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Abstract: Drug inventory management is an important part of hospital management. The large
amounts of drug data in hospitals bring challenges to optimizing the setting values for the safety
stock and the maximum inventory of each drug. This study combined a two-stage clustering method
with an inventory policy (s, S) and established a simulation optimization model for the case hospital’s
outpatient pharmacy. This research used the simulation optimization software Arena OptQuest,
developed by Rockwell Automation Inc (Rockwell Automation, Coraopolis, PA, USA), in order
to determine the minimum and maximum values (s, S) of the best stock amounts for each drug
under the considerations of cost and related inventory constraints. The research results showed that
the minimum and maximum inventory settings for each drug in the simulation model were better
than those set by the case outpatient pharmacy system. The average inventory cost was reduced by
55%, while the average inventory volume was reduced by 68%. The proposed method can improve
management efficiency and inventory costs of hospital pharmacies without affecting patient services
and increasing the inventory turnover rate of the drugs.

Keywords: inventory simulation; simulation optimization; inventory policy; two-stage clustering
model; outpatient pharmacy

1. Introduction

Drug inventory management is an important part of hospital management [1–5]. Drug
costs account for 20–25% of hospital management costs. Gebicki et al. [6] mentioned that
drug costs account for a large part of hospital operating costs, second only to personnel
wages. According to data from 2009 [6], the total drug expenditures of all hospitals
in the United States was USD $27.7 billion, and the average expenditure per hospital
exceeded USD $4.80 million, including the hospital’s medical quality and operating costs.
Because Taiwan has a well-developed medical industry, well-established national health
insurance, and advanced medical technologies, this study used the hospitals in Taiwan as a
research target. According to previous years’ financial statements of medical consortiums,
the Department of Medical Affairs, Ministry of Health and Welfare found that in the
top 10 hospitals in Taiwan, the two most important medical costs in the past five years
(2015–2019) were personnel expenses (about 37–49%) and drug expenses (13–25%), while
the drug expenses accounted for about 20–25% of the total operating expenses. However,
drug expenses included drug costs, drug inventory costs, and drug scrap costs. If the
daily drug consumption can be effectively predicted, it is possible for a pharmacy drug
manager to set a better drug purchase volume, maintain a reasonable drug inventory, and
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meet patients’ daily medication needs. If pharmacy drug managers can more accurately
predict drug consumption, they can reduce drug purchases, drug inventory, and the
quantity of drug scrapped, which can allow the hospital to effectively reduce drug expenses
and increase hospital operating income. Therefore, hospitals have established relevant
drug inventory performance indicators for the turnover rates of various drugs and drug
inventory costs.

For drug management, a hospital’s pharmacy can be divided into a main pharmacy
and subpharmacies. Usually, a hospital has only one main pharmacy (general pharmacy)
with several subpharmacies, such as the emergency pharmacy, outpatient pharmacy, inpa-
tient pharmacy, and chemotherapy pharmacy. Each patient’s drug use is recorded in the
hospital information system (HIS) for each drug, including the patient’s medical record
number, date of visit, gender, doctor code, drug code, drug name, usage, drug days, stock,
medical department code, medical department name, medical department, whether usage
is for a chronic disease prescription, whether usage needs to be reviewed in advance, the
age of the patient, whether the drug is self-funded, and whether the drug is new. For exam-
ple, if a patient receives three drugs, there would be three records in the HIS. Regarding
daily drug inventory management, it is necessary to add the daily consumption statistics
of a given drug (which is the total consumption of said drug by all patients per day) and
determine the inventory level of the drug (that is, the maximum inventory and the safety
stock) based on historical data on the daily consumption of the drug.

Improving inventory control is a critical issue in both hospitals and the manufacturing
industry [7]. In order to improve management efficiency, many industries and scholars have
used classification methods to classify drugs (or commodities) to distinguish the importance
of the commodities and improve management intensity. Nigah et al. [8] mentioned that
drugs can be classified into A, B, or C using the ABC classification method, based on
the value or quantity of the drug, or into Vital, Essential, or Desirable using the VED
classification method. Both methods classify drugs into different categories and show
different degrees of importance among drugs, which then allows different management
policies to be applied for drug inventory management.

In addition to distinguishing drugs for easy management, setting drug inventory
quantities is a very important step. Good inventory settings can maintain stable inventory
operations and ensure drug supply [9]. Common inventory strategies include a fixed order
quantity system (s, S), a fixed cycle inventory system (T, S), the actual drug inventory order
point (s), and order quantity (S), all of which are mostly set according to the experience or
professional knowledge of the pharmacy administrator and the average patient demand. In
terms of drug demand forecasting, linear time series forecasting methods have traditionally
been used, including moving average (MA), exponential smoothing (ES), linear regression
(LR), the autoregressive model (AR), and the autoregressive integrated moving average
model (ARIMA). In addition, many studies have used heuristic algorithms or simulation
methods to optimize drug inventory [4,10,11].

Some previous related studies have proposed optimized inventory models for indi-
vidual drugs or specific types of drugs. Because the number of drugs analyzed in this
study was large and these drugs had various types, it was difficult to develop inventory
prediction models for each drug. It also takes more time to build models for a large number
of drugs. This study established a simulation model of the outpatient pharmacy drug
inventory system, which was aimed at the drug inventory operations of the case hospital’s
outpatient pharmacy, to determine the best set values for optimal drug inventory strategy (s,
S) that met the constraints. This study considered a large number of different types of drugs
for inventory settings; thus, drugs with similar consumption patterns were first clustered
as a group by using the K-means algorithm. For each drug cluster, this study identified the
minimum value (s) and maximum value (S) of the best stock amounts for each drug, with
the minimal total cost as the objective, by using the optimization simulation method. The
simulations were performed using a scenario analysis, which considered the conditions
of different scenarios to obtain the set values of the optimal maximum and minimum
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quantities of the stock of each drug in the corresponding scenario to help the pharmacy
with drug inventory management and decision making. The proposed model can analyze
a large number of different types of outpatient drugs and automatically determine the
optimal drug inventory settings, thereby reducing the need for manual settings based on
rules of thumb. According to this model, hospitals can also accurately control drug costs
and effectively manage drug inventories.

In practical pharmacy drug management, as there are many drug items, how to
formulate the maximum inventory and safety stock for each drug inventory strategy has
always been an important issue [12,13]. Usually, the pharmacy drug manager or the
subpharmacy team leader sets the maximum inventory quantity and safety stock quantity
based on the average daily consumption of drugs and the drug delivery lead time of the
pharmaceutical factory. For example, if the drug delivery lead time of a pharmaceutical
factory is 2 days, then the drug safety stock quantity can be set to 3 days, and the maximum
inventory quantity, to 4–6 days. The pharmacy drug manager or team leader finetunes
the drug order quantity according to the current inventory of each inventory review or
places a purchase order according to the predetermined drug order quantity. The pharmacy
drug manager or team leader monitors the drug inventory status of each pharmacy drug
according to the monthly pharmacy drug performance indicators, and if the performance
target value is not reached, a strategy is adopted to reduce the ordering quantity of the drugs
with more inventory. The adjustments in drug ordering are based on the rule of thumb of
the managing director of pharmacy drugs or the team leader of each subpharmacy, and
thus it is very difficult to effectively develop a hospital pharmacy drug management system.
Further, pharmacy drug management can be conducted only based on experience, which is
not conducive to the long-term development and management of the hospital organization.

In terms of the theoretical contributions, this study proposes a novel simulation model
to analyze a large number of different types of drugs for inventory setting optimization.
Because the K-means clustering algorithm was used in the model, it is possible to reduce
the time needed to obtain the optimal solution of the inventory settings. Regarding the
empirical contributions, the proposed model can effectively obtain the optimized values
for the drug inventory setting. It also can help hospitals control the drug inventory and
associated costs and enhance drug management efficiency.

