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Abstract: Social forums offer a lot of new channels for collecting patients’ opinions to construct
predictive models of adverse drug reactions (ADRs) for post-marketing surveillance. However, due
to the characteristics of social posts, there are many challenges still to be solved when deriving
such models, mainly including problems caused by data sparseness, data features with a high-
dimensionality, and term diversity in data. To tackle these crucial issues related to identifying
ADRs from social posts, we perform data analytics from the perspectives of data balance, feature
selection, and feature learning. Meanwhile, we design a comprehensive experimental analysis to
investigate the performance of different data processing techniques and data modeling methods. Most
importantly, we present a deep learning-based approach that adopts the BERT (Bidirectional Encoder
Representations from Transformers) model with a new batch-wise adaptive strategy to enhance
the predictive performance. A series of experiments have been conducted to evaluate the machine
learning methods with both manual and automated feature engineering processes. The results prove
that with their own advantages both types of methods are effective in ADR prediction. In contrast to
the traditional machine learning methods, our feature learning approach can automatically achieve
the required task to save the manual effort for the large number of experiments.

Keywords: adverse drug reaction; social media monitoring; pharmacovigilance; machine learning;
feature engineering; deep learning

1. Introduction

Drugs for medical purposes aim at saving one’s life and for improving the life quality.
They are used to treat disease and to improve one’s physical fitness or mental status.
However, drugs may cause unexpected effects or even adverse reactions on patients, called
adverse drug reactions (ADRs). To prevent ADRs, clinical trials of drugs are conducted
to analyze and evaluate the risks during the process of drug development. However,
clinical tests are often very time-consuming and difficult to effectively detect all the possible
adverse drug reactions due to the limitations on samples. A complementary way is to
perform drug post-marketing surveillance by collecting patients’ opinions to construct data
models to predict suspected ADRs. To tackle the crucial issues related to opinion modeling,
in this work we perform data analytics and develop an efficient approach to automatically
achieve the model construction procedure.

Traditionally, after drugs have been invented and released to the market, drug manu-
facturers, U.S. Food and Drug Administration (FDA) and the World Health Organization
(WHO) continuously conduct pharmacovigilance to capture the uncovered ADRs as early
as possible. The task of ADRs monitoring thus relies on the reporting systems taking
feedbacks from relevant staffs and patients. However, the reporting system often needs a
longer time to accumulate sufficient data to make decisions accordingly [1,2]. Moreover,
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these non-personal reports present some problems; for example, they are subject to errors
in semantics or delayed in response time [3]. The reporting systems are far from being
satisfactory. In contrast, with the increasing popularity of social media, more and more
people are willing to share their medical experiences in social media [3–5]. Patients sharing
their experiences on the social media often articulate medical issues and side effects previ-
ously not found or underestimated by clinicians. This channel thus offers a new way for
ADR detection through extracting information from social media, including information
of the side effects of drugs, drug usage compliance, the effectiveness of drug and relevant
evidence. Many researchers are trying to develop new methods to identify and retrieve
drug-related users’ opinions from social media, for example, [6–8]. Among the popular
social media, Twitter that allows users to create short messages is considered as a rich
source of user opinions on drugs. Though not all of the tweets posted by users are related
to health issues, there are a sufficient number of tweets to augment the existing database as
a source of adverse drug reaction information. It has been confirmed that the adverse drug
events reported on Twitter were fairly consistent with the spontaneous reports [3].

Regarding the detection of adverse drug events in Twitter, there are several challenges
to be solved. As already indicated by the relevant studies [9,10], the first issue is the
sparseness of adverse drug events. As Twitter is a general social media with quite diverse
content, most of the tweets are not related to adverse drug events. It results in a serious
problem of data imbalance: the dataset has a skewed class distribution of ADRs and non-
ADRs. The second issue is to do with data features with a high-dimensionality. This is
mainly caused by the unstructured texts of tweet posts. The quantity of features extracted
from the posts can be prodigious, so it is difficult and laborious to select useful features and
develop suitable encode schemes to represent data for predictive modeling. The third issue
is regarding the diversity of the tweet terms. As anyone can use their own terms based on
personal feeling to create a tweet to express a subjective opinion, even in describing his
situation on the same ADR. Diversity of the tweet’s sentence causes the natural language
processing (NLP) to be more difficult but machine learning methods are able to solve
this problem.

Our study aims to tackle all these challenges and contains several features. We
first perform a comprehensive experimental analysis to evaluate the major procedures
of traditional machine learning methods for ADRs detection from different perspectives,
including data balance, feature extraction and selection, and ensemble learning. Then, we
develop a deep learning-based approach that adopts the state-of-the-art BERT model [11,12]
with a new adaptive strategy to alleviate the problems often occurring in traditional
methods. A series of experiments have been conducted to evaluate the performance of
machine learning methods with a manual (i.e., traditional methods) and an automated
(i.e., deep learning methods) feature engineering processes. Finally, we have analyzed
and compared the effectiveness and efficiency of both types of methods. Compared to
traditional methods, our method with feature learning can save a lot of manual efforts in
orchestrating the large number of experiments and provide a more efficient solution in
ADR prediction.

2. Related Work

Nowadays patients’ tweets mentioning the drugs and the related side effects provide
most popular information source for post-marketing drug safety surveillance. There are
two types of computation methods in use for building tweet-based classifiers at present:
feature engineering-based methods and feature learning-based methods. The former often
involves two operating stages: employing NLP techniques for extracting data features
from the tweets, and then performing traditional machine learning methods for building
models for ADR classification. The first stage deals with the unstructured tweets and uses
natural language processing techniques at different text (lexical or sentence) levels. Specific
characteristics are analyzed, such as corpus construction and part-of-speech (POS) analysis,
medical entity identification, and drug adverse event (ADE) relationship extraction. At this
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stage, various types of data features are defined and extracted, mainly manually, from the
texts to represent the data (tweet). With these features, the second stage then constructs
classifiers accordingly by different computational methods.

