
Citation: Chiu, C.-C.; Wu, C.-M.;

Chien, T.-N.; Kao, L.-J.; Qiu, J.T.

Predicting the Mortality of ICU

Patients by Topic Model with

Machine-Learning Techniques.

Healthcare 2022, 10, 1087. https://

doi.org/10.3390/healthcare10061087

Academic Editors: Michael T. S. Lee

and Chi-Jie Lu

Received: 9 May 2022

Accepted: 8 June 2022

Published: 11 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

healthcare

Article

Predicting the Mortality of ICU Patients by Topic Model with
Machine-Learning Techniques
Chih-Chou Chiu 1, Chung-Min Wu 1, Te-Nien Chien 2,* , Ling-Jing Kao 1 and Jiantai Timothy Qiu 3,4

1 Department of Business Management, National Taipei University of Technology, Taipei 106, Taiwan;
chih3c@ntut.edu.tw (C.-C.C.); cmwu@ntut.edu.tw (C.-M.W.); lingjingkao@ntut.edu.tw (L.-J.K.)

2 College of Management, National Taipei University of Technology, Taipei 106, Taiwan
3 Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei 110, Taiwan;

jtqiu1010@tmu.edu.tw
4 College of Medicine, Taipei Medical University, Taipei 110, Taiwan
* Correspondence: tenienchien@gmail.com; Tel.: +886-2-2771-2171 (ext. 3403)

Abstract: Predicting clinical patients’ vital signs is a leading critical issue in intensive care units (ICUs)
related studies. Early prediction of the mortality of ICU patients can reduce the overall mortality
and cost of complication treatment. Some studies have predicted mortality based on electronic
health record (EHR) data by using machine learning models. However, the semi-structured data
(i.e., patients’ diagnosis data and inspection reports) is rarely used in these models. This study
utilized data from the Medical Information Mart for Intensive Care III. We used a Latent Dirichlet
Allocation (LDA) model to classify text in the semi-structured data of some particular topics and
established and compared the classification and regression trees (CART), logistic regression (LR),
multivariate adaptive regression splines (MARS), random forest (RF), and gradient boosting (GB). A
total of 46,520 ICU Patients were included, with 11.5% mortality in the Medical Information Mart
for Intensive Care III group. Our results revealed that the semi-structured data (diagnosis data and
inspection reports) of ICU patients contain useful information that can assist clinical doctors in making
critical clinical decisions. In addition, in our comparison of five machine learning models (CART,
LR, MARS, RF, and GB), the GB model showed the best performance with the highest area under
the receiver operating characteristic curve (AUROC) (0.9280), specificity (93.16%), and sensitivity
(83.25%). The RF, LR, and MARS models showed better performance (AUROC are 0.9096, 0.8987,
and 0.8935, respectively) than the CART (0.8511). The GB model showed better performance than
other machine learning models (CART, LR, MARS, and RF) in predicting the mortality of patients
in the intensive care unit. The analysis results could be used to develop a clinically useful decision
support system.

Keywords: electronic health records; topic model; latent dirichlet allocation; machine learning;
intensive care units

1. Introduction

The spread of the COVID-19 pandemic and the increasing number of infected patients
are challenging global medical units, especially intensive care units (ICUs). Hospitals need
to make reasonable and accurate decisions, such as how they allocate their equipment and
labor, making comprehensive assessments of information and resources available at ICU.
The World Health Organization advocated that hospitals regularly monitor the specific
clinical variables of hospitalized patients with COVID-19 and, when feasible, analyze the
variables by using medical technology [1]. However, because patients’ illnesses are rapidly
changing, making quick and accurate decisions without sufficient up-to-date information is
challenging for clinicians [2]. Electronic health records (EHR) are personal health electronic
records that include medical records, electrocardiograms, and medical images. Researchers
can analyze their archived medical information to help clinicians make critical clinical
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decisions [3]. Archiving personal health records electronically not only elevates hospitals’
management and service levels but also provides medical researchers with more resources
that enable them to conduct related research, such as developing and verifying prediction
models [4–6]. Using EHR data to make clinical predictions (e.g., predicting patients’ mortal-
ity, hospital stay, disease diagnoses, and onset time) is crucial in intensive care research. In
other words, identifying how to effectively predict ICU patient mortality by using EHR data
allows medical personnel to accurately assess the patients’ mortality risks, detect high-risk
groups early, and implement interventions promptly, improving patient prognoses and
enhancing care planning and resource allocation [7].

Although many studies have used EHR data, most of them have only used quantitative
EHR data [8–11]. In fact, 80% of EHR data comprises semi-structured data such as patients’
physiological conditions (free-text notes and clinician progress notes) at the time of their
visits [12]. To deal with huge data volumes in the form of unstructured text has become one
of the main challenges for healthcare analytics. In this respect, the application of natural
language processing (NLP) has received increasing attention in the medical field to bring
more benefits to health organizations in a wide range of applications. The power of NLP
lies in extracting information from unstructured textual data in order to form and explore
new facts or hypotheses [13]. The potentials of NLP techniques, such as Latent Dirichlet
Allocation (LDA) and Bidirectional Encoder Representations for Transformers (BERT), have
been constantly discussed in the healthcare literature (e.g., [14–18]).

To maximize the use of the semi-structured EHR data, this study used the Latent
Dirichlet Allocation (LDA) to build topic models. Latent Dirichlet Allocation (LDA) is
a topic generation model and uses Bayes’ rule approach to treat all text modeling as a
mixture of topics and vocabularies. The word “mixture” here refers to a set of elements
(i.e., topics or vocabularies) that have certain probabilities of being selected. A body of a
document will incorporate multiple themes, and the topics will be fluid in nature. Each
document can be represented by a vector of topic probabilities, and each topic can be
represented by a vector of word probabilities [19]. Many recent studies have used LDA
topic modeling [20–23]. In this study, we first applied LDA to classify text in the semi-
structured data to some particular topics. Subsequently, we employed five machine learning
approaches, classification and regression trees (CART), logistic regression (LR), multivariate
adaptive regression splines (MARS), random forest (RF), and gradient boosting (GB), to
predict ICU patient mortality. From these methods, the MARS approach was selected
as the benchmark for model comparison because MARS is a mature learning technology
that has the advantages of high learning efficiency and strong generalizability [24,25],
and CART/RF, which were developed by Breiman [26], has been widely used [27–31].
Regarding the advantages and disadvantages of certain machine learning methods, please
refer to [32–35] for more detailed explanations.

