data collecting period of two weeks, passive data were collected
automatically through the application. A facial image was obtained from the camera at
one-week intervals depending on the basic survey. The participants were then requested
to respond to the Patient Health Questionnaire-2 (PHQ-2) twice daily, in the morning
and afternoon. The data-collecting period was set at two weeks given that the mental
health survey is based on behavior during the previous two weeks. When the collection
of primary data was completed, a middle test (M2) was conducted. Using the application,
participants were re-assessed using the PHQ-9, CESD-R, and ISI for the middle test. When
the middle test was completed, the second data collection (M2-M3) was conducted during
the same two-week period as the first data collection. When the second data collection was
completed, the final test (M3) was conducted using the same setup as employed in the
middle test, and the experiment was concluded. Figure 2 illustrates our research procedure.

Figure 2. Data Collection Procedure. Among psychiatric outpatients, the data collection procedure
was informed to users who agree to participate in the study (V1). When the application installation
was completed, data were collected for two weeks (M1–M2) after conducting a survey related to
the user’s demographic information and mental health (M1). After the first data collection period, a
middle test (M2) was conducted, and the second data collection (M2–M3) was performed for two
weeks again. When the second data collection is completed, the final test (M3) was conducted, and
the participant’s role in the study ended.

2.1.2. Mental Health Protector Application

The “Mental Health Protector” application is developed to store sensor data and
perform self-reported questionnaires for participants. The developed application reads
and saves data generated continuously by smartphone sensors. All sensor data are auto-
matically saved without any action or command from the participant. The application can
access the sensor and stores the sensor data in the background. Therefore, sensor data are
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collected with minimal participant intervention. The collected sensor data are Accelerome-
ter, Gyroscope, Global Positioning System (GPS), Call logs, Short Message Service (SMS)
logs, Wi-Fi, Bluetooth, and Screen on/off. In addition to sensor data, facial images based
on the image domain are also collected. Facial images are used to obtain Facial Landmarks
and Facial Expression Features. The application contains a model for transforming facial
images into facial landmarks and facial expression features.

The “Mental Health Protector” application is developed for Android. The proposed
application utilizes Android Studio 1.4 or a later version, and the API requires 16 (Jelly
Bean) or a later version. The application’s User Interface (UI) was created using Vue.js.
Vue.js is a JavaScript framework for developing UIs. Firebase Cloud Messaging (FCM) was
used to communicate metadata from the smartphone application to the server. Using FCM,
data may be handled regardless of the app’s foreground/background status.

The application requires participants to respond to mental health-related question-
naires. Mental health-related surveys that participants must respond to are The Patient
Health Questionaire-9 (PHQ-9), Center for Epidemiological Studies Depression Scale-
Revised (CESD-R), The Insomnia Severity Index (ISI), and the Technology Acceptance
Model (smartphone use, app use). The proposed system assesses the severity of depression
using two self-reported questionnaires (PHQ-9 and CESD-R). Therefore, it is possible to
strengthen the dependability of the participants’ responses and cross-verify their depressive
feelings. The application sends a notification to the participant’s smartphone at the desig-
nated period for each questionnaire, allowing the participant to respond. If the participant
does not respond to the survey, the application returns the notification to the participant’s
smartphone. Consequently, the “Mental Health Protector” application stores sensor data
and surveys answer data. In addition, the application allows participants to view their
response statistics. On the “my status” tab, participants access their application registration
details and the status of their survey replies. The “Mental Health Protector Chart” provides
details from the completed questionnaire. Figure 3 depicts the execution screen of the
“Mental Health Protector”.

Figure 3. User Interface of “Mental Health Protector” application. The image shows a part of the data
collection application titled “Mental Health Protector” execution screen. The image on the left depicts
the initial execution screen, the image in the center depicts the screen that responds to the survey,
and the image on the right represents the screen that can check the response status.