In former studies on text classification, traditional machine learning algorithms were
often used, such as Naive Bayesian Classifier (NB), Decision Tree, Support Vector Machine
(SVM) and Logistic Regression (LR), to provide reasonably good performance. For example,
Chee et al. used a bootstrapping method to increase positive samples to balance the data
distribution, and they developed an ensemble model to identify ADR by combining the
SVM and NB classifiers [13]. Additionally, Plachouras et al. implemented a SVM based
classifier to categorize tweets [14]. Sampathkumar et al. utilized Hidden Markov Model
(HMM) to recognize if a post of the healthcare forum has provided any drug side effect
information and to extract the targeted content [15]. Nikfarjam et al. adopted different types
of supervised machine learning algorithms, including SVB, NB, and Maximum Entropy
(ME), to predict whether ADRs existed in a social media text [16]. Patki et al. deployed a
two-step approach for ADR detection. They first used Multinomial NB and SVM to classify
reviews into ADR or non-ADR, and then performed text analysis to identify potentially
dangerous drugs from the ADRs related mentions [17]. In addition, some studies proposed
to infer the associations between the side effects of approved drugs to further predict
potential side effects for new drugs, for example [18,19].

To enhance the performance delivered by a single comprehensive classifier, researchers
proposed to ensemble multiple models or algorithms. Intuitively, they combined multiple
machine learning models in order to keep the advantages and remove the disadvantages of
the individual classifiers. In data modeling, each type of model can provide specific views to
interpret the original data. Based on this observation, some ensemble learning approaches
used the same machine learning algorithm to build multiple models while each model was
trained by different subsets or variables of the data (such as RandomForest or Adaboost).
There were also works using the same dataset to train models by different machine learning
methods, and then taking the voting or average results as the final decision. For example,
Liu et al. used NLP techniques to transform texts collected from health-related forums
and Twitter into the lexical, syntactic, and semantic features. They then trained ensemble
learners, selected k-best models, and made the final decision by fusing strategies to predict
ADEs [4]. Wunnava et al. adopted heterogeneous classification algorithms (including SVM,
DT, and LR) and combined them as an ensemble learner to extract ADRs narratives to form
the FDA adverse event reports [20]. They have found that the stacking-based ensemble
combiner method can outperform the simple majority-voting method. Recently, Kim et al.
used a stacked ensemble method with a search-based structured prediction algorithm to
recognize ADEs from electronic health records [21]. Moreover, Liu et al. developed a semi-
supervised ensemble learning framework to augment the training data and improve the
skill of the diverse base classifiers [7]. They used the ensemble classifier to label the unseen
data and re-train the base classifiers, and the workflow continued until performance of the
ensemble classifier was stable. Their work can obtain better results than the traditional
training steps using single classifier only. In addition, El-allaly et al. proposed a multi-task
transfer learning-based approach to extract ADEs from clinical textual data [22]. They
converted the ADEs extraction task into a dual-task of source mention extraction and
attribute–relation extraction, and then used the developed approach to solve the two tasks.

Now using deep neural networks is a breakthrough for classification tasks. The deep
networks can achieve superior performance in many applications, especially in computer
vision and natural language processing. Particularly in the applications involving with se-
mantic cognition (such as machine translation, sentiment analysis, and chatting), traditional
machine learning and features engineering methods are not able to capture the meaning
of spoken sentences. For such applications, deep learning NLP techniques outperform
traditional machine learning methods. Therefore, to exploit the optimization power of
deep learning, researchers have applied this method to detect ADRs from unstructured,
manually generated social media texts [23,24]. A primary study in using deep learning for
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pharmacovigilance was the work by Cocos et al. [25]. The authors utilized a bidirectional
LSTM trained on a sample Twitter dataset to identify drug side effects. There were also
some studies applying the deep learning-based methods to biomedical literatures for ADRs
detection [26,27]. For example, Basaldella and Collier proposed an embeddings approach
to improve the deep learning algorithm performance and applied their system to the forum
Reddit, particularly with a focus on the bio-subreddit [28].

Among others, the pre-trained language model BERT has shown its superior per-
formance in language-related applications. It used an extremely huge corpus to train a
language representation model from a deep learning architecture designed by Transform-
ers [11]. The capability of a pre-trained model depends on the quantity of training data,
and it is difficult to obtain sufficiently large amount of data and computing power to
well-train such a model. Therefore, many biomedical and pharmacovigilance studies have
adopted BERT as a language representation component to improve the corresponding NLP
tasks [29–31]. For example, Fan et al. recently proposed a deep learning-based approach
that adopted Bidirectional Encoder Representations from BERT-based models for ADE
detection and extraction [31]. They used a manually labelled dataset containing a large
number of reviews from the health social media forum WebMD and Drugs.com to evaluate
the model. As a result, this model obtained the best results in their task. It has the potential
to be applied to other healthcare and information extraction tasks. Following this trend,
in this work we develop a new approach based on BERT and conduct experiments for
performance comparison.

3. Data Description

In this study, we used the dataset annotated by Sarker et al., in which each tweet has
an identifier and an ADR label [32]. We used this dataset because it is a real dataset publicly
available, and most importantly, it is very imbalanced (different from those datasets used in
other studies for pharmacovigilance research, for example DailyStrength [6], WebMD [31],
ADE corpus [24]). The tweets were written in English and the data were collected in
April, 2017. The methodology presented in this work is not specifically designed for this
dataset; it is applicable to others. As some tweets in this dataset have been removed for
some reasons (e.g., deleted by the original users), the data amount used in this study is
slightly less than the original one used in the literature. It contains 6842 data records:
737 ADRs and 6105 non-ADRs. Obviously, it is an extremely imbalanced dataset and
tends to cause the imbalanced class distribution problem, and thus to obtain results of
high accuracy (biased toward the non-ADR class) but low f-score. Therefore, for this
type of dataset, it is important to train a predictor to improve the f-score without the loss
of accuracy. In this work, the experiments and evaluations are conducted based on this
popular dataset. However, the limitation on the data source should be noted, such as that
the completeness of this source may be not sufficient, and there could be a potential bias in
the selection of social posts.