According to the comparison results, the topics generated by LDA do contain useful
information that can considerably affect the prediction accuracy of constructed models.
Moreover, in our comparison of five machine learning models (CART, LR, MARS, RF, and
GB), the GB model showed the best performance with the highest area under the receiver
operating characteristic curve, recall, accuracy, and F1-statistic.

This study contributed to variable generation and mortality prediction through the
following three aspects. First, LDA was applied to analyze the semi-structured data (i.e., pa-
tients’ diagnosis data and inspection reports) and generate some particular topics variables.
The results can be used as a reference when selecting the appropriate predictors for mortal-
ity prediction. Second, the significance of the generated variables can be further analyzed by
machine learning approaches, such as gradient boosting, to understand the effect of input
variables at different situations on the construction of the mortality prediction model. Third,
with the topic variables generated using the LDA approach, the machine learning model
provides a higher AUROC value, signifying that models built using the semi-structured
data more accurately predicted whether the ICU patients would die. All these results may
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enhance healthcare personnel’s predictions of patients’ mortality, providing patients, their
families, and healthcare personnel with more information for clinical decision-making.

2. Materials and Methods

The flow chart of the proposed approach is illustrated in Figure 1. The data used in
this study consists of structured EHR data and clinical notes data. To obtain a meaningful
dataset, a list of query and data preprocessing were executed. Subsequently, the prepro-
cessed data were input into the five machine learning models for mortality prediction.
Finally, the prediction performance was evaluated by five different metrics. A detailed
description of the main research procedures is presented as follows:
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Figure 1. Research scheme.

2.1. The Medical Information Mart for Intensive Car—III Dataset

The data used in this work were obtained from the Medical Information Mart for
Intensive Care (MIMIC III) clinical database. MIMIC-III contained the comprehensive
clinical data of patients hospitalized at the Beth Israel Deaconess Medical Center (BIDMC)
in Boston, Massachusetts [36]. MIMIC-III data contained different ICU data from 2001 to
2012, where the data included patients’ vital signs, medications, data measured in labs, and
observation records. Table 1 provides a breakdown of the adult population by care unit.
According to the table, 49,785 hospitalization-related data were collected from 38,597 adult
patients in the MIMIC-III database. Among the patients, 55.9% were males, and the median
age was 65.8. The median length of an ICU stay is 2.1 days, and the median length of a
hospital stay is 6.9 days.

This study received approval from the institutional review boards of the BIDMC and
the MIT (Cambridge, MA, USA) to use the MIMIC-III database to perform analyses. The
MIMIC-III dataset analyzed was obtained from the MIT Laboratory for Computational
Physiology and a research team with which it collaborated. The dataset website URL
was MIMIC-III Clinical Database [36]. Available online: https://physionet.org/content/
mimiciii/1.4/ (accessed on 1 June 2021).

Table 1. Details of the MIMIC-III patient population for patients aged 16 years and above.

Adult Patients Critical Care Unit Total

Distinct patients 38,597
Hospital admissions 49,785
Distinct ICU stays 53,423

Coronary Care Unit (CCU) 7726 (14.5%)
Cardiac Surgery Recovery Unit (CSRU) 9854 (18.4%)
Medical Intensive Care Unit (MICU) 21,087 (39.5%)
Surgical Intensive Care Unit (SICU) 8891 (16.6%)
Trauma Surgical Intensive Care Unit (TSICU) 5865 (11.1%)

Age, years, median [Q1–Q3] 65.8 [52.8–77.8]
Gender, male 27,983 (55.9%)

https://physionet.org/content/mimiciii/1.4/
https://physionet.org/content/mimiciii/1.4/
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Table 1. Cont.

Adult Patients Critical Care Unit Total

ICU length of stay, median days [Q1–Q3] 2.1 [1.2–4.6]
Hospital length of stay, median days [Q1–Q3] 6.9 [4.1–11.9]
ICU mortality 4565 (8.5%)
Hospital mortality 5748 (11.5%)
A mean of # is available for each hospital admission.

Chartevents (330,712,483) 6642.81
Inputevents (21,136,926) 424.56
Outputevents (4,349,218) 87.36
Labevents (27,854,055) 559.49
Noteevents (2,083,180) 41.84

ICU, intensive care unit.

2.2. Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) is a topic modeling algorithm for discovering the
underlying topics in corpora in an unsupervised manner. Proposed by Blei et al. [19],
LDA is a typical “bag of words” model that treats each text as a vocabulary frequency
vector and as a collection of multiple sets of vocabularies. In addition, each group of
vocabularies represents a topic, and text topics are extracted without considering the order
of and relevance between the vocabularies [37,38]. Normally, an LDA builds its topic
generation model through the following steps: (1) a topic is selected from the various
topics in a text; (2) a vocabulary is chosen from the list of vocabularies corresponding to
the topic selected; and (3) the process is repeated until all of the vocabulary in the text
has been selected. Because each text consists of multiple topics that contain multiple key
vocabularies, identical vocabularies may be found in different topics. Assuming that M is
the number of text, K is the number of topics, Zmn is the number of times that vocabulary
n appears in the different topics of Text m (where Zmn has a multinomial distribution);
θm is the probability that each of the k number of topics occurs in Text m, where Dirichlet
distribution (which has a hyperparameter α) is used as a priori distribution; Wmn is the nth
vocabulary in Text m and has a multinomial distribution; and Φk is the probability that each
vocabulary in the kth topic occurs where Dirichlet distribution (which has a hyperparameter
β) is used as a priori distribution, then an overall LDA framework depicted in Figure 2 can
be obtained.
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We adopted the approximation algorithm proposed by [39] to filter out duplicate
or incorrect notes found in the NOTEVENTS table in the MIMIC-III database, deleted
unrecognizable sentences, and reserved only sentences composed of letters for text marking.
Next, we used the LDA method to generate basic “topics” viewed as input variables to
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construct models for predicting patient mortality. Additionally, this study referenced the
Grid Search method proposed by Teng et al. [40] to determine the optimal number of
topics and the final LDA model to be used. According to the analysis results, 10 topics
produced the optimal prediction results. Appendices A and B list the 10 topics and their
corresponding keywords generated by applying the LDA method in this study.

