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Abstract: A clinical decision support system (CDSS) informs or generates medical recommendations
for healthcare practitioners. An alert is the most common way for a CDSS to interact with practitioners.
Research about alerts in CDSS has proliferated over the past ten years. The research trend is ongoing
with new emerging terms and focus. Bibliometric analysis is ideal for researchers to understand the
research trend and future directions. Influential articles, institutes, countries, authors, and commonly
used keywords were analyzed to grasp a comprehensive view on our topic, alerts in CDSS. Articles
published between 2011 and 2021 were extracted from the Web of Science database. There were
728 articles included for bibliometric analysis, among which 24 papers were selected for content
analysis. Our analysis shows that the research direction has shifted from patient safety to system
utility, implying the importance of alert usability to be clinically impactful. Finally, we conclude with
future research directions such as the optimization of alert mechanisms and comprehensiveness to
enhance alert appropriateness and to reduce alert fatigue.

Keywords: decision support systems; clinical; medical order entry systems; alert fatigue; health
personnel; bibliometrics; review literature as topic

1. Introduction

Making mistakes is human; even the experts are not exempt [1]. In order to prevent
mistakes, alerts, defined as notifications or warnings that highlight the risk of danger, have
been widely utilized in many fields [2–4]. This includes healthcare, where clinical decision
support systems (CDSS) commonly use alerts to notify clinicians of actual or potential
errors [5,6]. Previous studies have confirmed that alerts are an efficient way to prevent
medication errors and streamline clinical workflow [7–9].

A CDSS is a computer program based on evidence-based clinical guidelines with or
without artificial intelligence (AI), designed to support healthcare providers in identifying
problems, resolving them, and reducing errors [10–13]. Mathematical models of AI are
the main component of a CDSS and have been extensively studied [14–16]. Furthermore,
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the AI-based CDSS, used to help against the COVID-19 pandemic, has been widely used
in many previous studies [17–19]. An example of a CDSS is the computerized physician
order entry system (CPOE), which provides physicians with functions such as medication
prescription, and laboratory and radiology orders [20–24]. There are different ways for
alerts to appear in a CPOE, e.g., pop-up windows, interruptive vs. non-interruptive, active
vs. passive alerts [25]. Moreover, alerts are not necessarily clinically relevant; administrative
alerts too may frequently feature [26]

Bibliometric analysis is one method of synthesizing a literature review through citation
statistics, which could help depict trending concepts in the field of interest and has been
used in CDSS applications [27]. For example, Olufisayo Olusegun (2021) systematically
reviewed the publications related to the appropriateness of CDSS alerts from 1997 to
2018 [28]. Cemal Aktürk (2021) used the bibliometric method to explore the concept of
CDSS conducted between 2016 and 2021 [29]. However, the study of bibliometric analysis
to uncover CDSS-alert-related articles is lacking. Therefore, different perspectives provided
to this field are needed.

In this study, we aimed to use bibliometric and content analysis methods to explore the
trend in using CDSS alerts in the last ten years. Especially, we included the implementation,
evaluation, and optimization of CDSS. Along with the knowledge structure derived from
bibliometric analysis, we conclude with a broad assessment of current CDSS research as
well as suggestions for future research directions.

2. Materials and Methods

Literature review methods include systematic literature review, meta-analysis, bib-
liometric analysis, and content analysis [30]. We first extracted the bibliographic data
published between 2011 and 2021 in the Web of Science (WoS) database. Subsequently,
bibliometric and content analysis (both quantitative and qualitative types) were combined
to explore our research question.

2.1. Bibliometric Analysis

Bibliometric analysis is a quantitative method using the bibliographic information of
publications to analyze their impacts and relationships [27,31,32]. The well-known biblio-
metric data include authorships, citations, references, and keywords. The following four
approaches using different bibliometric data (e.g., keywords, citations, and authorships)
were used in this study to capture the conceptual, intellectual, and social networks [27].