Table 1 lists the details of the dataset, which includes nine categories of data features
with 8496 different features in total. The feature categories are “text” (word terms), “synset”
(synonyms of verbs, nouns and adjectives), “sentiment” (positive or negative of the user
opinions), “cluster” (clusters of the texts), “structural” (structural properties of the texts
such as the number of words, sentences in the texts), “adrlexicon” (whether a tweet
contains a ADR lexicon), “topic vector” (topic keywords), “topic” (the correlation score
for the keywords included in each cluster) and “goodbad” (whether a sentiment change is
detected in a tweet). In this study, we use the feature extraction program provided by [16]
to extract data features with different encoding formats from the text content. The feature
names and the numbers of feature dimension are also listed in Table 1. It is helpful to
capture the as much ADR information as possible, through combining all features into
one data record. For this dataset, the feature extraction process generates 8496 features
in total. However, the number of dimensions is much larger than the amount of data,
6842, and this raises the curse of dimensionality [33]. It is therefore very important to
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select critical features for building classifiers. In the experiments, we investigate serval
approaches to overcome the problem of class imbalance and to improve the effect of high
feature dimension for better performance.

Table 1. The feature names extracted from the dataset.

Feature Name Dim Description

text 5000 N-grams, N = 1~3

synset vector 2000 the tf.idf measure for each derived synonym

cluster vector 981 cluster terms tf

topic vector 500 the topic terms that appear in the instance

sentiments 5 the sum of all the individual term-POS (part-of-speech) sentiment scores divided by
the length of the sentence in words

good/bad 4 four features: MORE-GOOD, MORE-BAD, LESS-GOOD, and LESS-BAD

structural features 3

length: lengths of the text segments in words
presence of comparatives and superlatives: these are binary features and these items

are identified from the Stanford parses of the text segments
presence of modals

ADRs lexicon 2

The first feature is a binary feature indicating the presence/absence of ADR
mentions. The second feature is a numeric feature computed by counting the

number of ADR mentions in a text segment and dividing it by the number of words
in the text segment.

topics 1 sums of all the relevance scores of the terms in each instance

4. Research Method: Data Balance, Feature Selection, and Deep Learning

As mentioned above, posts collected from social media provide useful information
about the patients’ opinions. To identify ADRs, in this section we describe how we perform
data analytics on these social media posts from two aspects to tackle the related issues
and to enhance the predictive performance. The first is to consider critical factors related
to data processing for feature engineering, including the traditional data balance and
feature selection; and the second, to develop more effective models and methods for feature
learning (such as deep learning-based methods). Further details are given below.

4.1. Tackling the Data Imbalance Problem by Resampling and Ensemble Learning

The class distribution of ADRs and non-ADRs could present a very severe between-
class imbalance problem. To obtain a higher accuracy, a model by machine learning often
biases toward the non-ADR class with a relatively large number of data samples. Thus,
an additional data balancing procedure is required to conciliate this problem. Before
developing more advanced computational methods for classification, we investigate the
effect of data balance by two types of methods (i.e., data resampling and ensemble learning)
described below to derive models from data with imbalance class distributions.

The first type is to adopt direct-resampling techniques. Intuitively, re-balancing the
class distribution often involves over-sampling or under-sampling techniques. The simple
over-sampling technique duplicates the minority class instances to equalize the data amount
of different classes. However, adding data this way may not improve performance because
it does not provide additional information to the learning method about how to identify
minority class instances. Therefore, most over-sampling techniques attempt to analyze
data properties to synthesize more meaningful and informative data for the minority class.
Another technique is under-sampling, in which class balance is performed by decreasing
the amount of majority class data. A simple technique is to randomly sample data from the
majority class with the same amount to the minority class. However, this approach also has
drawbacks: it might sample data with similar representations in the feature space, leading
to the majority class lost many useful data to support the original representation. In this
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work, we use the imbalanced-learn python package [34] to perform the re-sampling process.
This package provides many re-sampling methods reported by literature works, and we
design a series of experimental evaluations to examine if resampling methods can be used
to improve the predictive performance. Three steps are performed: at first, we split the data
into training and test datasets; then we apply the resampling techniques on the training
dataset only in order to re-balance the skewed classes and keep the test dataset in original
distribution; and finally, we use the rebalanced dataset to train the classification algorithms.

In addition to the above way that separates the steps of data quantity processing
and model learning, a popular alternative to alleviate the class imbalance problem is
to adopt ensemble learning that couples data modeling and data balance in the same
procedure. This type of learning takes a multi-view to investigate the dataset, and many
operating strategies (such as bagging, boosting, and stacking) can be employed to work
with the learning method chosen (such as decision tree). Some strategies sample the subsets
from the original dataset and then use data of different subsets to train models or the
same dataset on different learning algorithms to build the overall model; others consider
different dimensions of dataset to train individual models. All these approaches attempt to
inspect data from multiple angles, though they are different in operating details. With such
a specific property, ensemble learning methods are more capable to overcome the effects
caused by imbalanced classes. Moreover, ensemble learning methods are easy to combine
with resampling and cost-sensitive techniques to provide more effective prediction.

4.2. Solving the High-Dimension Problem by Feature Selection

Another issue needs to be seriously considered in Twitter posts is the feature dimen-
sion. The dataset collected from a social forum is often composed of a lot of free-style mes-
sages. It means that the data (i.e., the tweets) includes a textual document in non-structured
format. We also have to format the text for classification algorithms to understand and
process. Moreover, the words with ADR meanings are obscure, implicit, and not easy to
detect. Sometimes an ADR mention is not just a single word, but a set of words, or even a
sentence. It needs to be recognized through context analysis. As we do not know in advance
what kinds of word relations or types the ADRs are built on, we thus apply different kinds
of feature extraction methods to the same sentence and the results are concatenated to be
one data record. As a result, a short sentence in the Twitter post is often expanded to form
high-dimensional data.