2.3. Data Preprocessing
2.3.1. Data Extraction

To ensure the generalizability of the analysis results, this study analyzed all patients
as opposed to patients with specific diseases. Additionally, to enable one to compare the
results of this study with those of relevant studies, this study set adult ICU patients older
than 16 years of age and who were admitted to ICUs for the first time as its participants.
The analysis data were mostly data of said patients 12 and 24 h after they were admitted to
ICUs [2,41–43]. Figure 3 shows the detailed process of data extraction.
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Table 2 provides the demographic information of the selected patient cohort after data
preprocessing in our study. Among the patients, 24,252 had an ICU stay of 12 h, while
27,809 had an ICU stay of 24 h. The average age of the patients was 63 years and 56%
were male. More than 70% of the patients were white, and over 80% of the patients were
admitted to the ICUs because of emergencies. As many as close to 40% of patients were
admitted to Medical ICUs. The patients stayed at the hospitals and ICUs for an average of
8.9 and 4.2 days, respectively.
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Table 2. Selected Patient Demographic Information.

12 h 24 h

Overall Dead at
Hospital

Alive at
Hospital Overall Dead at

Hospital
Alive at
Hospital

General (%)

Number 24,252 (100%) 2384 (9.83%) 21,868 (90.17%) 27,809 (100%) 2559 (9.20%) 25,250 (90.80%)

Age [Q1–Q3] 63.02
[50.96–78.16]

70.76
[61.19–83.32]

62.17
[50.07–77.27]

63.06
[51.32–77.82]

70.88
[61.43–83.32]

62.26
[50.51–76.97]

Gender (male) 13,675 (56.38%) 1267 (9.27%) 12,408 (90.73%) 15,805 (56.83%) 1353 (8.56%) 14,452 (91.44%)

Ethnicity (%)
Asian 598 (2.47%) 56 (9.36%) 542 (90.64%) 680 (2.45%) 62 (9.12%) 618 (90.88%)
Black 1930 (7.96%) 106 (5.49%) 1824 (94.51%) 2142 (7.70%) 113 (5.28%) 2029 (94.72%)
Hispanic 841 (3.47%) 44 (5.23%) 797 (94.77%) 919 (3.30%) 49 (5.33%) 870 (94.67%)
White 17,262 (71.18%) 1604 (9.29%) 15,658 (90.71%) 19,809 (71.23%) 1733 (8.75%) 18,076 (91.25%)
Other 3621 (14.93%) 574 (15.85%) 3047 (84.15%) 4259 (15.32%) 602 (14.13%) 3657 (85.87%)

Admission Type (%)
Urgent 562 (2.32%) 69 (12.28%) 493 (87.72%) 667 (2.40%) 77 (11.54%) 590 (88.46%)
Emergency 21,096 (86.99%) 2284 (10.83%) 18,812 (89.17%) 22,890 (82.31%) 2427 (10.60%) 20,463 (89.40%)
Elective 2594 (10.70%) 31 (1.20%) 2563 (98.80%) 4252 (15.29%) 55 (1.29%) 4197 (98.71%)

Site (%)
MICU 9654 (39.81%) 1099 (11.38%) 8555 (88.62%) 10,309 (37.07%) 1187 (11.51%) 9122 (88.49%)
SICU 3942 (16.25%) 476 (12.08%) 3466 (87.92%) 4543 (16.34%) 501 (11.03%) 4042 (88.97%)
CCU 3925 (16.18%) 334 (8.51%) 3591 (91.49%) 4316 (15.52%) 360 (8.34%) 3956 (91.66%)
CSRU 2955 (12.18%) 126 (4.26%) 2829 (95.74%) 4482 (16.12%) 149 (3.32%) 4333 (96.68%)
TSICU 3776 (15.57%) 349 (9.24%) 3427 (90.76%) 4159 (14.96%) 362 (8.70%) 3797 (91.30%)

Outcomes
Hospital LOS (days) 8.98 [3.79–10.66] 9.16 [2.76–11.40] 8.97 [3.86–10.58] 8.95 [3.88–10.47] 9.27 [2.77–11.49] 8.92 [3.96–10.34][Q1–Q3]
ICU LOS (days) 4.26 [1.37–4.57] 6.64 [2.12–8.13] 4.00 [1.24–3.97] 4.15 [1.26–4.17] 6.68 [2.08–8.12] 3.89 [1.22–3.89][Q1–Q3]
Hospital death (%) 2384 (9.83%) - - 2559 (9.20%) - -

MICU Denotes Medical ICU; SICU Denotes Surgical ICU; CCU Denotes Coronary Care Unit; CSRU Denotes
Cardiac Surgery Recovery Unit; TSICU Denotes Trauma Surgical ICU.

2.3.2. Variable Selection

To determine the variables to be used, we referenced relevant studies [7,41,42,44]
and manually selected 16 quantitative variables based on their clinical importance in
the domain from admission, chartevents, labevents, and output events data tables in the
MIMIC-III dataset. The variables were Glasgow Coma Scale, heart rate, systolic blood
pressure, temperature, FiO2, urine output, PO2, blood urea nitrogen, white blood cell
count, potassium level, sodium level, serum bicarbonate level, bilirubin, admission type,
patient’s sex, and age. Subsequently, this study adopted the data preprocessing method
introduced by Guo et al. [7] to initiate a three-stage missing value processing. First, patients
missing a value more than 30% were eliminated. Second, predictors missing a value
more than 40% were eliminated. Third, the statistics for which the missing data rate
was greater than 20% under these indicators were eliminated. The mean interpolation
to interpolate the remaining missing value was then used. Then, the Information Gain
Technique (Entropy) [44] was used to evaluate the importance of these 16 variables. Finally,
our variable selection was based on the highest ranked attributes that scored 0.01 or more.
Appendix C shows the significance rank of these features where the White Blood Cells
Court is ranked the highest in the list while gender is ranked the least.