The structure of this paper is as follows. Section 2 reviews the literature related
to drug inventory management, including inventory cost, inventory strategy, and drug
management, and the literature related to system simulation inventory optimization. Sec-
tion 3 introduces the research methodology, clearly defines the research problem and the
experimental process, explains the logical structure and parameter settings of this study,
and presents the decision variables, objectives, constraints, and operational logistics of
optimizing the drug inventory model. Section 4 shows the results of the discussion and
analysis, provides information on the case hospital and its internal drug inventory oper-
ation situation, the completion of the validation and verification of the drug inventory
system simulation model, and then the import of these data into the Arena OptQuest for
model optimization (Rockwell Automation, Coraopolis, PA, USA). The corresponding
objectives and constraints according to different scenarios are written. After the optimized
solution is presented, the results of the current situation model are analyzed and compared
with the results of the optimized solution model, and relevant discussions and suggestions
are put forward. Section 5 offers the conclusion and suggestions for future research.

2. Literature Review
2.1. Inventory Control Management

Inventory plays an important role in the production and organization of logistical
support in general enterprises. Inventories are managed in factories, wholesalers, retailers,
and hospitals. In order to meet uncertain future demands, the business community stores
appropriate quantities of materials, which is the purpose of the inventory. Fogarty and
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Hoffmann [14] pointed out that inventory management is a method developed in situations
of uncertain demand and supply in time and quantity.

Inventory cost includes the following four items.

(1) Holding cost: The cost of storing items; the more stock there is, the higher the holding
cost is.

(2) Storage cost: Inventory requires space, personnel, and equipment for storage, and
these are storage costs.

(3) Ordering cost: The cost of placing an order for the company (or hospital). The total
annual ordering cost is calculated by the processing cost per order multiplied by the
total number of orders placed in the year.

(4) Out-of-stock cost: When the inventory cannot meet the demand and a loss is caused by
a supply being out-of-stock, this loss is called the out-of-stock cost, which includes the
cost of the emergency replenishment of the inventory, the loss due to the customer’s
lost confidence in the company leading them to turn to others to buy substitutes,
and the loss from a production line stopped because of a lack of materials. The costs
incurred in this situation are intangible, meaning that they are difficult to directly
calculate and are usually an approximated estimation.

By considering holding and ordering costs, Kelle et al. [15] established a drug inventory
model to determine the minimum and maximum inventory (s, S) and then performed drug
inventory control with the obtained results. The research results showed that this could
reduce the costs of drug inventory by 70–80%.

Safety stock is additional inventory under anticipated demand, which is used to buffer
random changes in the actual environment to prevent the occurrence of a shortage. Safety
stock affects two types of costs: out-of-stock and holding costs. The higher the safety
stock, the lower the chance of a drug shortage; conversely, the lower the safety stock, the
greater the chance of a drug shortage. Because of the complexity of drug replenishment
requirements and the difficulty of estimating the drug replenishment lead time of drug
manufacturers, establishing a safety stock can reduce the risk of a drug shortage.

An inventory system is used for item inventory control and level maintenance. Its
main purpose is to determine when replenishment is needed, what quantity needs to be
replenished, and where to order goods from. Inventory review can be divided into two
categories: (1) the perpetual ordering system, which is a fixed order quantity (s, Q) system,
mostly adopts the quantitative ordering method for ordering; (2) the regular ordering
system is to check the inventory at a fixed time and then decide on the order quantity; thus,
it is also called the fixed order cycle (T, S) system.

2.2. Simulation Models for Inventory Control

The simulation models for pharmacy operations, drug inventory, and medical material
inventory are organized as follows. Dong et al. [16] established an inventory simulation
model with simulation software; verified the correctness of the model; compared two
inventory strategies, (R, S) and (Q, R); and concluded that the (R, S) strategy was better than
the (Q, R) strategy. Guerrero et al. [17] proposed a heuristic algorithm to solve the optimal
order quantity of each product for the inventory strategy in a central drug warehouse,
where model verification ensured that all strategy parameters were optimal. Their research
compared the developed method with the inventory strategy of the case hospital and found
that the inventory costs were reduced by about 45% while still maintaining a good level of
service quality.

After studying the problem of drug shortages, Saedi et al. [10] constructed a math-
ematical planning model and enrolled a drug supplier and a hospital as the research
subjects. The constraints for Saedi et al.’s study [10] included the delivery lead time (e.g.,
lead time = 0), meaning that it was not considered; the drug demand was random; and
the demand arrival rate was subject to the Poisson distribution, meaning that the change
time and length of change were random. There was supply disruption, and each drug was
assumed to have a substitute. Thus, the continuous inventory review strategy was adopted,
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and the (Q, R) inventory strategy was used as the drug inventory strategy. That is, if the
drug inventory was lower than the reorder quantity R, Q quantity would be ordered. This
study proposed a two-stage heuristic algorithm to solve its mathematical programming
model and calculate the cost, inventory space, drug shortage rate, and safety stock, and
used the drug information of a hospital in Houston, Texas for verification.

As drug shortages affect the medication rights and health of patients, Azghandi
et al. [11] studied the problem of drug shortages in the drug supply chain. The causes
for a shortage of drug supply include external factors, such as an increase in demand for
drugs, and internal factors, such as a drug recall by a pharmaceutical factory. Therefore,
this study developed a mathematical simulation model to investigate the impact of drug
recalls in different change scenarios (including the frequency and length of the drug supply
fluctuation phenomenon) and used a data envelopment analysis (DEA) to determine the
best inventory strategy. Nematollahi et al. [18] explored the multiobjective optimization
problem of a drug supply chain by considering the profits of the supplier and distributor,
as well as the patient service level (e.g., 1—drug shortage rate), where its multiobjective
was to achieve the dual goals of maximizing profit under social considerations (e.g., the
rate of drug availability), that is, the maximum profits of the supplier and the distributor.
The research results showed that the centralized model considered that both the supplier
and the distributor had better profits and patient service levels than the individual models
of either the supplier or the distributor.

Buschiazzo et al. [1] studied the problem of optimizing the inventory of medical
supplies for cardiac surgery. They considered procurement strategies (e.g., safety stock,
available funds), actual warehouse space (e.g., warehouse capacity), and the characteristics
of medical supplies (e.g., service life and service level) and suppliers (e.g., price, supply
quantity, and minimum order quantity); used mathematical programming to construct a
mixed integer programming model of cardiac surgery medical supplies inventory; and
solved the problem of minimizing the total cost (including purchase cost and inventory
cost) with AMPL and CPLEX. The results of mathematical planning were compared with
the results of the system simulation, a related sensitivity analysis was performed, and the
managerial implications of the research were discussed to increase the practical value of
the results.

Chen et al. [19] studied the sales of low-price drugs (LPD) in the drug supply chain.
The motivation for the research was that the government wanted to use legislation to ensure
that patients could purchase LPD. Two strategies (the P-policy and S-policy) were proposed.
The P-policy made decisions based on the ratio of purchase volume to expenses, while
the S-policy made decisions based on the ratio of sales volume to profit. The study used
inventory theory mathematics to derive the maximum profit from the entire drug supply
chain and a guaranteed drug availability rate (that is, the probability that patients can
buy LPD). Differentiation was used to find the extreme value and explored the maximum
profit of the two policies. The results showed that the P-policy was better than the S-
policy to create a win–win situation for the entire drug supply chain. Galli et al. [20]
studied the drug inventory management of a ward through data exploration (e.g., K-
nearest neighbors, decision tree, random forest, and XGBoot) and adopted the sample
average approximation (SAA) method to evaluate the average absolute error value of
drug demand under the random situation of drug demand to reduce the occurrence of
emergency drug replenishment. The research results indicated that random forest and
XGBoot were better than other methods. As simulation optimization has been applied in
many studies with good results [1,3,21–25], this study used the simulation optimization
method as the main research method.