For the dataset used in this work, the number of features is much larger than the
amount of data. Though rich data features are considered helpful for improving the model
performance, the functional roles of data categories are to be examined carefully to verify if
they are beneficial to the model or not. One way to solve this problem is to adopt feature
selection methods to choose a subset of the original features to maximize the modeling
performance of a learning algorithm. Consequently, the dimension of feature vectors can
be reduced so as to reduce the overfitting situation and the computational effort in learning
a model.

Traditionally, the positive effect of data features is the major aim of a classification
task; it is also important for presenting the negative effect. To inspect the negative effect of
each feature category listed in Table 1, former studies have employed the leave-one-out
method to remove individual category, and observed how the predictive performance
(i.e., the metrics of accuracy and f-score) changed. Their results show that though most of
the features are helpful, the performance changes are not obvious. To amend it, here we
further investigate these effects by examining and analyzing the impact of each feature
category in detail. A series of experiments are conducted to identify whether the rich
feature categories contribute to data modeling effectively, and whether each category can be
substituted by others in the modeling procedure to maintain the same level of performance.
If the most appropriate feature combination can be used, it is expected that the efficiency
and efficiency of the models can be improved. In our application, we aim at the metrics of
accuracy, f-score, and AUC (area under the Receiver Operating Characteristic curve).
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One of the best ways to select features is the type of filtering-based methods that em-
ploy statistical techniques to score features and determine what to be reserved accordingly.
A popular filtering method is the univariate filter which evaluates each feature one by
one independently. As the calculation for the Univariate filter is fast and the predictive
performance is generally acceptable, therefore, we adopt this method for feature selec-
tion. Univariate selection performs statistical test for non-negative features to select k best
features. That is, it uses common univariate statistical test for each feature, measures the
relationship between the feature and the strain, and selects the best features accordingly.
This work uses the simple and efficient tools scikit-learn [35], with the three criteria it
provides for feature evaluation: chi-square, Pearson correlation, and ANOVA F-value.
More details about the three algorithms are given in [36], and the evaluation results are
presented in the experimental section.

4.3. Enhanced Deep Learning for ADR Recognition

The above methods for class balance and feature selection have pipeline workflows
so they are not able to guarantee the best overall performance through pursuing the best
results individually at each stage and then combining them together. Therefore, we press on
to integrate the above stages and build an end-to-end approach via the deep neural model.
The model is designed to capture the long-term dependencies of the input sequential texts
(tweets). It can combine both functions of feature extraction and feature selection, via
temporal contextual information. Working in this way, this model is able to detect the key
words as well as the context information just as humans can. This is a crucial characteristic
for our application here because the ADR symptoms are often represented by various types
of sentences and require human-like comprehension for precise recognition.

To use a deep learning approach to achieve a language-based task, it is difficult to deal
with the diversity of words, especially on the small corpus dataset, because there are not
sufficient data to build up a model through learning the hidden patterns from the small
corpus. Adopting the transfer learning techniques, we can choose a pre-trained model
(trained by a large-scale corpus on a particular application domain) and then use a specific
dataset to re-train this model to derive a fine-tuned model. In this way, regardless of the
relatively limited data in the specified domain dataset, the re-trained model can still achieve
outstanding performance.

In this study, we adopt BERT as the encoder to develop our approach. BERT, the deep
learning technique based on the transformer network architecture, has been pre-trained on
a large-scale corpus. The end part of the proposed model is composed with a classifying
layer. It can be a simple fully connected layer or a more complicated RNN-like layer.
The output layer uses the sigmoid activation function to generate a prediction with a real
number between the range of 0 and 1. Here, an output number over 0.5 means that the
model will take this observation as an ADR. Figure 1 illustrates the deep neural networks-
based architecture of our ADRs classifier. As already shown, before the tweets are sent into
the model, each of them is parsed by a data preprocessing procedure, including steps of
stop words elimination, html tags elimination, URL links elimination, and tokenization.
A vocabulary dictionary is conducted with all corpus terms and each word is turned into
a number encoded by the index of the corresponding term in the dictionary. We align
all input sentences to sequences of length 32 (the average data length); the over-length
sentences are truncated while short sentences padded with zero values. In this network
model we use a fully connected layer with size of 768 neurons as the classifying layer.

In addition to the network architecture, it is important to enhance the training method
to reduce the serious imbalanced class effect in ADR detection. As the deep neural network
is trained by the stochastic gradient descent optimization algorithm, it requires the choice
of loss function to repeatedly estimate the loss of the model and then to update the network
weights accordingly. The loss function represents the primary training objective for a neural
network, and the training performance largely depends on the choice of the loss function.
Different loss functions have been used for the training deep neural model. Among others,
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the cross-entropy function has been widely adopted because it couples with a commonly
used Softmax output layer to undo the exponentialized outputs. Meanwhile, its properties
are closely related to the Kullback–Leibner (KL) divergence that describes the differences
between two probability distributions [37]. Consequently, minimizing the cross-entropy
function is similar to minimize the KL divergence. However, this function is not implicitly
flexible about the amount of information to be back-propagated. Therefore, instead of
using a static loss function, we propose a new objective function based on the method of
batch-wise self-adaptive weighting. With the adaptive loss function, the model becomes
flexible in estimating its error to dynamically capture the characteristics of the data and the
learning environment. The model can thus be forced to learn only the most discriminative
and contributive features. As the model can capture the inherent trade-offs between the
classification accuracy and the robustness to noise, the trained model can thus be more
immune to the overfitting problem.
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Our objective function enables the deep neural networks model to balance the class
weights at each batch step in the training stage. With an adaptive function to dynamically
guide the learning, we can alleviate the data imbalance problem to improve the performance
of the model obtained. The following set of equations (i.e., Equations (1)–(6)) quantitatively
explain the proposed method. Equation (1) presents the cost function, which indicates that
given a loss function L, it is able to compute the distance between the prediction ŷ (by the
model) and the ground truth y based on the data distribution, in which θ represents the
set of trainable parameters of the deep model. The goal is to approximate the distribution
of model mapping based on the input x and the prediction ŷ, so it will be as close as
possible to the empirical distribution. It means that the cost needs to be minimized, and
we can thus turn Equation (1) into an optimization problem as described in Equation (2).
Here, the deep model adjusts the trainable parameters (i.e., θ) to enable the probability
distribution of the model’s output to reach the maximum log-likelihood with the training
data {x1,2,...,n, y1,2,...,n}. With Equation (2) into Equation (1), we can revise Equation (1) to
obtain Equation (3). In such a gradient method, the optimization algorithm can update the
parameters based on the training set, as described in Equation (4).