2.1.1. Performance Analysis Using Citation Numbers

To determine the contribution of an article, we used the citation number as how many
times an article is cited by others to represent its influence on science [27]. There are other
ways to express the impact of a scientific article; however, a citation number is an objective
and repeatable index that reflects an article’s relationship and the degree of relevance with
others [31]. It is hypothesized that researchers refer to an article when it is regarded as
relevant and of good quality. Specifically, total global citations (TGC) denotes the number
of citations in the entire WoS database, whereas total local citations (TLC) denotes the
number of citations among the included articles based on our search criteria.

2.1.2. Citation Analysis

Citation analysis is the most commonly used approach in bibliometrics as it depicts
the intellectual structure of the research field [32]. One method in citation analysis is
bibliometric coupling. This method relates articles by comparing the citations of two
papers and determining the similarity. Precisely, bibliographic coupling requires at least
two publications to cite the same article in their references [33,34].
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2.1.3. Trending Research Concepts Using Keywords

Core keywords represent the conceptual structure of the specific field [35]. We used
“KeyWords Plus” (provided by the WoS databases) to reveal the emerging keywords of our
research question [36].

2.1.4. Country Collaboration Map

A social structure of a scientific research field can be well represented by delineat-
ing the networks between countries [27]. Country collaboration is established when two
countries appear in the same article as the origins of the affiliations of authors. A country
collaboration map was therefore generated to visualize the geographical relationships of
our research question.

2.2. Content Analysis

Content analysis is a kind of qualitative study that is defined as “a research method
for the subjective interpretation of the content of text data through the systematic classi-
fication process of coding and identifying themes and patterns” [37]. A valid process of
theme coding is often required to evaluate the content of included articles [38]. With the
completion of coding, researchers summarize and interpret the coding concepts.

2.3. Data Extraction Process

On the basis of the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) guidelines, there were two stages in the data extraction process [39].
First, the bibliographic data were collected from Clarivate Analytics’ Web of Science (WoS),
which encompasses 12,000 ISI-indexed journals [40]. The keyword search was conducted
in August 2021. We considered a combination of keywords from (1) (“alert*” OR “alarm*”
OR “warning*” OR “reminder*” OR “notification”) and (2) (“CPOE” OR “CDS” OR “com-
puterized physician order entry” OR “computerized provider order entry” OR “clinical
decision support”). Proceedings papers and early access papers were included in our study.
Papers published before 2011 were excluded. Additionally, we excluded studies published
as reviews, editorials, letters, books, corrections, and items. Non-English articles were
also excluded.

In the second stage, a detailed examination of the articles was applied through reading
titles and abstracts. We removed articles with the terms “cds” and “cpoe” related to other
meanings; for example, cds was found to be related to Calgary Depression Scale, a clinical
scale for patient-reported outcomes. Studies that investigated the alarms of medical devices,
such as electroencephalography (EEG), electrocardiography (ECG), infusion pumps, and
ventilators, were also excluded. Furthermore, publications that focused on the innovation
and design of algorithms that alter the functions of CDSS were not considered as the scope
of this study is to evaluate the application of CDSS alerts.

Lastly, we selected a list of crucial articles based on TGC and TLC for content analysis.
We included articles with more than or equal to 40 TGC and 10 TLC. The coding process
was conducted through the thorough reading of these articles, and thus a concept matrix
was developed with a list of primary information, such as study design, alert types, and
alert topics [41]. Our coding categories followed the suggestions from Gaur and Kumar
(2018) [38].

We used the R package Bibliometrix and Matplotlib package v3.3.4 using Python 3.8.8
for bibliographic analysis and visualization [42,43].