2.3. Summary

Data relating to inventory costs, inventory strategy systems, and system simulation are
discussed in the previous literature review. According to the clustering and classification
literature, materials could be effectively distinguished through clustering or classification
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methods and using different management methods through different groups (or categories)
could maximize the application of limited management resources. According to the inven-
tory management literature, the inventory holding costs and out-of-stock costs have the
greatest impact on inventory, and inventory strategies, safety stock, lead time, and other
related knowledge are also relevant. In terms of inventory simulation, many documents
have confirmed the effectiveness of inventory problems combined with demand forecasting
and the clustering method in simulations. Simulation optimization can also be applied
to solve various types of problems with good results. Therefore, this study combined the
clustering method with an inventory model, and the simulation optimization method was
used to solve the maximum and minimum drug inventory values under the considerations
of cost and related inventory constraints.

3. Methodology
3.1. Problem Definition

Taiwan has a well-developed medical industry, well-established national health insur-
ance, and advanced medical technologies. The medical systems in Taiwan’s hospitals have
a complete collection of medically related data. This study observed the medical cost of
Taiwan’s hospitals and found that drug purchase costs and management costs accounted
for a relatively high proportion of overall costs [3,4,26]. Kelle et al. [15] and Gebicki et al. [6]
also mentioned that drug costs accounted for a high percentage of a hospital’s operating
costs; thus, if the drug inventory can be better managed, the hospital drug management
costs can be effectively reduced. The hospital’s drug inventory setting value (s, S) is usually
set as a fixed multiplier of the average drug consumption.

As mentioned in Section 2.1, inventory cost includes holding cost, storage cost, or-
dering cost, and out-of-stock cost. For pharmacy cost management, storage cost can be
integrated into the holding cost. For patient safety issues, no drug shortage is allowed.
The out-of-stock cost is then transformed from a cost item of the objective function to
a constraint of the constructed simulation model. Therefore, only the holding cost and
ordering cost were considered in this study. Usually, the holding cost and ordering cost
can be calculated by using the activity-based costing (ABC) system or the time-driven
activity-based costing (TDABC) system [27]. As the holding cost and ordering cost can be
easily calculated based on the corresponding activities, this study used the ABC system to
calculate these two costs in the objective function of the simulation model.

The demand for drugs occurs when doctors issue prescriptions for patients. As the
number of patients changes daily, and drug prescriptions vary for each patient depending
on their diagnosis, the consumption of each type of drug varies. Therefore, although setting
the drug inventory at a fixed multiplier rate can achieve drug management, it may also
lead to high inventory costs or drug shortage costs.

Per the literature, this study explored inventory (s, S) by considering the inventory
costs. First, the drugs were divided into groups, the consumption of each drug was
simulated, and the simulation model of each drug inventory was established. Next, the
inventory costs were considered by simulation optimization to obtain the best inventory
(s, S) for each drug.

3.2. Mathematical Model

This section introduces notations, an objective function, and corresponding constraints
of the constructed mathematical model and the details. The details are as follows.

Notations:
Indices:
p: the index of drug no., where p = 1, 2, 3, . . . , P.
t: the index of time periods, where t = 0, 1, 2, 3, . . . , T.
Parameters:
OCp: the ordering cost of drug no. p.
HCp: the holding cost of drug no. p.
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DQpt: the demand quantity of drug no. p at time period t.
UPp: the upper bound of maximum quantity of drug no. p.
NL: the lower bound of number of orders for all drugs.
NU: the upper bound of number of orders for all drugs.
M: a huge positive constant.
Decision variables:
Xpt: the order quantity of drug no. p at time period t.
Ypt: the indicator variable of order quantity of drug no. p at time period t;
Ypt = 1 if the pharmacy staff placed an order for drug no. p at time period t or 0 otherwise.
Ipt: the inventory of drug no. i at time period t.
sp: the minimum quantity of drug no. p.
Sp: the maximum quantity of drug no. p.

Objective function: minimize cost

∑
p

∑
t

HCp × Ipt + ∑
p

∑
t

OCp ×Ypt (1)

subject to:
Ip0 = 0,∀p = {1, 2, 3, . . . , P} (2)

Ip(t−1) + Xpt − DQpt = Ipt,∀p ∈ {1, 2, 3, . . . , P}, ∀t ∈ {1, 2, 3, . . . , T} (3)

Ipt ≥ 0,∀p ∈ {1, 2, 3, . . . , P}, ∀t ∈ {1, 2, 3, . . . , T} (4)

Xpt ≤ M×Ypt,∀p ∈ {1, 2, 3, . . . , P}, ∀t ∈ {1, 2, 3, . . . , T} (5)

∑
p

∑
t

Ypt ≥ NL,∀p ∈ {1, 2, 3, . . . , P}, ∀t ∈ {1, 2, 3, . . . , T} (6)

∑
p

∑
t

Ypt ≤ NU,∀p ∈ {1, 2, 3, . . . , P}, ∀t ∈ {1, 2, 3, . . . , T} (7)

sp ≤ Sp − 1,∀p = {1, 2, 3, . . . , P} (8)

Sp ≤ UPp,∀p = {1, 2, 3, . . . , P} (9)

Xpt ∈ integer, ∀p ∈ {1, 2, 3, . . . , P}, ∀t ∈ {1, 2, 3, . . . , T} (10)

Ipt ∈ integer, ∀p ∈ {1, 2, 3, . . . , P}, ∀t ∈ {1, 2, 3, . . . , T} (11)

sp ∈ integer, ∀p = {1, 2, 3, . . . , P} (12)

Sp ∈ integer, ∀p = {1, 2, 3, . . . , P} (13)

Ypt ∈ binary, ∀p ∈ {1, 2, 3, . . . , P}, ∀t ∈ {1, 2, 3, . . . , T} (14)

Equation (1) sums the holding cost and ordering cost of each drug for each time
period. Equation (2) represents the inventory of each drug being set to zero at time period 0.
Equation (3) represents the flow conservation of each drug for all time periods. Equation (4)
represents that no drug shortage is allowed for any time period. Equation (5) represents the
relationship of the behavior in placing an order and its order quantity. Equations (6) and (7)
represent the lower and upper bounds of the total number of orders placed for all drugs,
respectively. Equation (8) represents that the minimum quantity of each drug is less than
the maximum quantity of each drug. Equation (9) represents that the maximum quantity
of each drug has its upper bound. Equations (10)–(13) represent the decision variables as
integers. Equation (14) represents that the indicator variable is binary.

3.3. Research Process

Figure 1 shows the research steps of this research. First, the research subjects were
selected, and the problem was defined. As the case hospital comprised a main pharmacy
and multiple subpharmacies, this study focused on the outpatient pharmacy with the largest
consumption ratio. Moreover, this study did not consider the replenishment behavior or
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emergency picking behavior among other subpharmacies and instead studied only the
drug consumption and inventory (s, S) of the outpatient pharmacy. In practice, more than
1000 types of drugs exist for an outpatient pharmacy. This study focused mainly on the
drugs paid for by the Taiwan Health Insurance System, which included about 700 drugs.
This study collected one-year records on the drugs received by patients in the outpatient
pharmacy. First, this study applied the Pareto principle (also called the 80/20 rule) to
identify the key drugs with a high consumption quantity; those drugs were then divided
into groups through a two-stage clustering method. This study used five indicators as
input variables for the two-stage clustering method.
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After the drugs were determined, this study began to establish an outpatient drug in-
ventory simulation model. Using the Arena Input Analyzer software, the study performed
data fitting on the daily consumption of drugs to determine the probability distribution of
the daily consumption of each drug and established the outpatient drug inventory simula-
tion model of the case hospital. The clustering method was adopted to classify drugs with
similar consumption patterns into the same group. The best inventory value of the drugs
in the same group was simulated to determine whether the drugs in the same group had
similar inventory rules. Therefore, the clustering method is very important in determining
the number of groups. This study used a two-stage clustering method to determine the
setting of the number of groups, where the data for specific drugs included the (1) average
monthly consumption, (2) monthly average number of prescriptions, (3) monthly drug con-
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sumption slope, (4) absolute value of the monthly average deviation rate, and (5) chronic
disease prescription ratio. The details are introduced in Section 4.2.