In addition to selecting the abovementioned quantitative variables, this study also ex-
tracted topic modeling variables from NOTEVENTS data. NOTEVENTS referred to clinical
notes taken by doctors, nurses, imaging professionals, nutritionists, and physical therapists
on patients. In the MIMIC-III database, the NOTEVENTS file contained 2,083,180 pieces of
data, of which roughly 56% were data recorded by doctors or nurses and 39% were echo
reports, ECG reports, and radiology reports.
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2.3.3. Dealing with Imbalanced Dataset

Table 3 presents the descriptive statistics of the data used in this study. The table
shows that patients’ survival-to-death ratios are significantly imbalanced for both 12 and
24 h after hospital admission. Because imbalanced datasets frequently result in inaccurate
model prediction results [45], researchers often balance data by adding minority samples
or deleting majority samples [46]. In this study, because the sample size of ICU patients
who died was much smaller than that of ICU patients who survived, we used the synthetic
minority oversampling technique (SMOTE) to increase the sample size of ICU patients
who died to achieve balanced results [46]. The SMOTE technique is a type of oversampling
method that has been widely used in machine learning with imbalance data [47,48]. The
SMOTE technique randomly generates new samples of the minority class from the nearest
neighbor of the line connecting samples of the minority class. These new samples are
generated based on the features of the original dataset so that they become similar to the
original instances of the minority class [49].

Table 3. Demographic information of the selected patient cohort.

In-Hospital Mortality
Short-Term Mortality Long-Term Mortality

48 h 72 h 30 Days 1 Year

12 h
Number of Survive 21,868 23,873 23,590 21,932 21,839
Number of death 2384 379 662 2320 2413

Mortality ratio 9.83% 1.56% 2.73% 9.57% 9.95%

24 h
Number of Survive 25,250 27,409 27,103 25,324 25,219
Number of death 2559 400 706 2485 2590

Mortality ratio 9.20% 1.44% 2.54% 8.94% 9.31%

In our study, we applied the SMOTE techniques with different percentages for different
cases. As a result, several new training datasets were generated (Table 4). Take the dataset
of patients 12 h after hospital admission as an example. SMOTE (900%) increased the
sample with class “died” from 2384 instances to 21,456 instances. This made an incremental
increase in the minority class from 9.83% in the original dataset to 49.52% in the SMOTE
with 900% dataset.

Table 4. Number of instances increased by SMOTE technique.

Hours after Hospital Admission Mortality Percentage of
SMOTE Increase Class “Survived” Class “Died”

12 h

In-Hospital 900% 21,868 21,456

Short
Term

48 h 6200% 23,873 23,498
72 h 3500% 23,590 23,170

Long
Term

30 Days 900% 21,932 20,880
1 Year 900% 21,839 21,717

24 h

In-Hospital 900% 25,250 23,031

Short
Term

48 h 6800% 27,409 27,200
72 h 3800% 27,103 26,828

Long
Term

30 Days 1000% 25,324 24,850
1 Year 900% 25,219 23,310

2.3.4. Model Validation

To validate the model’s performance after training, we used the K-fold cross-validation
method [50] in this study. Using the k-fold method, we first divide the dataset into k parts,
and each part will have instances of the same size. The training process is applied on all
parts except one part for testing. This process is iterative and is repeated by the specified K
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number, where each part has the chance to be tested once. The final performance measure
will be the average of all the tests’ performance of all parts. The advantage of this approach
is that all instances of the entire dataset are trained and tested, so that lower variance
occurs in the ensemble estimator. This ensures that the true rate estimator’s predictions
are more accurate and less biased; however, this approach is computationally expensive
and validation takes a long time to complete. In our study, we employed 10-fold cross-
validation to construct models, which has been used in several health care and medical
related studies [51,52].

2.4. Mortality Prediction

We assessed the effects of combining ICU patients’ structured data (vital signs and
laboratory test results) and semi-structured data (diagnosis data and inspection reports)
12 and 24 h after they had been hospitalized on their mortality predictions for different
periods, where death and alive were defined as “1” and “0”, respectively. ICU patient
mortality-related definitions are summarized as follows:

• In-hospital mortality: Whether the ICU patient died during hospitalization.
• Short-term mortality: Whether the ICU patient died within 48 h or 72 h of hospital

admission.
• Long-term mortality: Whether the ICU patient died within 30 days or 1 year of hospital

admission.

2.5. Machine Learning

To illustrate the effects of adding textual data such as clinical notes and pathology
reports on patient mortality predictions, this study used five classic machine learning
classification algorithms to construct models for predicting ICU patient mortality. These are
classification and regression trees (CART), logistic regression (LR), multivariate adaptive
regression splines (MARS), random forest (RF), and gradient boosting (GB). All data mining
tasks of this research were performed using python programming. Detailed descriptions of
the machine learning classification algorithms are organized as follows:

• Classification and Regression Tree (CART)

CART is a decision tree algorithm that uses binary splitting to analyze gargantuan
datasets. Through a recursive process, CART divides existing training samples into several
known categories according to its predictor variables and their corresponding indicators.
The training sample division process is subsequently set as a series of rules [53,54].

• Logistic Regression (LR)

LR is a log probability model that can assess statistical interactions and control mul-
tivariate confidence intervals. It is most commonly used to check the risk relationships
between diseases and exposures [55,56]. This study employed Python’s scikit-learn library
to realize LR and selected the stochastic average gradient linear convergence algorithm as
the hyperparameter setting optimization method. LR is a gradient descent method that is
especially effective when the number of sample data is large.

• Multivariate Adaptive Regression Splines (MARS)

MARS is a multivariate, nonparametric regression technique and a tool that accumu-
lates several basis functions to explain nonlinear states [57]. Once objective variables are
set and a set that contains selectable predictor variables is given, MARS can automate the
entire model construction process, including separating meaningful and less appropriate
variables, determining the interactions between predictor variables, dealing with the miss-
ing value problem by using variable clustering techniques, and avoiding overfitting by
using numerous self-tests [38,58].