The proposed system utilizes “IRIS”, a cloud-based big data platform, to store data
from all participants’ smartphones. IRIS is a distributed architecture database that can
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process large-scale time-series data quickly and integrally supports the collection, storage,
processing, distributed processing, analysis, visualization, and sharing of big data. The
“Mental Health Protector” application obtains data from the smartphone’s multimodal
sensors. The smartphone stores the received data in the form of a CSV file according to
a pre-determined table. Table 1 represents the predefined data table. Once each day, the
smartphone transmits the stored data to IRIS. Given the large scale of the multimodal
sensor data, the proposed system only transmits sensor data to IRIS when the smartphone
is connected to WiFi. In contrast, the questionnaire answer data are transmitted to IRIS,
regardless of the WiFi connection status. Through the IRIS platform, collected data may be
accessed at any time.

Table 1. Data table list collected from “Mental Health Protector” application. Multimodal sensor data
collected for each user are transmitted to a cloud-based big data platform according to a predefined
table. Data information about table names can be found in the description.

Number Table Name Description

1 TB_WEB_USR_INFO User’s web information
2 TB_API_USER_INFO API user information
3 CALL_LOGS Call incoming/outgoing history
4 SMS_LOGS SMS incoming/outgoing history

5 CELL_INFO Network signal level and
quality information

6 BATTERY_INFO Battery power level data for user’s device
7 SENSORS Sensor data for user’s device
8 BLUETOOTH_DEVICES Bluetooth device data near user’s device
9 LOCATIONS GPS for user’s device
10 WIFI_INFO Wi-fi data near user’s device
11 SCREEN_ONOFF Screen on/off data for user’s device

12 FACE_LANDMARK 3D facial landmarks coordinate and
expression feature

13 ACTIVITY_TRANSITION The type of behavior of user
14 BLUETOOTH_TYPE_MAP Bluetooth device type mapping table
15 SENSOR_MAP Sensor type mapping table

2.1.3. User Characteristics

In this paper, we recruited 209 participants from psychiatric outpatients. According
to the collection procedure, the data of all participants were collected for four weeks.
However, we excluded certain participants from the depression prediction experiment.
The experiment could not be conducted because there was an anomaly in the data of the
participants. Specifically, since the proposed system uses the participants’ survey answer as
depressive state, the response data of the participant are essential. However, 67 participants
did not respond to all questionnaires. In addition, a significant amount of sensor data for
23 participants are missing; thus, the depression-related features are not extracted. Missing
sensor data are caused by the termination of smartphones, lack of battery in smartphones,
sensor failure, failure to transmit sensor data, etc. Nine participants indicated quitting in
the middle of the study. Consequently, 106 participant data were used in this study after
103 participants were eliminated.

For the gender distribution among the participants, 43/106 (40.57%) are male and
63/106 (59.43%) are female. For the participants’ year of birth distribution, 4/106 (3.77%) were
born in the period of 1960 to 1964, 6/106 (5.66%) were born in 1965 to 1969, 13/106 (12.26%)
were born in 1970 to 1974, 17/106 (16.04%) were born in 1975 to 1979, 14/106 (13.21%)
were born in 1980 to 1984, 7/106 (6.60%) were born in 1985 to 1989, 14/106 (13.21%) were
born in 1990 to 1994, 15/106 (14.15%) were born in 1995 to 1999, and 16/106 (15.09%) were
born in 2000 to 2004. According to Kroenke [15], the severity of depression as assessed by
the PHQ-9 depression score is categorized as normal (0–4), minimum (5–9), mild (10–14),
moderate (15–19), and severe (20–27). According to Lee [17], the CESD-R depression score
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was classified as Depressed or Non-Depressed based on a cut-point of 13 that reflected the so-
ciocultural background of Korea. Eighty-four participants had depressed moods based on the
CESD-R score, while 22 participants did not. Table 2 provides the participants’ demographics.

Table 2. Participants’ Demographics. This shows the distribution of demographic information and
responses to self-report questionnaires for the participants. Statistics for participants on “age”,
“gender”, “depression severity for response scores”, and “depressed mood by cut-point” are provided.