After grouping, this study used the set value of drug inventory (s, S) as the decision
variable and the minimization of average drug inventory cost (holding cost) and drug
replenishment cost (ordering cost), as the objective. This study established an outpatient
drug inventory model for drugs of the same group in outpatient clinics, based on drug
inventory constraint conditions. After the model was established, verification and valida-
tion were carried out to ensure that it was consistent with the current situation of the case
hospital. After verification, this study checked whether the logic of the simulation model
was correct as planned. If correct, the collected data were used in the model; otherwise, the
model was revised until the model logic was correct. In order to implement validation, this
study checked for differences between the simulated average inventory of drugs and the
average inventory of the case hospital. If the results showed no significant difference, the
model could represent the inventory system of the case hospital and be used to analyze the
various scenarios. If the results were different, the simulation model was modified until
the results were similar to data from the case hospital.

After successful verification and validation, this study aimed to solve the problem of
the outpatient drug inventory simulation model. In this step, this study used simulation
optimization (i.e., Arena OptQuest software) to solve the problem and searched for the
best value of each drug inventory strategy (s, S). The Arena OptQuest software uses the
tabu and scatter searches to find the best value for each drug inventory strategy (s, S).
However, as the simulation software program is a fixed program code, its algorithm cannot
be modified. Therefore, how to refine the system simulation optimization algorithm is not
included in the research scope of this study.

After determining the optimal setting value of each drug inventory, this study con-
ducted scenario analyses to determine the optimal setting value of each drug inventory
under different conditions and then analyzed the impact of different scenarios on the best
setting values of each drug inventory. In the next section, the data results are summarized,
analyzed, and discussed in regard to their managerial implications to provide a reference
for pharmacy drug inventory to the case hospital.

4. Result Discussion and Analysis
4.1. Case Hospital

The drug inventory of the case hospital can be divided into two areas: the main
pharmacy and the subpharmacy. For this study, the drug inventory was divided into
three sections for introduction: stored drug items, the drug ordering and replenishment
process, and the drug inventory policy. The first part was the drug items in storage.
The main pharmacy is the largest drug storage area in the hospital and is responsible
for managing all the drugs for use in the hospital. The subpharmacies reference the
different departments in the hospital, including the outpatient, inpatient, emergency, and
chemotherapy departments, each of which has its own exclusive subpharmacy where
only the drugs for use by that department itself are stored. In the drug ordering and
replenishment process section, the main pharmacy is responsible for managing all drugs
and ordering drugs directly from suppliers. The subpharmacy ordering and replenishment
systems do not directly order from the supplier but apply to the main pharmacy for
replenishment, which is called the replenishment process. Regarding the drug inventory
policy, the main pharmacy and the subpharmacies use the same set of policies (s, S). When
a drug stock is lower than the minimum inventory setting (s), the drug must be ordered,
and the order quantity is the maximum inventory setting, S, minus the current stock of
the drug.

The main pharmacy and subpharmacies of the case hospital use the same drug in-
ventory information system, and the inventory of each drug is set with reference to two
parameters, namely, the inventory day and the drug inventory multiplier. The inventory
day means the number of days of inventory kept in the pharmacy for a specific drug based
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on the average daily consumption. For example, the inventory day of TRACE in Table 1 is
5, meaning that five times the average daily consumption of TRACE should be kept in in-
ventory. In the case of the hospital drug inventory information system, the inventory day is
multiplied by the average daily drug consumption, and the result is taken as the minimum
drug inventory (s), while the specific drug inventory is multiplied by the times the mini-
mum drug inventory is taken, which is the maximum drug inventory (S). These two values
are used as the system default values. Furthermore, the drug inventory information system
can accept inventory staff manually set the minimum and maximum inventories of drugs,
and the drug inventory information system gives priority to the manual settings rather
than the system default values, as shown in Table 1. Taking the data for the drug TRACT as
an example, the average number of inventory days was 5, the inventory multiplier was 3,
and the average daily consumption was 2534 pills; thus, according to its inventory policies,
the minimum inventory was 12,670 pills (average number of inventory days × average
daily consumption), and the maximum inventory was 38,010 pills (inventory multiplier ×
minimum inventory). The minimum manual inventory of 4900 drugs and the maximum
manual inventory of 33,460 drugs are manually set based on the experience of the inventory
staff, and there are no specific rules. Therefore, the research purpose of this study was the
optimization of the drug inventory setting values.

Table 1. Basic information of drug inventory setting.

TRACT

Inventory day 5
Inventory multiplier 3

Consumption in the previous month 51,784
Average daily consumption 2534

Minimum inventory 12,670
Maximum inventory 38,010

Minimum manual inventory 4900
Maximum manual inventory 33,460

In the replenishment process of the outpatient pharmacy of the case hospital, the
outpatient pharmacy staff will count the drug consumption up to 00:00 on the day, and the
information technology (IT) staff will enter the data into the drug inventory information
system at 08:00 the next morning. The system will then determine whether the current
drug inventory is lower than the set minimum inventory of the drug. If the inventory of
a drug is lower than the set minimum inventory, the main pharmacy staff will start drug
replenishment operations at 08:30 and complete the replenishment before 13:30. Then, the
IT staff will input the replenished quantity of drugs into the information system for use by
the outpatient pharmacy, as shown in Figure 2.

Regarding the main pharmacy ordering process of the case hospital, first, the main
pharmacy staff determine the replenishment quantity of each subpharmacy through the
drug inventory information system to determine whether the inventory of a certain drug
in the main pharmacy is lower than the set minimum inventory of the drug. If the drug
inventory is higher than the set minimum inventory of the drug, an order is not made;
conversely, if the drug’s inventory in the main pharmacy is lower than the set minimum
drug inventory, the drug inventory information system generates a reminder that the drug
needs to be ordered. Then, the main pharmacy staff determines the ordering quantity of
the drug and places an order to the drug supplier, as shown in Figure 3.
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The replenishment process of the main pharmacy of the case hospital is that the
supplier delivers the ordered drug to the inventory area of the main pharmacy within the
specified time. Then, the main pharmacy staff checks the drug, including whether the
correctness and quantity of the drug are in line with the order. The main pharmacy staff
subpackage the drugs that pass the inspection into the minimum packaging quantity, as
established in the hospital, and label them for ease of management. After these operations
are completed, the drugs are stored in the main pharmacy, as shown in Figure 4.
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4.2. Data Collection and the Two-Stage Clustering Method

This study collected data for all patients receiving drugs from the case outpatient
pharmacy from January 2018 to December 2020. After analyzing the three years of data,
the data between the first and second years were found not to be significant. However,
the third-year data (2020) were impacted by the COVID-19 outbreak. Hence, this study
used data from January to December 2019, which comprised about 3 million records, to
build a simulation model for the case outpatient pharmacy. After excluding the items that
did not need to be considered by the hospital and the drugs with missing data, there were
698 drugs used in the outpatient pharmacy. From the perspective of inventory management,
the common rule for managing large inventory items is the Pareto principle (also called the
80/20 rule). This rule means that 20% of items account for about 80% of the total annual
sales. The benefits of using the Pareto principle are that managers can monitor and control
the inventory of a few critical items that account for the majority of total annual sales.
In this study, the top 125 drugs accounted for 78.86% of the total annual sales, thereby
qualifying for the Pareto principle. Therefore, this study selected the top 125 drugs used in
the outpatient pharmacy as the study subject instead of studying all 698 drugs.
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The monthly consumption data of these drugs were compiled, and five indicators
were used as the input variables for the two-stage clustering method, which are detailed
as follows.