• Random Forest (RF)

RF is an ensemble algorithm that uses decision trees as its basic classifiers [59]. It boasts
the characteristic of providing accurate prediction results without having to thoroughly
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adjust model hyperparameters [60]. The only parameters that require thorough adjustments
are the depths and number of decision trees. This study found that setting the maximum
tree depth and number at 35 and 200, respectively, produced the optimal ICU patient
mortality prediction results.

• Gradient Boosting (GB)

GB is an ensemble learning algorithm that can be used to elevate the accuracy of
different types of prediction models. It uses the negative gradient information of the
loss function in the model to train models with unfavorable prediction accuracy and
cumulatively integrates trained results into existing models [61,62]. This study used the
scikit-learn library to realize GB, set the maximum number of iterations to 100, and trained
hyperparameters by using the default values provided by the scikit-learn library.

2.6. Evaluation Metrics

To fully compare the effects of integrated structured and semi-structured data on ICU
patient mortality predictions, this study selected five indicators (i.e., AUROC, specificity,
sensitivity, precision, and F1-statistic) as the assessment tools for constructing models.
Table 5 shows the confusion matrix. Detailed definitions of each assessment indicator are
as follows:

Table 5. Confusion Matrix.

Prediction

Positive Negative

Actual
Positive True Positive (TP) False Negative (FN)

Negative False Positive (FP) True Negative (TN)

Specificity = TNR =
TN

TN + FP
(1)

Sensitivity = TPR =
TP

TP + FN
(2)

Precision = PPV =
TP

TP + FP
(3)

F1 − Statistic =
2 × Precision × Recall

Precision + Recall
(4)

• Specificity: The percentage of negative samples that were predicted to be negative.
• Sensitivity: The percentage of positive samples that were predicted to be positive.
• Precision: The percentage of samples that were predicted to be positive among samples

that were categorized as being positive.
• F1-Statistic: The harmonic mean between precision and sensitivity.
• AUROC: The area under the receiver operating curve is primarily used to measure

the classification threshold performance of classifiers. ROC is a curve consisting
of points generated by the true positive rate (TPR) and false positive rate (FPR) of
model. TPR signify the probabilities that models can correctly locate positive samples.
Such probabilities are commonly referred to as recall rates and represent revenue. By
contrast, FPR signify the probabilities that models incorrectly locate positive samples
and represent losses. AUROC values range from 0 to 1, where the larger the value, the
more superior the result.

3. Results

This study employed 10-fold cross-validation to construct models. The models con-
structed were using ICU patients 12 and 24 h after hospital admission to predict ICU patient
mortality for different periods, including in-hospital mortality, short-term mortality, and
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long-term mortality. The results are presented in Tables 6 and 7. Figures 4 and 5 compare
the AUROC predicted using the five machine learning methods.
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Table 6. Comparisons between different models constructed using 12 h dataset in terms of their
prediction accuracy.

Metric Method
In-Hospital
Mortality

Short-Term Mortality Long-Term Mortality

48 h 72 h 30 Days 1 Year

AUROC

CART 0.8101 0.8033 0.8006 0.7925 0.8471
LR 0.8029 0.8659 0.8222 0.8224 0.9082

MARS 0.8124 0.8502 0.8195 0.8170 0.8716
RF 0.8415 0.8867 0.8498 0.8543 0.8953
GB 0.8489 0.8862 0.8542 0.8556 0.9171

Specificity

CART 0.7416 0.8425 0.7071 0.7544 0.8181
LR 0.7352 0.7921 0.7455 0.7743 0.8521

MARS 0.5696 0.6243 0.5861 0.6344 0.7090
RF 0.1735 0.2408 0.1638 0.1900 0.3796
GB 0.7528 0.8712 0.7578 0.7907 0.9259

Sensitivity

CART 0.7460 0.7211 0.7864 0.7553 0.8080
LR 0.7126 0.8188 0.7457 0.7158 0.8000

MARS 0.8599 0.8842 0.8665 0.8275 0.8480
RF 0.9912 0.9842 0.9970 0.9933 0.9760
GB 0.7810 0.7211 0.7864 0.7647 0.6720

Precision

CART 0.2323 0.1167 0.2179 0.2605 0.0788
LR 0.2273 0.1041 0.2400 0.2756 0.0952

MARS 0.1731 0.0636 0.1785 0.2059 0.0531
RF 0.1117 0.0361 0.1101 0.1231 0.0294
GB 0.2487 0.1391 0.2520 0.2950 0.1487

F1-Statistic

CART 0.3542 0.2009 0.3413 0.3874 0.1436
LR 0.3447 0.1848 0.3632 0.3979 0.1702

MARS 0.2882 0.1187 0.2960 0.3297 0.1000
RF 0.2007 0.0696 0.1983 0.2191 0.0571
GB 0.3773 0.2332 0.3817 0.4258 0.2435

CART, classification and regression trees; LR, logistic regression; MARS, multivariate adaptive regression splines;
RF, random forest; and GB, gradient boosting.

Table 7. Comparisons between different models constructed using 24 h dataset in terms of their
prediction accuracy.

Metric Method
In-Hospital
Mortality

Short-Term Mortality Long-Term Mortality

48 h 72 h 30 Days 1 Year

AUROC

CART 0.8049 0.8246 0.8064 0.8140 0.8511
LR 0.8331 0.9014 0.8438 0.8434 0.8987

MARS 0.8053 0.8843 0.8250 0.8102 0.8935
RF 0.8623 0.9203 0.8705 0.8710 0.9096
GB 0.8623 0.9249 0.8760 0.8736 0.9280

Specificity

CART 0.7639 0.7927 0.7537 0.7658 0.8197
LR 0.7707 0.8313 0.7812 0.7684 0.8772

MARS 0.6443 0.6151 0.6115 0.6054 0.6765
RF 0.2520 0.3011 0.2056 0.2301 0.4212
GB 0.8184 0.8507 0.8123 0.7882 0.9316

Sensitivity

CART 0.7402 0.8071 0.7578 0.7607 0.7983
LR 0.7278 0.8090 0.7597 0.7683 0.7642

MARS 0.8023 0.9137 0.8512 0.8409 0.8992
RF 0.9899 0.9848 0.9932 0.9866 0.9580
GB 0.7427 0.8325 0.7618 0.7821 0.7563
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Table 7. Cont.