Variable Value, n(%)

Gender Male 43 (40.57)
Female 63 (59.43)

Year of birth

1960 4 (3.77)
1965 6 (5.66)
1970 13 (12.26)
1975 17 (16.04)
1980 14 (13.21)
1985 7 (6.60)
1990 14 (13.21)
1995 15 (14.15)
2000 16 (15.09)

Depression severity (PHQ-9)

severe 5 (4.72)
moderately severe 8 (7.55)

moderate 20 (18.87)
minor 22 (20.75)

minimal 31 (29.25)
normal 20 (18.87)

Depressed mood (CESD-R) Depressive 84 (79.25)
Non-Depressive 22 (20.75)

2.1.4. Privacy Consideration

In this paper, multimodal sensor data are collected from participants. However, the
collected data contain personal information; therefore, we designed the system to secure
personally identifiable information during data collection and processing. To avoid the
identification of individuals through the collected data, the data of all participants are
anonymized by assigning a random hash ID to each smartphone when the application is
installed. All sensor data are transmitted to the IRIS system using the hash ID. Consequently,
the proposed system is unable to identify the participant based on the stored sensor data.
The proposed system does not collect sensitive information. SMS logs and Call logs data are
logs of text messages or phone calls. Therefore, the proposed system does not collect textual
content, call conversation, or the phone numbers of other people. The only data obtained
are whether the event is received or sent and when it occurred. Facial images are used to
obtain “Facial Expression Features” and “Facial Landmarks”. The facial images captured
from the camera are not transmitted to the IRIS system. A model inside the application
transforms the face image into facial features. Both “Facial Expression Features” and “Facial
Landmark” are translated to quantitative values from facial images within the application.
Therefore, in the proposed system, the facial image is not sent to the server, but only the
numerical feature is transmitted. In addition, it is impossible to convert the server-stored
feature back into the face image.

2.2. Multimodal Feature Extraction for Depression Prediction

A smartphone generates a variety of data, including sensor data and user-response
data. Existing works [18,19] have found that there is a relationship between participants’
behaviors and behavioral features derived from smartphone data. Motivated by these stud-
ies, we design the behavioral features associated with major depressive disorder symptoms
to predict participants’ depression. According to DSM-5 [5] published by the American
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Psychiatric Association, the symptoms of major depressive disorder are depressed mood,
diminished interest and pleasure in activities, fatigue, restlessness, sleep change, weight
change, diminished ability to concentrate, feelings of worthlessness, and thoughts of death
and suicide. Since behavior-related symptoms can be estimated from smartphone data, we
focus on two behavior-related symptoms: “diminished interest and pleasure in activities”
and “sleep change”. Furthermore, novel derived features are proposed to be extracted from
the image domain data. Facial expression characteristics were designed to detect depression
from facial images. As a result, the proposed system proposes derived features based on
multimodal data. Figure 4 provides a summary of the multimodal features and depressive
state prediction algorithms.

Figure 4. Overview of the Smartphone-Based Depressed Mood Prediction System. The system for
predicting depression consists of three parts (Data Collection, Multimodal Feature Extraction, and
Depression Prediction). In the Data Collection, the “Mental Health Protector” program collects
multimodal sensor data from smartphone. In the Multimodal Feature Extraction, derived features are
extracted from the collected data. In the Depression Prediction, a machine learning-based classifier is
used to the derived features to predict the user’s depression.

2.2.1. Derived Feature Based on Passive Sensor Data

In this study, derived features related to sleep and physical activity are designed based
on smartphone sensor data. The derived features for sleep are “amount of sleep” and
“quality of sleep”. Based on Min et al. [20], who predicted the sleep pattern using the screen
on/off pattern, the derived features for “amount of sleep” are designed. Therefore, the
sleep feature is estimated as the longest amount of time of the day when the smartphone
screen is off. If the estimated time of sleep exceeds 24 h or if the period between 12 p.m. and
18 p.m. is estimated to be the sleep time, the screen on/off data are omitted and eliminated
from the sleep time. The derived feature for “quality of sleep” is designed based on screen
on/off data from Sano et al. [21], who show a correlation between smartphone usage
and quality of sleep. Usage time is the time when the smartphone’s screen is on. Seven
statistical features are extracted for each of the estimated sleep times and smartphone usage.
Statistical features include maximum, minimum, average, standard deviation, first quartile,
second quartile, and third quartile. Consequently, a total of 14 derived features for sleep
are designed utilizing screen on/off data.