3. Results
3.1. Initial Paper Selection Result

The WoS database returned 1385 records based on the keywords search (Figure 1).
In the first stage, we removed papers published before 2011 (N = 227), review articles
(N = 132), editorial materials (N = 23), meeting abstracts (N = 23), letters (N = 6), books
(N = 4), corrections (N = 2), and news items (N = 1); we additionally removed one paper for



Healthcare 2022, 10, 601 4 of 13

being non-English. Subsequently, in the second stage, we screened the titles and abstracts
of the remaining 966 articles and excluded 238 papers due to unsuitable content. Finally,
a cohort of 728 papers was included for bibliometric analysis. The distribution of yearly
publications is presented in Figure S1.
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Figure 1. Paper selection process.

3.2. Most Relevant Journals, Authors, Institutions, and Articles

Performance analysis using citation numbers produced lists of the most relevant jour-
nals, articles, institutions, and authors. A total of 728 articles were published by 211 journals.
Most of the top-ranked journals belonged to the categories of medical informatics, clinical
informatics, and bioinformatics (Table 1). Journal of the American Medical Informatics
Association (N = 93, 22.7%), Applied Clinical Informatics (N = 74, 18.1%), and International
Journal of Medical Informatics (N = 47, 11.5%) were the top three productive journals,
all of which are categorized into the field of medical informatics by the Science Citation
Index Expanded (SCIE). PLoS One, a multidisciplinary journal, was also listed in the top
10. Notably, journals categorized in fields other than medical informatics by the SCIE,
such as American Journal of Health-System Pharmacy (SCIE category: Pharmacology and
Pharmacy) and the Journal of General Internal Medicine (SCIE category: Health Care
Sciences & Services), were also listed, implying the emerging importance of informatics
application in subfields of medicine.

Bates D.W., Wright A., Seger D.L., and Slight S.P. were the authors with the greatest
productivity with high impact over the past ten years (Figure 2). These four researchers
focus on the fields of CDSS and patient/medication safety. Notably, all four authors were
affiliated with Brigham and Women’s Hospital in the included studies. In terms of the
overall author’s impact in the previous ten years, Bates D.W. was the most influential
researcher (TGC = 1031), followed by Wright A. (TGC = 583), Seger D.L. (TGC = 542), and
Slight S.P. (TGC = 462).

The top three most influential institutions were the University of Washington (N = 86),
Brigham and Women’s Hospital (N = 79), and Harvard Medical School (N = 70) (Table 2).
Taipei Medical University (N = 47) was the only institution not located in the United States
and ranked eighth in the list.
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Table 1. Most influential journals (sorted by the number of publications).

# Journals
Item

TGC TGC per Item IF (2020)
N %

1 Journal of the American Medical
Informatics Association 93 22.7 2798 30.1 4.50

2 Applied Clinical Informatics 74 18.1 232 3.1 2.34

3 International Journal of
Medical Informatics 47 11.5 558 11.9 4.05

4 BMC Medical Informatics and
Decision Making 34 8.3 258 7.6 2.80

5 American Journal of
Health-system Pharmacy 16 3.9 289 18.1 2.64

6 JMIR Medical Informatics 16 3.9 18 1.1 2.96
7 PLoS ONE 15 3.7 157 10.5 3.24

8 International Journal of
Clinical Pharmacy 14 3.4 57 4.1 2.05

9 Journal of Clinical Pharmacy and
Therapeutics 11 2.7 89 8.1 2.51

10 Drug Safety 9 2.2 201 22.3 5.61
11 BMJ Quality & Safety 9 2.2 88 9.8 7.04
12 Artificial Intelligence in Medicine 9 2.2 63 7.0 5.33

13 CIN-COMPUTERS
INFORMATICS NURSING 9 2.2 32 3.6 1.99

14 Journal of General Internal Medicine 8 2.0 311 38.9 5.13
15 Journal of Biomedical Informatics 8 2.0 265 33.1 6.32

16 Pharmacoepidemiology and
Drug Safety 8 2.0 135 16.9 2.89

17 Journal of Medical Systems 8 2.0 40 5.0 4.46
18 Medical Care 7 1.7 141 20.1 2.98
19 American Journal of Medical Quality 7 1.7 36 5.1 1.85
20 American Journal of Clinical Pathology 7 1.7 34 4.9 2.49

Abbreviations: N = Number of publications, TGC = Total global citations, IF = Impact factor.
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Regarding the impact of individual studies, the top 20 most relevant articles had TLCs
greater than 15 and TGCs greater than 31 (Table S1). The most impactful paper in our
research is Nanji et al. (2014) [44]. Eight out of the top 20 most relevant articles studied the
effect of medication-related alerts in CPOE, particularly drug–drug interaction reminders.
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Table 2. Most influential institutions (sorted by the number of publications).