Metric Method
In-Hospital
Mortality

Short-Term Mortality Long-Term Mortality

48 h 72 h 30 Days 1 Year

Precision

CART 0.2499 0.0905 0.2303 0.2425 0.0658
LR 0.2658 0.1168 0.2673 0.2601 0.0955

MARS 0.1933 0.0572 0.1756 0.1736 0.0423
RF 0.1233 0.0348 0.1084 0.1122 0.0257
GB 0.3030 0.1248 0.2831 0.2669 0.1495

F1-Statistic

CART 0.3736 0.1628 0.3532 0.3678 0.1216
LR 0.3894 0.2041 0.3955 0.3887 0.1698

MARS 0.3116 0.1077 0.2912 0.2878 0.0809
RF 0.2193 0.0672 0.1955 0.2014 0.0500
GB 0.4304 0.2171 0.4128 0.3980 0.2497

CART, classification and regression trees; LR, logistic regression; MARS, multivariate adaptive regression splines;
RF, random forest; and GB, gradient boosting.

3.1. Variable Importance

One advantage of using the GB method is that once prediction models have been built,
the importance of their variables can be obtained by sorting the variable importance scores.
In general, the importance score denotes the degree to which an input variable increases
the value of the decision trees in the model; the more frequently that the variable is used in
the decision tree, the higher its relative importance. For the GB method, the importance of
an input variable is calculated using the degree to which the variable can increase the value
of the decision tree at the decision tree split point multiplied by the number of samples
(weights) at the node. Common decision tree value measurement methods include the
Gini index, cross-entropy, and information gain (in this study, the Gini index was used to
measure increases in decision tree values). For more information on how the GB method
calculates the importance of input variables, please refer to Hastie et al. [63]. The variable
importance obtained for the best GB model in ICU patients 12 and 24 h after hospital
admission is presented in Table 8.

Table 8. The selected six important variables for 12 h and 24 h datasets by using GB.

Dataset Order of Variable Importance In-Hospital Mortality Short-Term Mortality Long-Term Mortality

48 h 72 h 30 Days 1 Year

12 h

1 x1 x1 x1 x1 x1
2 x12 x5 x12 x12 x9
3 x5 x12 x5 x5 TOPICA3
4 x2 TOPICA3 x6 x9 x12
5 x6 x9 TOPICA3 x2 x2
6 x4 x3 x4 x4 x4

24 h

1 x1 x7 x7 x7 x7
2 x5 x10 TOPICB1 x12 TOPICB1
3 x12 TOPICB1 x12 x6 x10
4 x9 x12 x10 TOPICB1 x12
5 TOPICB1 x8 x3 x10 x3
6 x2 x1 x5 x3 x1

As presented in Table 8, when using models (constructed using the data of ICU patients
12 h after they have been admitted to hospitals) to predict in-hospital and short-term ICU
patient mortality, blood urea nitrogen (x5) is a critical variable. By contrast, when predicting
long-term ICU patient mortality (i.e., mortality within 1 year), serum bicarbonate level (x9),
and intracranial hemorrhage (TOPICA3) are more critical. When predicting in-hospital,
short-term, and long-term ICU patient mortality, age (x12) and the Glasgow Coma Scale
(x1) are critical variables. As for using models (constructed using the data of ICU patients
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24 h after they had been admitted to hospitals) to predict in-hospital ICU patient mortality,
the Glasgow Coma Scale (x1), blood urea nitrogen (x5), and serum bicarbonate level (x9)
are critical. When predicting short-term and long-term ICU patient mortality, potassium
level (x7) and admission type (x10) are more critical. When predicting in-hospital, short-
term, and long-term ICU patient mortality, age (x12) and hydroperitoneum (TOPICB1) are
critical variables.

3.2. Prediction with Semi-Structure Data vs. Prediction w/o Semi-Structure Data

To illustrate the effects of semi-structured data on ICU patient mortality predictions,
this study used the GB method to compare the ICU patient mortality prediction results
obtained by models that used the structured and semi-structured data of patients 24 h after
hospital admission and those obtained by models that used merely the structured data of
patients 24 h after hospital admission. Table 9 shows the prediction results.

Table 9. Comparisons (made using the GB method) of the prediction results generated by models
based on 24 h dataset.

Dataset Metric In-Hospital Mortality Short-Term Mortality Long-Term Mortality

48 h 72 h 30 Days 1 Year

With semi-structure data

AUROC 0.8623 0.9249 0.8760 0.8736 0.9280
Specificity 0.8184 0.8507 0.8123 0.7882 0.9316
Sensitivity 0.7427 0.8325 0.7618 0.7821 0.7563
Precision 0.3030 0.1248 0.2831 0.2669 0.1495

F1-Statistic 0.4304 0.2171 0.4128 0.3980 0.2497

Without semi-structure data

AUROC 0.8545 0.9141 0.8643 0.8683 0.9152
Specificity 0.8113 0.8276 0.8046 0.7932 0.9215
Sensitivity 0.7389 0.8426 0.7564 0.7687 0.7143
Precision 0.2939 0.1111 0.2735 0.2682 0.1265

F1-Statistic 0.4205 0.1963 0.4017 0.3976 0.2149

According to the table, models that used both the structured and semi-structured data
of patients 24 h after hospital admission generated more accurate in-hospital, short-term,
and long-term ICU patient mortality prediction results than those generated by models
that used only the structured data of ICU patients. These results indicated that semi-
structured data (i.e., clinical notes, which contained patients’ diagnosis data and inspection
reports) contain useful information that can considerably affect the prediction accuracy of
constructed models. Overall, models predicted short-term mortality more accurately than
they did in-hospital and long-term mortality, and short-term, 48 h mortality predictions
produced the highest AUROC values, signifying that models built using the structured
and semi-structured data of ICU patients 24 h after hospital admission more accurately
predicted whether the ICU patients would die 48 h after hospital admission.