J (θ) =E(x,y)∼ p̂data
L(ŷ, y)

ŷ =model(x; θ)
(1)

θML = arg max
θ

n

∑
i

log pmodel(xi, yi; θ) (2)

J (θ) = E(x,y)∼ p̂data
log pmodel(x, y; θ) (3)
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∇θJ (θ) = E(x,y)∼ p̂data
∇θlog pmodel(x, y; θ) (4)

As can be observed in Equation (1), the type of loss function influences the deep model
considering the learning patterns from data. For an imbalanced dataset, if the traditional
cross-entropy is used as the objective function, the model tends to take the majority class
(i.e., non-ADRs here) as the prediction result, because the majority class provides the
minimum loss for the training data. However, this results in a serious bias. It is necessary
to amplify the error when the instance is an ADR and the model gives a wrong answer.
Therefore, as Equation (5) shows it, the binary cross-entropy loss function is multiplied
by a weight wi to reduce the class imbalance effect. In this equation, x = {x1, x2, . . . , xn},
y = {y1, y2, . . . , yn}, and n is the data size. In contrast to the kind of studies with fixed
weights used to balance the skewed classes, our weight here is computed for each mini-
batch, depending on the class distribution of the batch data. The proposed batch-wise
adaptive weight formula is shown in Equation (6), in which B is the batch size, y ∈ {0, 1}
(an ADR datum has a y value of 1), and the term (1/B) ∗∑B

i=1 yi means the percentage of
the ADR class in the batch data. For example, assuming that ADRs are the minority in the
mini-batch (the same as in the training set) and they occupy 10% of the mini-batch, we can
calculate (1/B) ∗∑B

i=1 yi = 0.1 and then obtain (−1)yi = (−1)1 = −1. Thus, we can derive
wi = 1− 0.1 = 0.9. Meanwhile, for an instance of non-ADR data, yi = 0, we can derive
wi = 0 + 1 ∗ (0.1) = 0.1. Through the above steps, during the procedure of learning, the
weights can be dynamically adjusted according to the class distribution of the mini-batch,
so more penalties are given to examples of ADR data wrongly predicted. This way, our
method can more precisely describe the relation between the model and the data in practice,
and it is thus not necessary to take special care on the data imbalance problem.

Loss(xi) = −wi[yi log(ŷi) + (1− yi) log(1− ŷi)] (5)

wi = yi + (−1)yi ∑B
i=1 yi

B
(6)

5. Experiments and Results

In this section, we present a series of experiments conducted in three phases for
performance evaluation from different perspectives. The first and the second phases were
to inspect the performance of traditional feature engineering methods. In the first phase,
we investigated the effect of data balance and then assessed the performance of ensemble
learning methods. In the second phase, we examined the effect of feature selection in data
modeling. Finally, we evaluated the proposed deep learning approach that has the special
characteristics of automated feature selection and learning.

5.1. Results of Data Balance by Resampling Techniques

In this phase, we first adopted the method presented in [16] to obtain the baseline
performance. As some data used in the baseline work were no longer available at the time
of experiments, we cannot directly take their results for comparison. We thus replicated
their experiments by using the currently available 6842 posts with 737 ADRs. To ensure
the identical experimental conditions for an objective evaluation, we used the text prepro-
cessing and feature extraction programs provided by the original work. The same data
preprocessing procedure and the same SVM classifier were adopted. In our implementation,
we used the grid search technique to derive the optimal parameters to tackle the class
imbalance problem and to maximize the performance of the original method (i.e., SVM).
To examine the performance, we also adopted logistic regression (LR) to test this dataset;
in fact, many other relevant studies have considered it effective for binary classification.
Table 2 shows the re-run results that are similar to the original work. It means that the
dataset we downloaded has a data distribution quite similar to the original one. In the
following experiments the results obtained here are used to be the baselines for comparison.
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Table 2. The baseline results by SVM and logistic regression.

Methods Accuracy Precision Recall F-Score AUC

SVM 0.90 0.54 0.51 0.52 0.73

LR 0.90 0.51 0.56 0.53 0.75

To evaluate the effect of data resampling (i.e., under-sampling and over-sampling),
we conducted two sets of experiments. The results of using under-sampling technique
with different popular classifiers are presented in Table 3. As shown, we first tested logistic
regression without any balance technique. Compared to the results in Table 2, the LR model
without any balance method shows higher accuracy but lower recall and f-score. It means
that the model preferred to predict data to be non-ADR biasedly as described previously.
Next, we evaluated the random under-sampling method that randomly took the same
amount of data from two classes. It was a down-sampling process, which resulted in the
situation that there was not sufficient amount of data to support the model to recognize
the relations between observations and targets. Therefore, the random under-sampling
method produced a model with a better recall but losing accuracy, precision, and f-score. It
means that the model tended to predict non-ADR data to be ADRs. The results of other
classifiers with the resampling technique are also listed in the table. Overall, as can be
observed that the methods based on the neighborhood cleaning rule [38] or the edited
nearest neighbor [39,40] can obtain better performance. This is because they employed
different kinds of strategies to remove neighborhood redundant or overlapping data.