(1) Average monthly consumption of a specific drug (AMC): Sum of the 12-month con-
sumptions of one drug divided by 12 to obtain the average monthly consumption.

(2) Monthly average number of prescriptions of a specific drug (MANP): Sum of the
12-month number of prescriptions of one drug divided by 12 to obtain the monthly
average number of prescriptions.

(3) Monthly drug consumption slope of a specific drug (MDCS): Sum of the difference
between the monthly drug consumption and the average monthly drug consumption
divided by the number of months.

(4) Absolute value of the monthly average deviation rate of a specific drug (AVMADR):
The absolute value of the current month’s consumption of a specific drug minus
the average monthly consumption of the drug, divided by the average monthly
consumption of the drug.

(5) Chronic disease prescription ratio of a specific drug (CDPR): The amount of a specific
drug prescribed for chronic disease patients divided by the amount of the drug
prescribed for all patients.

This study used the SPSS statistics software, which includes a two-stage clustering
method, in combination with the cohesive stratification method and the nonhierarchical
clustering method for cluster analysis. In the first stage, this study used Ward’s method
to calculate the distance and perform the cohesive stratification method, meaning that
each datum was treated as a group, the distance between each group was calculated, and
the two groups with the closest distance were combined into one group. The number of
groups became less and less until all groups were combined into one group. This cohesive
stratification method converted the results into a tree diagram (Figure 5) in which the
x-axis represented the distance between two groups to form a new group and the y-axis
represented the drug code. The cutoff point in the tree diagram had to be decided to
determine the number of groups that are suitable for data grouping. There are two methods
in the cutoff point selection principle: (1) determining the number of groups and then
finding a suitable cutoff point and (2) finding places that are far apart as the cutoff points.
The first method was adopted in this study to consider the number of groups, which were
aimed to fall between 4 and 7. The x-axis in Figure 5 indicates that when the tangent point
distance was set to 6, the tangent passed through four tree lines, meaning that the data
could be divided into four groups; therefore, this study divided the data into four groups.

In the second stage, this study used the K-means method to divide the data into four
groups. The K-means clustering method has been applied to various domains because
it is simple and easy to use [28]. The four groups were named according to the four
indicators of each group of drugs (i.e., average monthly consumption, monthly drug
consumption slope, absolute value of the monthly average deviation rate, and chronic
disease prescription ratio). Considering Group 1 as an example (Figure 6), when the average
monthly consumption of drugs (Figure 6a) was low, this represented low consumption. The
monthly drug consumption slope of drugs in Group 1 (Figure 6b) was mostly lower than
0.5, representing a recession. When the absolute value of the monthly average deviation
rate of drugs (Figure 6c) was low, except for drug no. 17 (VIRET), this represented stability;
when the chronic disease prescription ratio of drugs (Figure 6d) was high, this represented
a high chronic disease prescription ratio. Therefore, the drugs in Group 1 belonged to the
recession type, with stable, low consumption and a high chronic disease prescription ratio.
The drug characteristics details of each group are introduced in the following.

(1) Drugs in Group 1 belonging to recession type, with stable, low consumption and high
chronic disease prescription ratio: 17 drugs.

(2) Drugs in Group 2 belonging to growth type, with stable, low consumption and high
chronic disease prescription ratio: 60 drugs.
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(3) Drugs in Group 3 belonging to growth type with stable, high consumption and high
chronic disease prescription ratio: 12 drugs.

(4) Drugs in Group 4 belonging to growth type, with divergent, low consumption and
high nonchronic disease prescription ratio: 36 drugs.
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4.3. Simulation Hypothesis

This study constructed the following four hypotheses for the outpatient drug inventory
simulation model.

(1) It was supposed that the quantity of drugs in the main pharmacy could meet the
replenishment needs of the subpharmacy for the outpatient clinic and that there would
be no shortage of drugs. In practice, the quantity of drugs in the main pharmacy
could meet the required replenishment quantity; therefore, this study assumed that
the quantity for replenishment in the main pharmacy was sufficient.

(2) The inventory replenishment operations between the outpatient subpharmacy and
other subpharmacies were not considered. In practice, when drug inventory manage-
ment is performed by each subpharmacy, if the outpatient pharmacy does not have
enough drugs during the nonreplenishment period but the drug inventories in other
subpharmacies are sufficient, the outpatient pharmacy applies for drug replenishment
from other subpharmacies to meet the current drug demand. As this study simulated
only the drug inventory and consumption operations of the outpatient pharmacy
with the highest consumption ratio and did not include other subpharmacies, this
study did not consider the transfer operations among the subpharmacies.

(3) The emergent collection of drugs from the outpatient pharmacy was not considered.
When the drugs in all subpharmacies are not enough to meet the needs of the outpa-
tient pharmacy, even during the nonreplenishment period, the outpatient pharmacy
still initiates an emergency request application to the main pharmacy, and the main
pharmacy provides drugs to the outpatient pharmacy to meet its current demand for
drugs. Since the emergent collection behavior does not often occur in the inventory
management of the case hospital pharmacies, it is prone to occur only for certain drugs
with a small inventory. Therefore, this study did not consider the rare occurrence of
urgent drug collection operations.

(4) The effects of special holidays and long holidays were not considered in this study.
As consecutive holidays and long holidays (such as annual holidays) in a year are
special circumstances, it is necessary to estimate the consumption of drugs in advance
for such days. As the frequency of special circumstances during the year is low, this
model did not simulate special or long holidays and considered only fixed weekends,
that is, two days off each week.

4.4. Simulation of Outpatient Drug Inventory Simulation Model

This study used a personal computer with Intel® Core™ i7-8700 CPU, DDR4 64GB
RAM, Windows 10 Professional version, and the simulation software Arena 16.0 and
OptQuest toolbox, which were developed by Rockwell Automation Inc. (Rockwell Au-
tomation, Coraopolis, PA, USA). A system simulation model was established based on
data for the current situation of the outpatient drug inventory in the case hospital. The
simulation length of the model was set to one year, and the number of replications was set
to 30. Furthermore, the number of simulation optimization iterations to be run by Arena
OptQuest was set to 1200.

According to hospital practices, the demand for each drug is calculated through the
drug lists issued by doctors after each patient sees the doctor. The main research scope of
this system was the outpatient drug inventory data. All medication orders issued by the
outpatient department of the case hospital on the same day were collected and consolidated
as the drug demand generated in one day. The daily demand data of each drug, as collected
by this study, were processed with data fitting (i.e., Arena Input Analyzer toolbox) to
determine the probability distribution of daily drug demand. This study used the Arena
Input Analyzer toolbox to determine the probability distribution of drug consumption
based on the outpatient drug inventory data provided by the case hospital from January
to December 2019. Taking ALINA as an example, according to Figure 7, the probability
distribution of ALINA consumption followed a normal distribution with the mean equal to
1.38 × 104 and the standard deviation equal to 2.33 × 103. As the corresponding p-values
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of the chi-square test and Kolmogorov–Smirnov test were both greater than 0.05, this was a
suitable distribution of the ALINA consumption probability.
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Figure 8 shows a flowchart of the outpatient drug inventory simulation model using
Arena. This study simulated the daily outpatient drug inventory checks as performed by
outpatient pharmacy staff. If the drug inventory was below the minimum drug inventory
after the inventory check, the replenishment process was initiated to the main pharmacy.
This study simulated outpatient pharmacy staff entering the drug inventory information
system to take inventory to determine whether the current drug inventory was lower
than the minimum drug inventory. If yes, then the replenishment operation was carried
out; otherwise, it was not. However, since the minimum packaging quantity was used
by the main pharmacy of the case hospital as the unit to conduct replenishment, the
method of calculating the replenishment quantity was the quotient of (maximum drug
inventory - current drug inventory)/minimum packaging volume. This quotient was
unconditionally rounded up and multiplied by the minimum packing quantity to obtain
the drug replenishment quantity. After completing the replenishment simulation, the model
in this study calculated the current drug inventory, the number of drug replenishments,
and the drug replenishment quantity.