4. Discussion
4.1. Principal Findings

The purpose of this study was to use a machine learning model to evaluate the
impact of integrating the structured data (vital signs and laboratory test results) and semi-
structured data (diagnosis data and inspection reports) collected by ICU patients during
hospitalization on predicting whether ICU patients die (death = 1, survival = 0) in different
periods. On the basis of the analysis results, this study presented the following findings:

1. A longer ICU patient hospital stay signified more accumulated medical records. The
increased number of medical records elevated the ICU patient mortality prediction
accuracy. This study collected and used the data of ICU patients 12 and 24 h after hos-
pital admission to construct and analyze patient mortality prediction models. Related
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analysis results revealed that, in general, models built using 24 h data outperformed
those built using 12 h data in terms of model prediction accuracy.

2. Overall, the prediction models predicted short-term mortality more accurately than
they did long-term mortality and predicted short-term, 48 h mortality more accurately
than they did all other periods. As the prediction time increased, the prediction
accuracy substantially decreased. This signified that the prediction models are more
suitable for short-term mortality predictions. Future studies should strengthen the
long-term mortality prediction accuracy of these prediction models by increasing the
duration of the data collection process of inpatients and including more factors of
influence in the models.

3. Models constructed using the five machine learning classification algorithms pro-
duced an ICU patient short-term and long-term mortality prediction accuracy of
over 70%. Moreover, GB outperformed the other machine learning algorithms for
all periods. These results demonstrated the rapid development of machine learning
algorithms and that they can provide immense help to clinical doctors when making
clinical decisions.

4. Combining the structured and semi-structured data of ICU patients can strengthen the
ICU patient mortality prediction accuracy for different periods. This confirmed that
ICU patients’ clinical notes (e.g., diagnosis data and inspection reports) contain useful
information that can help clinical doctors make crucial clinical decisions [64,65].

5. Analyses on ICU patients’ semi-structured data (e.g., clinical notes and pathology
reports) performed with the LDA method revealed some critical information. Accord-
ing to Table 7, when patients’ hospitalization data are limited (i.e., only their 12 h data
are available), those who wish to predict the patients’ short-term mortality should pay
attention to variables such as the patents’ ages (x12), Glasgow Coma Scales (x1), and
blood urea nitrogen (x5); and those who wish to predict the patients’ long-term mor-
tality should pay attention to variables such as the patents’ ages (x12), Glasgow Coma
Scales (x1), serum bicarbonate levels (x9), and intracranial hemorrhage (TOPICA3).
By contrast, when patients’ hospitalization data are sufficient (i.e., their 24 h data are
available), those who wish to predict the patients’ in-hospital mortality should pay
attention to variables such as the patients’ ages (x12), hydroperitoneum (TOPICB1),
Glasgow Coma Scales (x1), blood urea nitrogen (x5), and serum bicarbonate levels
(x9); and those who wish to predict the patients’ short-term and long-term mortality
should pay attention to variables such as the patients’ ages (x12), hydroperitoneum
(TOPICB1), potassium levels (x7), and admission types (x10). In other words, when
patients’ hospitalization data are limited, their Glasgow Coma Scales, age, blood urea
nitrogen (bicarbonate), and intracranial hemorrhage will determine their prognoses.
By contrast, when patients’ hospitalization data are sufficient, their Glasgow Coma
Scales, age, blood urea nitrogen (bicarbonate), hydroperitoneum, and admission types
will determine their prognoses. Overall, topics generated using the LDA method
can extract patients’ critical medical characteristics. These medical characteristics
can be used by doctors to offer personalized clinical advice according to the patients’
situations [43]. Additionally, compared with conventional methods of clustering or
drawing associations with individual taxa, the LDA provides unique analytical ad-
vantages. For example, in addition to avoiding the effects of outlier samples, the LDA
method can prevent the patients’ critical medical characteristics hidden in textual data
from being overlooked [66].

4.2. Limitations

This study had a few limitations. First, because of the retrospective design, inherent
biases were unavoidable. Because this study built prediction models by using the dynamic
EHR data of ICU patients, the models are applicable only to patients in ICU environments
or ICU-related environment. This is a common problem when constructing prediction
models by using machine learning methods and dynamic EHR data [67].
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Second, to collect data thoroughly and conveniently, we obtained comprehensive,
dynamic patient data from a database where such data could be easily obtained. The
MIMIC-III data used were obtained from BIDMC in Boston, MA, USA. Future studies
should collect data from other regions and from other types of medical institutions before
conducting comprehensive assessments. Moreover, because the data in this study were
the medical data of ICU patients (in a large medical institution in Boston) found in the
MIMIC-III database, the analysis results are not entirely applicable to ICU patients in
small medical institutions. Future studies should simultaneously compare the data of ICU
patients in rural medical indications and those of ICU patients in other general medical
institutions to yield more comprehensive results.

Third, the medical data were only those of patients who had been admitted to ICUs
for the first time and did not include those of patients who were readmitted. Because ICU
patient readmissions often lead to excessive use of medical resources and higher financial
risks for medical institutions, analyzing the morbidity and mortality of readmitted ICU
patients will benefit patients and medical institutions more pronouncedly [68]. Future
studies can collect the data of ICU patients who have been hospitalized multiple times,
perform comprehensive assessments for different time series, or provide different types of
analysis results to patients, health care personnel, and patients’ families to enable them to
use such reference information when making related assessments.

Fourth, the LDA topic modeling method adopted in this study is an alternative non-
parametric method that normally requires one to observe data complexity to determine the
number of topics required. Such an analysis procedure often violates the objective analysis
principle. In addition, standard LDA models frequently interpret data as disordered “bag
of words” and remove them from analyses, resulting in wasteful use of information [69].
Follow-up studies that resolve these problems by conducting more comprehensive assess-
ments and analyses will ensure more objective and complete study results.

5. Conclusions

In this study, in addition to using quantitative data (e.g., ICU patients’ vital signs
and laboratory test results), we use an LDA method to model the semi-structured data
(e.g., patients’ clinical notes and pathology reports) of ICU patients and discuss the effec-
tiveness of combining LDA and five machine learning methods to predict ICU patient
mortality. Our results revealed that the semi-structured data (diagnosis data and inspection
reports) of ICU patients contain useful information that can assist clinical doctors in making
critical clinical decisions. However, the prediction models built in this study are mainly
used to predict ICU patient mortality, and follow-up studies are required to enable the
models to make other clinical predictions, for instance, hospital stay, complication, and
disease predictions.