The derived features for physical activity include “location variance”, “entropy”, and
“the amount of physical activity per day”. In Saeb’s study [22], “location” and “entropy” are
proposed as derived features, and it is demonstrated that they were highly correlated with
depression. In addition, these derived features are commonly utilized in other smartphones
sensor-based depression prediction studies. The proposed system also uses the same
derived features associated with physical activity. Therefore, derived features from GPS
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data are extracted using DBSCAN (density-based spatial clustering of applications with
noise) clustering. The application extracts the amount of daily physical activity using the
Google Activity Recognition Transition API. The Google Activity Recognition Transition
API recognizes a total of eight behaviors using gyroscope and accelerometer sensors:
vehicle, cycling, walking, running, walking or running, stationary, tilting, and unknown.
Among the eight classes, the proposed system calculates the average daily physical activity
time using stationary, running, and walking, which represent physical activity excluding
bicycles, which can be confused with vehicle.

2.2.2. Facial Expression Feature Based on Camera

Based on Zhou [23], we design derived features from facial images for depression
prediction. Facial expression features proposed by Google AI [24] are commonly applied in
expression-based applications. The proposed method constructs a network with Efficient-
Net B0 as the backbone for the generation of latent variables from facial images. Triplet
loss-based metric learning is utilized in order to train the model. We use a large-scale face
dataset, Facial Expression Comparison (FEC), to train the model. Figure 5 shows the model
utilized in the proposed approach. The FEC dataset consists of a variety of emotions, includ-
ing amusement, anger, concentration, disgust, and sadness, among others. The proposed
system requires participants to take their facial images weekly using the “Mental Health
Protector” application. The facial image is used to extract the participant’s facial expression
embedding features.

Figure 5. Architecture for Facial Expression Feature. This represents the training process and loss for
deep learning-based facial expression feature design.

In this study, we propose sensor domain data-derived features based on depres-
sion symptoms. As derived features, we additionally utilize facial expression features
extracted from image domains using deep learning. Therefore, we propose multimodal-
based derived features: sensor-domain and image-domain. The following are the features
we propose: sleep-derived features for “amount of sleep” and “quality of sleep”, physical
activity-derived features for “location variance”, “entropy”, and “the amount of physical
activity per day”, and facial expressions features. In total, 33 features are derived from a
multimodal dataset. Table 3 summarizes the sensor data and derived features used in the
proposed system.
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Table 3. Multimodal Derived Features. We present multimodal derived features for predicting
depression in participants. For the proposed derived features, screen on/off, GPS, accelerometer,
gyroscope, and facial image are utilized. Consequently, 33 features are designed to predict depression.

Derived Feature Sensor Data Features

Amount of sleep

Screen on/off

Statistical features of
estimated sleep time per day
(maximum, minimum, mean,

SD, Q1, Q2, Q3)

Quality of sleep

Statistical features of
smartphone usage (maximum,

minimum, mean, SD, Q1,
Q2, Q3)

Location variance
GPS

log (σ2
lat + σ2

log)

Entropy −∑i pi log pi

Physical activity per day Accelerometer,
Gyroscope

Average daily physical
activity time via Google

Activity Recognition
Transition API

Facial expression Facial image Facial expression features

3. Results
3.1. Definition of Depression

The proposed system utilizes two depression severity assessments (PHQ-9 [15] and
CESD-R [16]). The results of PHQ-9 and CESD-R represent severity scores for depression
symptoms in the last two weeks. The severity of depressive symptoms increases as the score
rises. PHQ-9, the depression screening scale, is made up of nine items that correlate to major
criteria for diagnosing depression disorders. It has been widely utilized as a measurement
tool in previous studies on depression prediction with smartphone sensors. The PHQ-9
response score is between 0 and 27. According to Kroenke’s study [25], depression can
be defined if the total PHQ-9 score is 10 or higher. The cut-point of 10 is used to classify
the depressive mood of participants. Consequently, 55 participants are classified into a
depressed group, whereas 51 are classified as non-depressed. The CESD-R is a tool for
measuring the severity of depression representing the symptoms and duration of major
depression. The 20 items of the CESD-R assess depressive symptoms in nine different
groups as defined by DSM-5. The CESD-R response score is between 0 and 60. According
to Lee [17], the optimal cut-point for experimentally showing depression among Koreans,
considering their sociocultural background, is 13. Since every participants in the experiment
is Korean, we set the cut-point at 13. On this basis, 84 participants were classified to the
depressed group, while 22 participants were classified to the non-depressed group.