Table 3. Results of different methods with an under-sampling technique.

Methods Accuracy Precision Recall F-Score AUC

Without balance 0.90 0.58 0.41 0.48 0.69

Random under-sampling 0.74 0.28 0.78 0.41 0.76

TomekLinks [40] 0.90 0.59 0.41 0.48 0.69

NearMiss [41] 0.37 0.15 0.95 0.26 0.62

CondensedNearestNeighbour [42] 0.85 0.39 0.58 0.47 0.73

OneSidedSelection [43] 0.90 0.59 0.41 0.48 0.69

NeighbourhoodCleaningRule [38] 0.90 0.56 0.51 0.53 0.72

EditedNearestNeighbours [39] 0.89 0.55 0.54 0.54 0.74

RepeatedEditedNearestNeighbours [40] 0.88 0.48 0.56 0.52 0.74

AllKNN [40] 0.89 0.51 0.55 0.53 0.74

InstanceHardnessThreshold [44] 0.85 0.40 0.63 0.49 0.75

Another set of experiments have also been conducted to evaluate the effect of over-
sampling technique for comparison, and the results are presented in Table 4. As can be
observed, compared to LR without data balance, even the random over-sampling technique
is helpful for the classifier to improve the f-score. Next, we tested the SMOTE-base up-
sampling algorithms that used certain kind of strategy to synthesize the data of minority
class [36,45–47]. As shown in the table, these methods have consistent and similar results.
Although these methods were able to improve the f-score, they did not outperform the
random over-sampling technique. Finally, a hybrid method was employed, in which the
over-sampling technique was followed by the under-sampling method [48,49]. They are
still considered up-sampling techniques. Synthetic up-sampling was first performed in the
minority class and then the down-sampling technique was used to clean the redundant
data. For this dataset, any kind of over-sampling technique was able to help classifiers to
resist the imbalanced class effect and all classifiers can obtain a better f-score.
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Table 4. Results of different methods with an over-sampling-based method.

Methods Accuracy Precision Recall F-Score AUC

Without balance 0.90 0.58 0.41 0.48 0.69

Random over-sampling 0.87 0.47 0.55 0.51 0.73

SMOTE [45] 0.88 0.47 0.54 0.50 0.73

Borderline-SMOTE type 1 [46] 0.88 0.48 0.55 0.51 0.73

Borderline-SMOTE type 2 [46] 0.87 0.46 0.60 0.52 0.76

Support Vectors SMOTE [36] 0.89 0.53 0.50 0.51 0.72

ADASYN [47] 0.89 0.53 0.49 0.51 0.72

SMOTE + Tomek [48] 0.88 0.47 0.55 0.51 0.73

SMOTE + ENN [49] 0.88 0.47 0.54 0.50 0.73

5.2. Evaluation of Ensemble Learning Methods

As indicated above, ensemble learning provides an alternative way to alleviate the
problem of imbalanced data classes. With the underlying principle of looking into data
from different perspectives, in general the ensemble learning methods have better abilities
to overcome the effect of imbalanced classes [4,7,20,22]. To evaluate the performance of
ensemble learning, in this set of experiments, we tested several popular methods reported
in the literatures with superior performance and compared the results. These methods
included decision tree (DT) with data balance and bagging technique [50], Random For-
rest (RF) with data balance [51], EasyEnsemble [52], and RUSBoost [53]. The results are
presented in Table 5.

Table 5. Results of the over-sampling-based approach.

Methods Accuracy Precision Recall F-Score AUC

Balanced Bagging
DT [50] 0.81 0.32 0.67 0.43 0.75

Balanced
RandomForest [51] 0.73 0.26 0.76 0.39 0.75

EasyEnsemble [52] 0.74 0.26 0.76 0.38 0.75

RUSBoost [53] 0.74 0.26 0.76 0.38 0.75

As shown, DT with data balance bagging technique has higher accuracy and f-score
but a lower recall than the other three methods; RF with data balance, EasyEnsemble, and
RUSBoost have similar performance in the metrics of recall, f-score, and AUC. Judging
from the more objective performance metric f-score, here the ensemble methods did not
outperform those presented in the above section (i.e., results in Tables 2–4).

5.3. Results of Classification with Feature Selection

In the second phase, we performed a set of feature profiling trials in which different
numbers of features were selected, to examine the details of the feature selection process
during data modeling. Based on the results shown in Table 2, here we chose the logical
regression method for further evaluation, and used the optimized parameters obtained
above, to solve the problem of imbalanced classes. In the selection of features, we measured
the chi-square, Pearson correlation, and ANOVA F-value to obtain the scores between each
pair of feature and class. Then, the scores were sorted and the features with the k highest
scores were selected accordingly.

Figure 2 illustrates the results for selecting different numbers of features (indicated in
the x-axis). As demonstrated, when a small number of features were selected, the predictive
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performance cannot reach to a reasonably good level, because no sufficient information
was extracted to support the classifier to correctly identify the labels between ADRs and
non-ADRs. Following the increase of the selected features, the performance was gradually
improved. When the number of selected features reached 1000, the best performance
could be obtained. After this, there was no obvious improvement when the number of
features selected was increased to a certain extent. The performance notably declined
when more and more features were selected and approximated to the situation without
feature selection. It means that not all features can provide positive information to the
classifier. Some features may give noise signals or even negative information. Such features
may obstruct with each other and thus damage the predictive performance. The feature
selection techniques can remove such useless features and help the classifier focus on the
important ones.

Healthcare 2021, 9, x  13 of 18 
 

 

 
Figure 2. Results of the classifier with feature selection scheme. 