Considering that the model in this study needed to be simulated in a steady-state situ-
ation, by referring to the actual situation of multiple replenishments and the consumption
of the inventory within a month, this study set the warm-up time as 30 days to ensure
that the model was not affected by the initial set values. Data collection began when a
steady-state situation was reached after 30 days of simulation.
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According to the method in [29], the half-width of the drug consumption data, as
obtained by the simulation, was divided by the average, and the initial simulation was
carried out five times to obtain the result of all the quotients less than 0.05. In order to
obtain a more stable result in this study, the target quotient was defined as less than 0.02.
According to the method in [29], if the quotient is to be reduced by 50%, then the number
of simulations must be increased by more than four times. Therefore, in this study, the
number of simulations was set to 30, the simulation was performed again, and the obtained
quotient was indeed less than 0.02, which met the expected value. Therefore, in order to
ensure the model’s stable performance, the number of simulations in this study was set
to 30.

4.5. System Simulation Model Verification and Validation

The simulation program logic of the system simulation model had to be verified,
and the consistency of the simulation model with the actual situation had to be validated.
The following made up the verification and validation of the outpatient drug inventory
simulation model of this study:

(1) Verification that the logic of the simulation program logic is correct

Based on the changes in drug consumption and drug inventory, as generated by
the simulation model, this study verified whether the drug consumption was calculated
correctly if the drug inventory was sufficient; whether the model correctly counted the
quantity of drug shortage, the number of shortages, and the quantity of drugs in stock when
the drug inventory was not enough; whether the outpatient pharmacy staff in the simulated
inventory check replenished the drugs according to the drug inventory policy conditions;
whether the quantity of the replenishment was consistent with the logic; and whether the
inventory was calculated correctly after the drug is replenished. The verification process
was not carried out until all the model logics were correct.

(2) Validation on whether the model is consistent with the actual case hospital

After verifying that the logic of the simulation model was correct, this study imported
the case hospital data into the model simulation and compared the simulation results with
the case outpatient inventory situation. A follow-up simulation optimization study was
conducted after validation. The data fitting of the outpatient drug inventory simulation
model of this study was made according to the drug consumption of the case hospital.
Then, the inventory obtained by the simulation was compared with the actual inventory to
determine whether they were consistent with each other in order to prove that the model
established in this study could represent the outpatient drug inventory of the case hospital.

This study validated the average daily drug inventory by comparing the average
daily drug inventory of the actual data with the 95% confidence interval of the average
inventory as obtained from 30 simulations. These results were similar to the actual average
drug inventories in the outpatient pharmacy of the case hospital, which indicated that
the constructed simulation model was successfully validated. Therefore, this model was
sufficient to represent the current drug inventory situation in the outpatient pharmacy of
the case hospital and could be used for subsequent analysis in this study.

4.6. Simulation Optimization for Solving Three Scenarios

This study used three scenarios for simulation analysis, namely, the current drug
inventory simulation, as based on the actual set values; the individual-drug inventory
optimization simulation, which optimized the simulation of individual drugs as the target;
and the group-drug inventory optimization simulation, which targeted the drug groups
obtained by the two-stage clustering method. According to the results obtained for the
number of simulations, the optimization simulation parameter was set to 30 times.
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4.6.1. Scenario 1: Current Drug Inventory Simulation

This study first established a current drug inventory model with Arena for the simu-
lation with the actual set inventory values, where the minimum inventory and inventory
multipliers were adjusted by the outpatient pharmacy manager according to experience.
Then, this study obtained the simulation results of each drug with a simulation length of a
year, including the minimum inventory (s), inventory multipliers, average daily inventory
cost, number of replenishments, and total drug shortages. Table 2 shows the data for
Group 1.

Table 2. Results for 17 drugs in Group 1 for Scenario 1.

Group 1 Simulation Results

Drug No. Drug Code Minimum
Inventory (s)

Inventory
Multiplier

Average Daily
Inventory Cost

Number of
Replenishments

Total Drug
Shortages

1 ATRIT 90 3.0 18,617 53 54

2 DECAI 28 1.5 28,940 81 0

3 DIAM3 12,934 3.0 12,206 32 0

4 FORXT 2030 2.2 21,411 61 0

5 FOSAP 157 3.0 12,912 31 0

6 GALVT 2285 3.0 11,909 36 0

7 GENOI 55 2.2 43,073 53 30

8 HUMAI 147 3.0 222,842 8 0

9 JANUT 2745 2.2 25,162 56 0

10 JARDT 2770 2.2 30,697 64 0

11 KOMBT 3725 2.2 25,886 53 0

12 NORD1 15 2.2 32,698 56 1

13 NOVOF 445 2.2 39,505 51 0

14 PANTT 7725 2.2 35,340 61 0

15 PLET1 2395 3.0 14,636 30 0

16 SPIRR 40 2.2 23,680 53 0

17 VIRET 595 2.2 32,456 100 2231

Total 631,970 879 2316

Table 2 shows that each drug in Group 1 had its own minimum inventory (s) and
inventory multipliers, and some drugs may have been out of stock because the set values
were the parameters set based on experience. Once a drug shortage occurred, there
would be corresponding measures to deal with it; thus, additional manpower and material
resources would still be required. From the managers’ perspective, they would like to
avoid shortages in drug inventory. Therefore, this study was based on the constraint of no
drug shortages to optimize and obtain the inventory setting values for Scenarios 2 and 3.

4.6.2. Scenario 2: Individual-Drug Inventory Optimization Simulation

This study used Arena OptQuest to solve the two drug inventory optimization simu-
lation problems. The objectives and constraints were set according to each scenario, and
the iteration termination condition was set to 1200. Taking Group 2 as an example, as the
model failed to obtain better solutions after 50 iterations, it was automatically terminated
at 450 iterations. The settings of the number of simulations and iteration times are shown
in Figure 9.
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(1) Objectives

Taking the drug ABIL5 as an example, the setting values in Arena OptQuest are shown
in Figure 10.
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(2) Decision variables

Taking the drug ABIL5 as an example, the decision variables were the minimum
inventory setting value of the drug and the drug inventory multiplier. The upper limit of
the inventory setting value solution was set to 10 times the average consumption of the
drug, the inventory multiplier was set to 10, and the variable type was discrete. The setting
values in Arena OptQuest are shown in Figure 11.
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(3) Constraints

Taking the drug ABIL5 as an example, the constraints were divided into two parts. In
order to avoid too-frequent replenishments and to ensure that the number of replenishments
fell within the hospital pharmacy’s acceptable range, the constraint on the number of
replenishments was set to (1± 20%) of the number of the current drug inventory simulation
(Scenario 1). In order to ensure that the obtained optimization results would not lead to a
drug shortage, the constraint of the number of drug shortages was set to be equal to 0. The
setting values in Arena OptQuest are shown in Figure 12.
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(4) Optimization simulation results

Taking Group 1 as an example, there was no drug shortage in the optimization
results. Comparing the average daily inventory cost with that in the current drug inventory
simulation showed that it dropped from NTD 631,970 to NTD 523,766, which was a
decrease of 17.12%. It can be seen from the results obtained by the optimization simulation,
shown in Table 3, that each drug had different values for the minimum inventory (s) and
inventory multiplier.

Table 3. Results for 17 drugs in Group 1 for Scenario 2.