Possible directions for follow-up studies are as follows: first, they may collect the
structured and semi-structured data of patients in different departments (e.g., cardiology
or nephrology departments) and with different diseases (e.g., sepsis) and perform more
detailed classifications and analyses. Second, they may collect patient data from different
medical departments, such as the outpatient departments, emergency departments, inpa-
tient departments, and ICUs, and conduct more comprehensive model construction and
assessments to strengthen the generalizability and applicability of the models. Third, they
may collect and integrate different types of unstructured data, for instance, consultation
processes in hospitals, patient demands, and messages left by patients on social media
such as Facebook, Instagram, and Twitter when building models to increase model pre-
diction accuracy. Moreover, the NLP research is gradually dominated by the use of some
new transformer models (e.g BERT). Future studies may aim to combine other new topic
modeling tools, such as BERT, to evaluate the ability of the proposed prediction scheme.



Healthcare 2022, 10, 1087 16 of 20

Author Contributions: Conceptualization, C.-C.C. and T.-N.C.; Data curation, C.-C.C. and T.-N.C.;
Formal analysis, C.-C.C. and T.-N.C.; Methodology, C.-C.C. and T.-N.C.; Supervision, C.-C.C. and
T.-N.C.; Writing—original draft, C.-C.C. and T.-N.C.; Writing—review and editing, C.-C.C., C.-M.W.,
T.-N.C., L.-J.K. and J.T.Q. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to sincerely thank the editor and reviewers for their
kind comments.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Topics for 12 h Dataset

Variable Topic Keywords

TopicA1 Sepsis
sepsis, blood, delivery, matermal, admission, distress, stable, murmur,
respiratory, active, monitor

TopicA2 Pneumothorax and pleural effusion
chest, placement, examination, portable, radiology, pneumothorax,
medical, catheter, position, diagnosis, effusion

TopicA3 Intracranial hemorrhage
contrast, hemorrhage, acute, frontal, radiology, intracranial, ventricle,
brain, sinus, findings, subdural, comparison

TopicA4 Medical assessment
assessment, present, medication, blood, pulse, respiratory, assess, acute,
fluid, balance, action

TopicA5 Hydroperitoneum
contrast, abdomen, pelvis, liver, fluid, abdominal, bowel, kidney, evidence,
radiology, lesion, peritoneal

TopicA6 Pleural effusion
chest, effusion, pulmonary, pleural, examination, medical, radiology,
pneumonia, portable, impression, comparison, opacity, acute

TopicA7 Cervical spine trauma
fracture, contrast, spine, trauma, injury, radiology, cervical, chest,
examination, evidence, tissue, impression, hematoma

TopicA8 Coronary artery disease
artery, carotid, aneurysm, identifier, numeric, stenosis, intermal, procedure,
common, femoral, vertebral, cerebral, perform, catheter, distal

TopicA9 Urinary retention
neuro, screen, monitor, receive, urine, order, admission, foley, transfer,
follow, stable, man, urinary

TopicA10 Endotracheal intubation
intubate, respiratory, sedate, assessment, intubation, sound, propofol,
airway, ventilation, endotracheal, secretion, breathing, sedation, suction,
sputum, fentanyl, procedure, failure

Appendix B. Topics for 24 h Dataset

Variable Topic Keywords

TopicB1 Hydroperitoneum
contrast, abdomen, liver, pelvis, fluid, abdominal, bowel, kidney, evidence,
peritoneal, lesion, radiology

TopicB2 Urinary retention
neuro, monitor, foley, urine, stable, follow, receive, urinary, order, drain,
family, intact, man

TopicB3 Newborn respiratory distress
infant, sepsis, stable, parent, blood, monitor, active, murmur, delivery,
respiratory, distress, parents

TopicB4 Coronary artery disease
artery, carotid, aneurysm, identifier, numeric, stenosis, procedure, intermal,
catheter, common, femoral, aortic, perform, cerebral, coronary, vertebral
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Variable Topic Keywords

TopicB5 Pneumothorax and pleural effusion
chest, effusion, examination, radiology, medical, pleural, portable,
pulmonary, placement, impression, comparison, pneumothorax

TopicB6 Nursing assessment
assessment, medication, action, fluid, rhythm, pulse, response, balance,
present, respiratory, extremity

TopicB7 Endotracheal intubation
intubate, propofol, sedate, intubation, respiratory, ventilation, placement,
airway, sound, secretion, endotracheal, suction, sedation, breathing,
fentanyl

TopicB8 Sepsis
failure, renal, fever, status, urine, hypotension, likely, mental, infection,
acute, pneumonia, sepsis, lactate, blood

TopicB9 Medical assessment
present, assessment, blood, pulse, chest, response, action, assess, deny,
medication, system

TopicB10 Spinal hematomas
contrast, fracture, hemorrhage, spine, radiology, trauma, examination,
acute, injury, hematoma, impression, image

Appendix C. Selected Quantitative Predictors with Corresponding Information Gain

Variable Feature Item Name Information Gain Item ID Table

x1 Glasgow Coma Scale

GCS Verbal
Verbal Response
GCS Motor
Motor Response
GCS Eyes
Eye Opening

0.4340

223900
723
223901
454
220739
184

Chartevents

x2 Heart Rate Heart Rate 0.3602
211
220045

Chartevents

x3 Systolic Blood Pressure
Noninvasive Systolic
Blood Pressure

0.2702
455
220179

Chartevents

x4 Temperature
Temperature
Fahrenheit
Temperature Celsius

0.4681

678
223761
676
223762

Chartevents

x5 Blood Urea Nitrogen Blood Urea Nitrogen 0.2172 51006 Labevents

x6 White Blood Cells Court White Blood Cells 0.4725
51301
51300

Labevents

x7 Potassium Level Potassium 0.2287
50971
50822

Labevents

x8 Sodium Level Sodium 0.2486 50983 Labevents

x9 Serum Bicarbonate Level Bicarbonate 0.0954 50882 Labevents

x10 Admission Type Admission Type 0.0184 Admissions

x11 Gender Gender 0.0104 Admissions

x12 Age Age 0.1555 Admissions
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