Table 6 lists the performance of the LR classifier coupled with both feature selection 
(FS) and data balance (DB) techniques (the second row). Compared to the classifier with 
only class balance technique (the first row), the feature selection scheme can better en-
hance the efficiency and effectiveness of the classifier. One more set of experimental trials 
has been conducted to further verify the importance of the features determined by the 
feature selection scheme. Here, the best 1000 features chosen by the feature selection 
scheme were removed (i.e., not allowed to be selected), and only the remaining features 
were used for data modeling. The third row of Table 6 shows that the performance sig-
nificantly declined, and the importance of those features selected is duly confirmed. 

Table 6. Results of removing 1000 most important features. 

Method Accuracy Precision Recall F-score AUC 
LR with DB 0.90 0.51 0.56 0.53 0.75 

LR with DB and FS 0.90 0.51 0.62 0.56 0.78 
1000 best features removed 0.84 0.29 0.30 0.29 0.60 

To examine which categories of features were relatively important and thus selected, 
we summarized the numbers (Selected and Original columns in the table) and ratios 
(Category and Overall columns) of selected features belonging to different categories in 
Table 7. It shows that features of “text”, “synset”, and “cluster” categories were favored, 
and the numbers (and ratios) of “structural” and “goodbad” features were obviously 
smaller than others. In addition, it can be noted that the category of ADRlexicon has a 
highest selected rate (i.e., 100%). The reason could be that there were only two features in 
this category and they were related to the ADR words. In contrast, the most frequently 
selected category was synset (with 471 features selected). The reason could be that this 
category included a large number of meaningful text features (i.e., 2000 features) filtered 
by the text processing techniques and it thus has a higher probability to be selected. 

  

Figure 2. Results of the classifier with feature selection scheme.

Table 6 lists the performance of the LR classifier coupled with both feature selection
(FS) and data balance (DB) techniques (the second row). Compared to the classifier with
only class balance technique (the first row), the feature selection scheme can better enhance
the efficiency and effectiveness of the classifier. One more set of experimental trials has
been conducted to further verify the importance of the features determined by the feature
selection scheme. Here, the best 1000 features chosen by the feature selection scheme were
removed (i.e., not allowed to be selected), and only the remaining features were used for
data modeling. The third row of Table 6 shows that the performance significantly declined,
and the importance of those features selected is duly confirmed.

Table 6. Results of removing 1000 most important features.

Method Accuracy Precision Recall F-Score AUC

LR with DB 0.90 0.51 0.56 0.53 0.75

LR with DB and FS 0.90 0.51 0.62 0.56 0.78

1000 best features removed 0.84 0.29 0.30 0.29 0.60

To examine which categories of features were relatively important and thus selected,
we summarized the numbers (Selected and Original columns in the table) and ratios
(Category and Overall columns) of selected features belonging to different categories in
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Table 7. It shows that features of “text”, “synset”, and “cluster” categories were favored, and
the numbers (and ratios) of “structural” and “goodbad” features were obviously smaller
than others. In addition, it can be noted that the category of ADRlexicon has a highest
selected rate (i.e., 100%). The reason could be that there were only two features in this
category and they were related to the ADR words. In contrast, the most frequently selected
category was synset (with 471 features selected). The reason could be that this category
included a large number of meaningful text features (i.e., 2000 features) filtered by the text
processing techniques and it thus has a higher probability to be selected.

Table 7. Results of the different types of features selected.

Feature Name Selected Original Category (%) Overall (%)

text 332 5000 6.6 4.90

synset vector 471 2000 23.5 6.90

sentiments 3 5 60.0 0.04

cluster vector 123 981 12.5 1.80

structural features 2 3 66.7 0.03

adrlexicon 2 2 100.0 0.03

topics 1 1 100.0 0.01

topic vector 65 500 13.0 0.95

goodbad 1 4 25.0 0.01

5.4. Evaluation of Deep Learning Methods

To verify the effectiveness of feature learning, we conducted a series of experiments to
compare different deep learning methods. We evaluated the results of BERT pre-trained
model with different objective functions, including the self-adaptive function we designed
in this work. Though some other studies have employed deep learning-based approaches
to develop models for ADR prediction, they were not directly compared with ours for they
mostly provided extra domain information to the models. Alternatively, to perform an
objective evaluation, we thus chose the most relevant work ([54]) that used the same dataset
for deep model development. We downloaded the programs to replicate the experiments
so as to ensure that the experiments performed with the same test environments and
conditions. The results were evaluated by the cross-validation method. In the experiments,
we used the built-in Stratified K-Folds cross-validator of the scikit-learn package with K = 5,
because this technique can ensure the same ratio of class distribution of the training and
test sets as the original dataset.

Table 8 lists the experimental results (based on ten independent trials), showing the
accuracy, precision, recall, f-score, and AUC. The first three sets of results were obtained
from the trials with different deep models described in [54], including CNN (convolutional
neural network), CRNN (convolutional recurrent neural network), and RCNN (recurrent
convolutional neural network). Meanwhile, this table presents the results produced by
various BERT-based methods (i.e., the same architecture with different objective functions).
The objective functions include the binary cross-entropy (BCE), the mean square error
(MSE), and our proposed approach batch-wise adaptive weighting (BAW). These results
show that using the BERT pre-trained architecture can obtain improvement in major metrics
(2~6% in accuracy, 1~10% in f-score, and 11~18% in AUC), if compared to other models
based on deep learning techniques (i.e., CNN, CRNN, and RCNN). Among others, the
proposed BAW method has relatively better performance. To sum up, BAW result has a
higher f-score means that the better balance tradeoff between recall and precession can be
obtained; and a higher AUC shows that the prediction abilities of the model are consistent
at different levels of thresholds.
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Table 8. Results by deep learning methods.