3.2. Experiment

We present the results of predicting depression for 106 participants using PHQ-9
and CESD-R, respectively. For training and test of the depression prediction model, we
randomly divided the 106 participants into training and test data at a 3:1 ratio. Consequently,
79 out of a total of 106 data (74.5%) were categorized as training data, while the remaining
27 data (25.5%) were categorized as test data.

3.2.1. Result

In this paper, we utilize “Random Forest”, a machine learning classification model,
to predict participants’ depression. Random forest is an ensemble approach of randomly
training multiple decision trees, and many studies have shown its effectiveness in predicting
depression. In addition, the validity of the derived feature design approach may be verified
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since Random Forest is interpretable. For implementation, “Random Forest Classifier”
provided by scikit-learn is used, and the experiment is conducted by fixing the maximum
depth of the tree (max_depth) to 100, and the number of trees (n_estimators) to 1000.

The depression group defined by PHQ-9 (cut-point ≥ 10) is set as the groundtruth
for the experiment. The classifier is trained using the extracted features from the data of
79 participants designated as the training set. The experimental results show the prediction
accuracy for the test data. To analyze the proposed derived features, the accuracy of depres-
sion prediction using only each derived feature is evaluated. The accuracy of prediction
for sleep, physical activity, and facial expression features is 55.56%, 59.26%, and 66.67%, re-
spectively. In particular, the newly proposed deep learning-based facial expression features
demonstrated the best accuracy. When all derived features are utilized, 74.07% accuracy
is generated. Therefore, the complimentary relationship between the derived features is
confirmed. Table 4 shows the accuracy of applying Random Forest to each derived feature.

Table 4. Accuracy by Derived Features. The table shows the accuracy of the test data for each derived
feature we designed. When all the derived features are combined, 74.07% accuracy is obtained.

Derived Feature Accuracy

Sleep Amount of sleep 55.56Quality of sleep

Activity
Location Variance

59.26Entropy
Activity

Facial Expression Facial Expression 66.67

Total Derived Features 74.07

3.2.2. Comparison with Diagnosis

To examine if the proposed method provides valid results for depressed patients, we
compare the predictions of the proposed system to the mental disorder diagnosed by the
clinician for each participant. The diagnostic records of 27 participants assigned as test
data are divided into depressive/non-depressive disorders. As a result, 16 participants
were diagnosed with disorders associated with depression, whereas the remaining 11
were diagnosed with diseases other than depression. Table 5 shows the performance
based on a comparison between depression prediction and diagnosis using PHQ-9 and
CESD-R, respectively.

Table 5. Random Forest Classification Result Compared to Diagnosis. The table shows the result of
comparing the participant’s diagnosis with depression predictions. The “Depression” row represents
the performance predicted to be depressing for 16 depressed patients. When CESD-R is used for
depressed patients, the recall rate is 93.75% and the precision rate is 65.21%. Therefore, it shows that
CESD-R is more effective than PHQ-9 in predicting depression in patients with depression.

Survey Precision Recall F1-Score

Depression PHQ-9 64.71 68.75 66.67
CESD-R 65.21 93.75 76.92

Total PHQ-9 58.71 59.26 58.91
CESD-R 69.20 66.67 61.88

The proposed system predicts depression in 15 of the 16 depressed participants when
CESD-R is used as the ground truth. In contrast, when PHQ-9 is utilized, only 11 out
of 16 depressed patients are predicted to have depression. The precision for identifying
depression also has a CESD-R of 65.21%, which is higher than PHQ-9. We find that the
system utilizing CESD-R has an f1-score of 76.92%, making it an efficient predictor of
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depression. In addition, we provide comparison results for 27 test data involving patients
without depression. As a result of using CESD-R, both precision and recall showed higher
performance compared to PHQ-9. The results for the test data also showed that using
CESD-R worked effectively for patients with mental disorders.

4. Discussion

Our goal was to examine the feasibility of predicting depression using smartphones
in patients with mental illness. In order to verify the prediction system, the accuracy of
depressed mood prediction was investigated using the collected data of 106 participants
with mental health disorders. The results verify our system’s applicability to patients with
mental disorders. In addition, an analysis of depression severity assessments (PHQ-9 and
CESD-R) is provided.