Group 1 Simulation Results

Drug
Code

Minimum
Inventory (s)

Inventory
Multiplier

Average Daily
Inventory Cost

Number of
Replenish-

ment

Total Drug
Shortage

ATRIT 104 2.6 18,998 57 0
DECAI 21 1.5 21,311 93 0
DIAM3 4200 5.8 6514 39 0
FORXT 1200 2.6 13,500 73 0
FOSAP 77 4.1 7797 38 0
GALVT 700 8.3 7998 32 0
GENOI 72 1.9 51,402 54 0
HUMAI 94 3.0 217,569 10 0
JANUT 1200 3.3 13,943 64 0
JARDT 1500 2.7 18,201 77 0

KOMBT 1300 3.9 13,389 61 0
NORD1 14 2.0 28,018 67 0
NOVOF 190 3.3 21,772 60 0
PANTT 3300 3.2 18,285 73 0
PLET1 1000 4.7 8465 36 0
SPIRR 19 3.2 13,851 59 0
VIRET 920 1.6 42,753 117 0

Total 523,766 1010 0

4.6.3. Scenario 3: Group-Drug Inventory Optimization Simulation

(1) Objectives

The average daily inventory cost of multiple drugs in the same group was calculated
with the group as a unit, and the formula was the same as that for the individual-drug
inventory optimization simulation. The difference was that for group-drug inventory
optimization simulation, the average daily inventory cost of multiple drugs was added as
the objective. Taking Group 1 as an example, the setting values are shown in Figure 13.

Healthcare 2022, 10, x 22 of 29 
 

 

not lead to a drug shortage, the constraint of the number of drug shortages was set to be 

equal to 0. The setting values in Arena OptQuest are shown in Figure 12. 

 

Figure 12. Setting values of constraints for drug ABIL5 in Scenario 2. 

(4) Optimization simulation results 

Taking Group 1 as an example, there was no drug shortage in the optimization re-

sults. Comparing the average daily inventory cost with that in the current drug inventory 

simulation showed that it dropped from NTD 631,970 to NTD 523,766, which was a de-

crease of 17.12%. It can be seen from the results obtained by the optimization simulation, 

shown in Table 3, that each drug had different values for the minimum inventory (s) and 

inventory multiplier. 

Table 3. Results for 17 drugs in Group 1 for Scenario 2. 

Group 1 Simulation Results 

Drug Code 
Minimum 

Inventory (s) 

Inventory 

Multiplier 

Average Daily 

Inventory Cost 

Number of Re-

plenishment 

Total Drug 

Shortage 

ATRIT 104 2.6 18,998 57 0 

DECAI 21 1.5 21,311 93 0 

DIAM3 4200 5.8 6514 39 0 

FORXT 1200 2.6 13,500 73 0 

FOSAP 77 4.1 7797 38 0 

GALVT 700 8.3 7998 32 0 

GENOI 72 1.9 51,402 54 0 

HUMAI 94 3.0 217,569 10 0 

JANUT 1200 3.3 13,943 64 0 

JARDT 1500 2.7 18,201 77 0 

KOMBT 1300 3.9 13,389 61 0 

NORD1 14 2.0 28,018 67 0 

NOVOF 190 3.3 21,772 60 0 

PANTT 3300 3.2 18,285 73 0 

PLET1 1000 4.7 8465 36 0 

SPIRR 19 3.2 13,851 59 0 

VIRET 920 1.6 42,753 117 0 

Total 523,766  1010 0 

4.6.3. Scenario 3: Group-Drug Inventory Optimization Simulation 

(1) Objectives 

The average daily inventory cost of multiple drugs in the same group was calculated 

with the group as a unit, and the formula was the same as that for individual-drug inven-

tory optimization simulation. The difference was that for group-drug inventory optimi-

zation simulation, the average daily inventory cost of multiple drugs was added as the 

objective. Taking Group 1 as an example, the setting values are shown in Figure 13. 

 

Figure 13. Setting values of the minimal objective function for the 17 drugs in Group 1.



Healthcare 2022, 10, 556 22 of 28

(2) Decision variables

Unlike in the individual-drug inventory optimization simulation, the inventory setting
value of all drugs in the same group was used as a decision variable in the group-drug
inventory optimization simulation. The biggest difference was that drugs in the same
group shared a drug inventory multiplier as a decision variable. As in the individual-drug
inventory optimization simulation, the upper limit of the inventory setting value was set to
10 times the average consumption of the drug, the inventory multiplier was set to 10, and
the variable types were all discrete. The setting values in Arena OptQuest are shown in
Figure 14.
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(3) Constraints

Unlike the individual-drug inventory optimization simulation, if the group-drug
inventory optimization simulation used the number of replenishments for individual
drugs as a constraint, that would make it difficult for the model to meet the constraints
for all drugs; the larger the group, the more difficult it would be to solve the problem.
Therefore, the group-drug inventory optimization simulation limited the number of drug
replenishments in the group unit; the total number of replenishments obtained by the
current drug inventory simulation (Scenario 1) was multiplied by 1.2 times to calculate the
constraint on the number of replenishments. The setting values are shown in Figure 15.
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(4) Optimization simulation results

Taking Group 1 as an example, the average daily inventory cost was NTD 843,459.
Compared with the current drug inventory simulation, the average daily inventory cost rose
from 631,970 to NTD 843,459, which was an increase of 33.47%. The inventory multiplier
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of each drug obtained by the simulation optimization of Group 1 in Table 4 was the
same (i.e., 2.0). The total drug shortages were the same as the individual-drug inventory
optimization simulation, and both were 0.

Table 4. Results for 17 drugs in Group 1 for Scenario 3.

Group 1 Simulation Results

Drug
Code

Minimum
Inventory (s)

Inventory
Multiplier

Average Daily
Inventory Cost

Number of
Replenish-

ments

Total Drug
Shortages

ATRIT 400 2.0 62,506 26 0

DECAI 28 2.0 35,240 49 0

DIAM3 27,000 2.0 19,521 31 0

FORXT 9000 2.0 95,721 19 0

FOSAP 140 2.0 8371 64 0

GALVT 4000 2.0 15,952 41 0

GENOI 160 2.0 122,335 26 0

HUMAI 280 2.0 24,180 38 0

JANUT 12,000 2.0 110,107 17 0

JARDT 3000 2.0 31,147 70 0

KOMBT 4000 2.0 26,052 59 0

NORD1 19 2.0 39,187 52 0

NOVOF 220 2.0 16,400 108 0

PANTT 18,000 2.0 81,235 34 0

PLET1 10,000 2.0 47,630 15 0

SPIRR 30 2.0 15,951 79 0

VIRET 1600 2.0 91,925 53 0

Total 843,459 828 0

4.6.4. Result Comparisons

The results of the three scenarios studied herein are introduced for comparison
as follows:

(1) Scenario 1: Current drug inventory simulation

Simulation was carried out with the inventory setting value and inventory multiplier
set in the actual situation. The simulation result was close to the actual situation.

(2) Scenario 2: Individual-drug inventory optimization simulation

With the constraint of (1 ± 20%) of the number of drug replenishment times, as ob-
tained from Scenario 1, and the zero-drug shortage setting, the minimum inventory setting
value and inventory multiplier were obtained with the goal of minimizing inventory cost.

(3) Scenario 3: Group-drug inventory optimization simulation

With the group as a unit, and setting the inventory multiplier shared by a group
and the drug shortage setting to 0, the minimum inventory setting value and inventory
multiplier of each drug in the group was obtained by minimizing the inventory cost as
the goal.

The simulation model established in this study represented the actual inventory status
of the hospital outpatient pharmacy. This model was used in a group mode to explore
and evaluate the simulation results of three scenarios of actual inventory in the outpatient
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department, the best inventory of each drug in the outpatient department, and the best
inventory of the group.