Methods Accuracy Precision Recall F-Score AUC

CNN [54] 0.88 0.47 0.50 0.48 0.71

CRNN [54] 0.85 0.38 0.53 0.44 0.71

RCNN [54] 0.89 0.50 0.44 0.46 0.69

BERT with BCE 0.90 0.56 0.50 0.53 0.85

BERT with MSE 0.91 0.62 0.45 0.52 0.86

BERT with fixed weights-1 0.90 0.58 0.49 0.51 0.82

BERT with fixed weights-2 0.91 0.53 0.55 0.53 0.83

BERT with BAW 0.90 0.56 0.53 0.55 0.87

To contrast the above method of adaptive weights, we further evaluated the binary
cross-entropy function with a loss of fixed weights for the classes of non-ADR and ADR.
Two strategies were used: weights of 0.1 and 0.9 (BERT with fixed weights-1 in Table 8) and
weights of 0.2 and 0.8 (BERT with fixed weights-2) for non-ADR and ADR, respectively.
The results show the latter strategy is better than the former, and our batch-wise adaptive
weighting method can outperform. It indicates that the penalty weight is a critical factor
in model training. If the weights are not chosen carefully, not fully following the class
distribution or wrongly assigned, they can damage the prediction ability of the model.
In the proposed approach, the weights can self-adapt to the training data. Consequently,
developers do not need to determine the weights manually. A strategy with carefully
pre-fixed weights can consider the class distribution with an overall view, but it can also
cause the over-penalty or under-penalty of the loss computation at different batch scales.
To tackle this disadvantage, our proposed strategy has encountered the data dynamics
in the training procedure; it can adapt to a dynamic training environment to reduce this
uncertainty and achieve the best results.

5.5. Discussion

In the above sections, we implemented different types of traditional methods and
applied them to address the issues related to ADRs classification from a variety of perspec-
tives, including data distribution, feature selection, and feature learning. The resampling
techniques showed that the under-sampling methods based on the family of neighborhood
cleaning rule algorithm can enhance the model performance up to 5~6% in the metrics of
f-score and AUC; in contrast, the over-sampling techniques were relatively less effective
that can improve the results up to 3–4% in both f-score and AUC. Though many studies
showed that the ensemble learning method could be applicable to the skewed dataset
to reduce the imbalance effect, however, for the dataset used in this work, the ensemble
algorithms did not achieve the same performance level as the resampling techniques did.
It is because of the curse of dimensionality caused by the high feature dimension. Under
such circumstances, reducing the number of features by a careful feature selection should
provide a solution to improve the classification performance, and the experimental results
supported this method. Though the results can be improved, the feature selection scheme
has the disadvantage of heavy computation required to score features and determine the
suitable number of features. As explained, the abovementioned approaches have to handle
a lot of processes in data preprocessing and feature engineering and these processes are
often arranged in a pipe line procedure. Working in this way, the decisions made at any
stage greatly influence the final performance. Therefore, the model developers have to
carefully organize the relevant details at each stage. In practice, it is not easy to find which
stage is causing the unexpected results and the developers thus have to laboriously perform
and differentiate the experiments for improvement.
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To save the human users’ effort, we have adopted and evaluated deep learning
methods to identify ADRs in tweets. With special characteristics, they can perform self-
justification in data encoding and automated feature engineering. There is no need for the
developers to consider the modeling details on the training and developing stages. In this
study, the BERT-design for language encoding is used to tackle the diversity problem of
ADRs-related terms, and the pre-trained model is then applied to deal with the imbalanced
dataset. Moreover, a batch-wise adaptive weighting objective function is also designed
to dynamically balance the skewed classes distribution during the model training. As
indicated above, such an adaptive function can capture the inherent trade-offs between
classification accuracy and robustness to noise. As a result, our objective function used in
training can provide useful guidance in the search of appropriate network parameters; it has
important impact in performance. The evaluation results have confirmed its effectiveness:
comparing to other deep learning methods, our approach is able to obtain the best overall
performance; in other words, our method not only has good performance on the imbalance
dataset but also the confidence on the correct predictions. Such advantages are mainly
brought about by the automatically discovered regularizations, so the model could have
robust results for unseen data.

6. Conclusions

In this work, we emphasized the importance of post-market surveillance and took
the social posts as the patients’ opinions to construct predictive models for ADR detection.
To tackle the critical issues related to ADR predictions, we performed data analytics to
identify ADRs from the viewpoints of data balance, feature selection, and feature learning.
The methods for data balance and feature selection were integrated to ensemble learning
for classification to consider both data and modeling together. We then designed more
sets of experiments to investigate the performance of different data processing techniques
and data modeling methods. From these experiments, we got the chance to observe the
methods of effective classifiers.

After the above analytical review of different methods, we further evaluated the
deep learning-based methods able to perform feature learning to improve the efficiency in
building classification models. Most importantly, we proposed a new objective function
based on the method of batch-wise self-adaptive weighting. With the adaptive loss function,
the model becomes flexible able to estimate its error to capture the characteristics of the data
and the learning environment. In this way, the data imbalance effect can be alleviated and
the model obtained is more immune to the problem of overfitting. To verify the proposed
approach, we conducted a set of experiments to compare it with other deep learning-based
methods. The results show the effectiveness and efficiency of our approach in ADRs
detection. Overall, both traditional and deep learning methods are effective in prediction.
The traditional machine learning with a carefully performed feature engineering procedure
could obtain similar performance in f-score to our deep learning method. Nevertheless,
our method with feature learning can save much manual efforts in orchestrating the large
number of experiments. To model developers, it is preferred to provide a more efficient
solution in ADR prediction.

The proposed method shows prospects for further research. First, the restrictions of
the datasets can be overcome. We are now collecting more posts from relevant social forums
to enrich the dataset to further evaluate the presented data analytics system. Second, we
are investigating other advanced techniques to improve the model performance, such as
performing data clustering and developing new learning functions that can more aptly
characterize the ADR data to guide the training process. Finally, we plan to train a cross-
linguist model that is able to analyze social messages written in different languages.
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