# Institutions N Location

1 University of Washington 86 Seattle, WA, USA
2 Brigham and Women’s Hospital 79 Boston, MA, USA
3 Harvard Medical School 70 Boston, MA, USA
4 University of Pittsburgh 68 Pittsburgh, PA, USA
5 Harvard University 66 Boston, MA, USA
6 Vanderbilt University 65 Nashville, TN, USA
7 Stanford University 49 Stanford, CA, USA
8 Taipei Medical University 47 Taipei, TW
9 Mayo Clinic 43 Scottsdale, AZ, USA
10 University of Pennsylvania 43 Philadelphia, PA, USA
11 Columbia University 36 New York, NY, USA
12 Partners HealthCare International 33 Boston, MA, USA
13 Indiana University School of Medicine 32 Indianapolis, IN, USA
14 Cincinnati Children’s Hospital Medical Center 31 Cincinnati, OH, USA
15 University of Michigan 31 Ann Arbor, MI, USA
16 Case Western Reserve University 28 Cleveland, OH, USA
17 University of California, Los Angeles 28 Los Angeles, CA, USA
18 Icahn School of Medicine at Mount Sinai 27 New York, NY, USA
19 Indiana University School of Medicine 26 Indianapolis, IN, USA
20 Oregon Health & Science University 26 Portland, OR, USA

Abbreviations: N = Number of publications.

3.3. Bibliographic Coupling

Bibliographic coupling portrays the scientific network between publications. The
nodes and edges represent the coupled articles and the associations, respectively (Figure S2).
Most articles could be classified into either Class A or Class B, where Class A was related to
the implementation of medication-related alerts, and Class B focused on alert optimization
to deliver the best practice.

3.4. Trending Research Concepts Using Keywords

In an attempt to grasp the gradual change of research concepts, first, the medium
number of occurrences of each keyword (KeyWords Plus) was calculated. These numbers
were then compared, and the top 4 frequent words of each year were represented in dots
(Figure 3). Overall, the most frequent terms were “clinical decision-support” (N = 152),
“systems” (N = 147), “care” (N = 136), and “impact” (N = 130), followed by “physician
order entry” (N = 122), “alerts” (N = 98), “errors” (N = 53), and “adverse drug events”
(N = 51). The emerging terms over the last three years included “usability” (N = 11) and
“overrides” (N = 19). This finding corresponds to our research question in which the trend
of CDSS alert research has transferred from system design and the reduction of medical
errors with the aid of CDSS to the usability and override issues.

3.5. Country Collaboration Map

Figure 4 shows the country relationship of the included publications. The United
States was the most active country in CDSS alert research and demonstrated the strongest
association with the United Kingdom (N = 19), followed by South Korea (N = 15) and
Canada (N = 12). In addition, unlike countries from other continents, Asian countries
tended to work with countries from other continents rather than collaborate with each other.

3.6. Content Analysis

The twenty-four most impactful studies (TGC ≥ 40 and TLC ≥ 10) were extracted
from the study cohort of 728 articles (Table S2) to conduct the content analysis. The majority
of these studies were observational (83.3%) or used qualitative methods (87.5%) such as
focus groups and interviews. Only four studies were interventional, namely, involving the
modification of CPOE alert systems. Most studies were conducted in hospitals (70.8%),
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and only one study was done in community settings. The study populations were most
commonly composed of physicians, followed by nurses and other personnel. Regarding the
issues of interest in CDSS research, most studies concentrated on medication problems, such
as adverse drug events (ADE) or drug–drug interactions (DDI), using alerts of interruptive
or hard-stop design. This result specifically answers our research question about the
research mainstreams of CDSS alerts. Finally, based on our results, we summarized the
research gaps of current studies in the CDSS alert system and provided corresponding
suggestions, as in Table 3.