Group 1: The drugs in this group belonged to the recession type and had stable, low
consumption and a high chronic disease prescription ratio. There were 17 drugs in total.
As shown in Figure 16, the total average daily inventory cost of outpatient drugs in the
case hospital was NTD 631,970 per day in the case hospital, and the total average daily
inventory cost in the individual-drug inventory optimization simulation was NTD 523,766,
representing a decrease of 17.12% compared with the current situation. The total average
daily inventory cost of the group-drug inventory optimization simulation was shown to
be NTD 843,459, representing an increase of 33.47% compared with the current situation.
In the case of no drug shortage, the average daily inventory cost for outpatient drugs in
Group 1 of the individual-drug inventory optimization simulation was the minimum.
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Group 2: The drugs in this group belonged to the growth type and had stable, low
consumption and a high chronic disease prescription ratio. There were 60 drugs in total. As
shown in Figure 16, the total average daily inventory cost of outpatient drugs in the case
hospital was NTD 2,004,838, and the total average daily inventory cost in the individual-
drug inventory optimization simulation was NTD 1,163,383, representing a decrease of
41.97% compared with the current situation. The total average daily inventory cost of the
group-drug inventory optimization simulation was NTD 1,985,158, representing a decrease
of 0.98% compared with the current situation. In the case of no drug shortage, the average
daily inventory cost for outpatient drugs in Group 2 in the individual-drug inventory
optimization simulation was the minimum.

Group 3: The drugs in this group belonged to the growth type and had stable, high
consumption and a high chronic disease prescription ratio. There were 12 drugs in total.
As shown in Figure 16, the total daily average inventory cost of outpatient drugs in the
case hospital was NTD 598,939, and the total daily average inventory cost in the individual-
drug inventory optimization simulation is NTD 319,536, representing a decrease of 46.65%
compared with the current situation. The total average daily inventory cost in the group-
drug inventory optimization simulation is NTD 472,506, representing a decrease of 21.11%
compared with the current situation. In the case of no drug shortage, the average daily
inventory costs for the outpatient drugs in Group 3 in Scenarios 2 and 3 were better than
that in Scenario 1.

Group 4: The drugs in this group belonged to the growth type and had divergent,
low consumption and a high nonchronic disease prescription ratio. There were 36 drugs
in total. As shown in Figure 16, the total daily average inventory cost of outpatient drugs
in the case hospital was NTD 1,898,040, and the total average daily inventory cost in
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the individual-drug inventory optimization simulation is NTD 1,266,578, representing a
decrease of 33.27% compared to the current situation. The total average daily inventory cost
of the group-drug inventory optimization simulation was NTD 5,270,024, representing an
increase of 177.66% compared with the current situation. In the absence of a drug shortage,
the average daily inventory cost for outpatient drugs in Group 4 of the individual-drug
inventory optimization simulation was the minimum.

4.7. Managerial Implications

On the whole, the results obtained by the individual-drug inventory optimization
simulation were the best. When the group-drug inventory optimization simulation was
performed in this study, the average daily inventory cost was expected to fall between
the current drug simulation and the individual-drug inventory optimization simulation;
however, the results were not as expected. Only Group 2 and Group 3 were in line with the
expected results, which means that, although Group 1 and Group 4 were classified into the
same group, the consumption patterns of the drugs were quite different. It is therefore not
suitable for management to use the same inventory policy for all groups. This also means
that group-drug management of drug settings was suitable for Group 2 and Group 3, while
individual-drug management was suitable for Group 1 and Group 4.

However, from a practical point of view, a simple management method to achieve
maximum benefits is what managers expect. Group 2 and Group 3 could be managed
via a group-drug optimization method, and outpatient pharmacy managers could quickly
obtain inventory values. Moreover, the inventory cost would be better than the current
situation of the original outpatient drug inventory of the case hospital, which could improve
management efficiency and inventory costs. While the inventories obtained for Group 1
and Group 4 with group-drug optimization methods failed to be better than the current
situation in terms of cost, inventory management could still be optimized individually.
Although this would be less efficient than group-drug management, it could still achieve
better inventory costs than the current situation.

5. Conclusions and Future Research
5.1. Conclusions

This study used 125 drugs to conduct the two-stage clustering method. The outpatient
drug simulation optimization and individual- and group-drug inventory optimization
simulations were used to solve the proposed problem. The results shown in Figure 16
revealed that the outpatient drug optimization methods (Scenario 2) were suitable for
each drug, and that the group-drug inventory optimization simulation (Scenario 3) was
limited to the same inventory multipliers used by each drug in the same group to find the
minimum inventory. Only Group 2 and Group 3 had better average daily inventory cost of
outpatient drugs in Scenario 3 than in the case hospital (Scenario 1). However, although the
optimization method for each outpatient drug was the relatively better method, it would
still take a great deal of time to find a near-optimal solution for each drug. As the number
of drugs increases, the construction of the simulation model and the solution time requires
a heavier burden.

This study explored the management of drugs in a group-drug manner to determine a
fixed rule that could be applied to a group of drugs to improve the efficiency of management
and reflect good inventory costs. The group-drug inventory optimization simulation was
faster than the individual-drug inventory optimization simulation for outpatient clinics, as
it had the constraint that the inventory multipliers must be equal and all drugs in the same
group must be solved simultaneously. Although the group-drug inventory optimization
simulation obtained better results in only two groups (Group 2 and Group 3), it was still
helpful. In the future, when drugs belong to these two groups, the group-drug inventory
optimization simulation could be directly performed to obtain a better inventory, while
the other two groups could be managed by the individual-drug inventory optimization
simulation of each drug in the outpatient department.
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The contributions of this study are described as follows. This study proposes a novel
simulation model to analyze a large number of different types of drugs for inventory
setting optimization. Using the K-means clustering algorithm in the model was helpful
and effective to reduce the time for obtaining the optimal inventory solutions. In practice,
our model could help hospitals to control drug inventories and costs and enhance drug
management efficiency.

5.2. Limitations of This Research and Future Studies

The research scope of this study focused on the case outpatient pharmacy as the study
subject. In practice, each hospital owns several pharmacies, such as outpatient, inpatient,
emergency, and chemotherapy. Cross-pharmacy drug cooperation prevails for pharmacy
managers in order to avoid high inventory costs and drug shortages. Therefore, extending
a single pharmacy’s results to multiple pharmacies’ applications is a critical challenge
for researchers. The problem of designing a good mechanism for cross-pharmacy drug
cooperation merits further research.

In the process of this study, three suggestions were put forward as reference direc-
tions for future research based on the research hypotheses and with consideration of the
constraints encountered:

(1) Consider adding the drug inventory model of the main pharmacy and other subphar-
macies

Regarding the pharmacy department of the case hospital, the outpatient drug inven-
tory simulation model, as constructed by this study, was the drug inventory model for
only a single subpharmacy and did not consider the interactive operations of drug alloca-
tions with other subpharmacies (i.e., inpatient, emergency, and chemotherapy). Therefore,
if future research can extend the constructed model to other subpharmacy models, the
extended model will be more practical and referential.

(2) Consider different drug inventory policies

Different drug inventory policies may result in different drug inventory operations
and quantities. In addition to finding the best maximum and minimum inventory levels
for each drug in the drug inventory policy (s, S) as based on the current situation of the
case, future research can explore other drug inventory policies, such as the quantitative
ordering system (s, Q), regular ordering system (T, S), and comprehensive ordering system
(s, T, S), to discuss the differences in the costs of each drug inventory policy and determine
the drug inventory policy that is most suitable for the case hospital.

(3) Improve clustering accuracy

This study divided the data into four groups using a two-stage clustering method and
performed a group-drug inventory optimization simulation. It was concluded that this
method was applicable to two groups but not to the other two groups. This study found
that the consumption patterns of the drugs were not very similar in the two groups in
which the group-drug inventory optimization simulation was applicable, which led to this
result. Future studies can consider other different drug-related data groups to obtain drug
groups with more similarities.
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