4.1. Analysis

When the accuracy of predicting depression by PHQ-9 (cut-point ≥ 10) was calculated
as the designed induction characteristic, 74.07% performance was shown. The accuracy of
depression prediction by CESD-R (cut-point ≥ 13) was 77.08%. The PHQ-9 and CESD-R
experiments differ in terms of data balance in addition to performance. We hypothesized
that the high accuracy of CESD-R is due to a data imbalance because the number of
depression/non-depression groups divided based on the cut-point is PHQ-9 (55:51) and
CESD-R (84:22), respectively. Therefore, we investigated why questionnaire-based perfor-
mance differences occurred and which questionnaire is suitable for the proposed system.

We consider that identifying people diagnosed with depression is more important
than accurately predicting depression based on questionnaire responses. When smartphone
data are collected from the general public, analysis is impossible due to the absence of
medical diagnostic information for the participants. However, we recruited participants
to collect smartphone data from mental patients. Therefore, the participants we recruited
have been diagnosed by clinicians. We focused on examining the relationship between the
proposed system and patients diagnosed with depression because the proposed system
aims to automatically pre-detect users with signs of depression and recommend treatment.
Therefore, it is important for our system to accurately identify depressed patients.

To investigate the relationship between the proposed system’s predictions and diag-
nosis, we divided the disorders of the participants into depression and non-depression
diseases. In the experiment, PHQ-9 and CESD-R were each set as the ground truth, and the
predictions and diagnosis were compared. When compared to the diagnosis, the results of
CESD-R were convincing. CESD-R predicted that 15 (93.75%) out of 16 participants with de-
pression are depressed. In contrast, PHQ-9 predicted that 11 (68.75%) out of 16 participants
are depressed. CESD-R showed optimal performance in detecting patients with depression.
In addition, experiments including non-depressed patients for CESD-R provide higher
performance, with f1-scores of 61.88%, than PHQ-9. Therefore, we demonstrate that it is
efficient to utilize CESD-R in the proposed system to effectively predict a larger number of
depressed patients.

4.2. Lessons

We collected smartphone data on patients with mental disorders. Using the collected
datasets, we demonstrated the feasibility of the proposed depression prediction system.
However, there are still some limitations to the practical use of the proposed system. The
participants included in the collected data were recruited from a single hospital. In addition,
it cannot be assured that the sample size is sufficient. This makes it difficult to generalize
our results. Therefore, the general growth of the proposed system requires public data
collection. In addition, future studies should collect larger samples.

As it only supports Android-based devices, it is impossible to ensure that it would
perform well for iOS-based devices. The “Mental Health Protector” application operates
only on Android-based smartphones. While collecting smartphone data, the application



Healthcare 2022, 10, 1189 13 of 14

should run in the background. According to iOS’s security policy, it is not possible to collect
sensor data in the background. Because our system does not support iOS, we were unable
to collect data from a significant number of participants. Therefore, it is necessary for future
research to develop an iOS-based application so they may collect all data.

In this paper, various multimodal-based passive sensor datasets are collected using the
“Mental Health Protector”. However, only GPS, Accelerometer, Gyroscope, Facial Expres-
sion Features, and Screen on/off are utilized in the proposed system. We have attempted to
use various data in the design of derived features. However, due to unanticipated difficul-
ties with the collected data, it was not possible to extract significant derived features. For
example, since the viewpoint of the acquired facial image was not fixed, it was difficult to
compare the landmarks precisely. Therefore, it is essential to develop an application with
specificity to prevent noise in feature extraction.

5. Conclusions

We propose an automated depression prediction system using smartphones. By newly
proposing image-based derived features, we propose a multimodal-based derived features
design method related to depression. To collect data and predict depression, we construct a
system consisting of a smartphone application and a big data-based cloud platform. Based
on the established system, multimodal data of 106 participants who visited psychiatry
and two self-reported questionnaires were collected. This paper shows the feasibility of
depression prediction using data from 106 people collected through the proposed system.
In addition, it was shown to be effective for depressed patients by comparing the doctor’s
diagnosis with the proposed system’s predictions. In future studies, the accuracy of auto-
mated depression prediction may be enhanced by including hospital-visiting patient data
into the model as a recommendation by the proposed system.
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