Healthcare 2022, 10, x. 7 of 13 
 

 

 
Figure 3. Core keywords analysis for trending topics. 

3.5. Country Collaboration Map 
Figure 4 shows the country relationship of the included publications. The United 

States was the most active country in CDSS alert research and demonstrated the strongest 
association with the United Kingdom (N = 19), followed by South Korea (N = 15) and 
Canada (N = 12). In addition, unlike countries from other continents, Asian countries 
tended to work with countries from other continents rather than collaborate with each 
other. 

 
Figure 4. The country collaboration map for CDSS alert studies. 
3.6. Content Analysis 

The twenty-four most impactful studies (TGC ≥ 40 and TLC ≥ 10) were extracted from 
the study cohort of 728 articles (Table S2) to conduct the content analysis. The majority of 
these studies were observational (83.3%) or used qualitative methods (87.5%) such as fo-
cus groups and interviews. Only four studies were interventional, namely, involving the 
modification of CPOE alert systems. Most studies were conducted in hospitals (70.8%), 
and only one study was done in community settings. The study populations were most 
commonly composed of physicians, followed by nurses and other personnel. Regarding 

Figure 3. Core keywords analysis for trending topics.

Healthcare 2022, 10, x. 7 of 13 
 

 

 
Figure 3. Core keywords analysis for trending topics. 

3.5. Country Collaboration Map 
Figure 4 shows the country relationship of the included publications. The United 

States was the most active country in CDSS alert research and demonstrated the strongest 
association with the United Kingdom (N = 19), followed by South Korea (N = 15) and 
Canada (N = 12). In addition, unlike countries from other continents, Asian countries 
tended to work with countries from other continents rather than collaborate with each 
other. 

 
Figure 4. The country collaboration map for CDSS alert studies. 
3.6. Content Analysis 

The twenty-four most impactful studies (TGC ≥ 40 and TLC ≥ 10) were extracted from 
the study cohort of 728 articles (Table S2) to conduct the content analysis. The majority of 
these studies were observational (83.3%) or used qualitative methods (87.5%) such as fo-
cus groups and interviews. Only four studies were interventional, namely, involving the 
modification of CPOE alert systems. Most studies were conducted in hospitals (70.8%), 
and only one study was done in community settings. The study populations were most 
commonly composed of physicians, followed by nurses and other personnel. Regarding 

Figure 4. The country collaboration map for CDSS alert studies.



Healthcare 2022, 10, 601 8 of 13

Table 3. The summary of current research gaps and suggestions.

# Current Research Gap Suggestion

1 Usually used only a single metric to evaluate
the alert system’s efficiency.

Adopting multiple metrics to
comprehensively collect perspectives.

2 Most of the studies focused on specific types
of CDSS alerts.

Consider including all types of CDSS alerts
to grasp a holistic view of alert usage.

3 The majority of alerting system designs are
rule-based/silo.

An AI-based precision alert system should be
considered to implement in the next

generation of CDSS.

4. Discussion

In this study, we used bibliometric and content analysis methods to explore the
concepts of alerts in CDSS. Given the fast-growing body of research regarding alerts in
CPOE and CDSS, a bibliometric analysis served as a timely summary of this technology’s
recent historical trends and current focuses [29]. Indeed, the importance of a CDSS has
led to a growing trend of research in the field of biomedical informatics [45]. In addition,
it has recently shown its robust ability to assist people during the coronavirus pandemic
period [46–49].

Keyword analysis helped to provide an insight into the evolution of hot topics over
the past ten years in the field of CDSS alerts. In the earlier years, most of this research
focused on the design and development of the CDSS (and its alerts), patient safety, and the
reduction of adverse drug events [50,51]; recently, the focus has changed to the evaluation
of the CDSS alert efficiency and usability [52]. Since the number of alerts used in CDSS
has increased, studies regarding alert performance have become more popular. Common
metrics to estimate the alert performance and describe the alert fatigue phenomenon
include alert override rate and alert dwell time [53,54]. How to reduce the total number
of alerts, increase the alert acceptance, and trigger the alert precisely have become hot
research topics in this theme.

Content analysis was used to obtain a comprehensive understanding of influential pub-
lications in our study cohort, of which 24 items met the criteria (TGC ≥ 40 and TLC ≥ 10).
Most healthcare providers used the hard-stop or interruptive alerts as displayed in the
process [55,56]. Compared to the soft-stop or passive alerts, they have been proven to be
a sufficient way to prevent medical errors [25]. However, the majority of alerting system
designs are rule-based/silo nowadays, which means the alerts cannot be triggered depend-
ing on the different situations [57]. Thus, alert implementation will not increase the clinical
decision value equivalently [58,59]. A context-aware solution based on machine learning
should be conducted in future studies [60,61].

We also labeled the study location, population, and alert topics for the content analysis.
The result shows that the receivers of CDSS alerts are not restricted to physicians but also
comprise other medical personnel from various clinical settings [50,62]. These professional
groups execute different clinical processes, influencing their importance judgment on the
same alerts. Therefore, it is essential to explore the perspective discrepancy among these
characteristics. Most of the studies focused on the clinical alerts (e.g., drug–drug interaction,
adverse drug events, and allergy), which reached varying degrees of success in improving
patient safety [63,64]. However, both administrative (low or no clinical relevance) and
clinical alerts exist in the CDSS. Only focusing on specific ones may limit the improvements
to the alert system [26]. We suggest that a comprehensive analysis for all types of CDSS
alerts should be considered when designing a similar study in the future.

Here, we used the bibliometric methods to demonstrate the research landscape, in-
cluding studies about implementation, evaluation, and optimization of CDSS alerts in
the past ten years. Therefore, based on the results, we have the following suggestions
while re-designing or conducting the study related to CDS alert systems. First, researchers
should adopt multiple metrics to comprehensively collect a breadth of perspectives when
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assessing the effectiveness of alerting systems. Second, CDS system designers may consider
implementing the AI-based precision alert system in the next generation of CDSS. Lastly,
all types of CDSS alerts should be included in the study to grasp a holistic view of alert
use in the settings. By following these guidelines, the clinical workflows may be improved,
increasing alert efficiency with conceivable benefits to patient safety [65].

Limitations

Our study has several limitations. First, we only adopted the WoS as the source of
bibliographic data. Not including publications in other databases such as Scopus and
PubMed may have limited our findings. Thus, a comprehensive analysis will be conducted
in our future study. Second, we only analyzed the studies in the last ten years, while the
theme has been developed for over 30 years. However, it is more convincing to depict
the trend topics based on the latest information. Lastly, we only included English-written
publications in our analysis.

5. Conclusions

Our study depicted a comprehensive overview of the field of CDSS alerts. We found
over 700 publications in the last ten years. The results demonstrated the trend of CDSS alert
research with several aspects, including the contribution of journals, authors, institutions,
and countries, keyword analysis, and content analysis. The findings of this study showed
that research mainly focused on improving the quality of the CDSS alert system and
increasing alert efficiency. We also provided some future directions for the research in this
topic, encouraging researchers to design or validate an alert system towards the goal of
decreasing alert fatigue and improving patient safety.
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//www.mdpi.com/article/10.3390/healthcare10040601/s1, Figure S1. Distribution of yearly publica-
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ences [44,50,51,55,56,58,62,66–85] are cited in the supplementary materials.
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