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Abstract: Recent research indicates that Photoplethysmography (PPG) signals carry more informa-
tion than oxygen saturation level (SpO2) and can be utilized for affordable, fast, and noninvasive
healthcare applications. All these encourage the researchers to estimate its feasibility as an alternative
to many expansive, time-wasting, and invasive methods. This systematic review discusses the current
literature on diagnostic features of PPG signal and their applications that might present a potential
venue to be adapted into many health and fitness aspects of human life. The research methodology
is based on the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA)
guidelines 2020. To this aim, papers from 1981 to date are reviewed and categorized in terms of
the healthcare application domain. Along with consolidated research areas, recent topics that are
growing in popularity are also discovered. We also highlight the potential impact of using PPG
signals on an individual’s quality of life and public health. The state-of-the-art studies suggest that
in the years to come PPG wearables will become pervasive in many fields of medical practices, and
the main domains include cardiology, respiratory, neurology, and fitness. Main operation challenges,
including performance and robustness obstacles, are identified.

Keywords: photoplethysmography; PPG; pulse oximeter; healthcare; wearable devices; cardiology;
respiratory; neurology; diagnosis; monitoring; screening; fitness

1. Introduction

Photoplethysmography (PPG) measures the amount of light absorbed or reflected by
human tissues. This optical waveform, sometimes called digital volume pulse (DVP) [1], is
associated with the change in blood volume in the microvascular bed of tissue containing
valuable information about the cardiovascular, respiratory, and nervous systems [2]. The
importance of the PPG signal came from the fact that it can be easier to obtain with
noninvasive and affordable sensors. PPG is commonly used in clinical practice to measure
the oxygen saturation level (SpO2) in the blood and pulse rate as a vital sign of a patient.
After reviewing the literature, we identified several other applications of this noninvasive
method beyond pulse rate and SpO2. By processing PPG signals with different algorithms,
researchers have acquired valuable information related to respiratory rate, blood pressure,
ankle-brachial pressure, cardiovascular diseases, aging, neurological disorder, etc.

It is envisaged that the PPG signal can be clinically helpful to evaluate many phys-
iological characteristics. It could play an important role in developing affordable and
effective diagnostic, monitoring and screening tools in several areas of healthcare. Figure 1
shows the number of publications and citations of the words “Photoplethysmography” OR
“Photoplethysmogram” from 1968 till now, from the Web of Science report. We relate the
exponential growth around 2015 to the reveal of the first Apple watch.
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Several reviews on the application of PPG signals have been carried out. Some of
them focus on the specific medical use of PPG like pulse rate [3], blood pressure [4,5], atrial
fibrillation [6,7], circulatory monitoring [8], nociception [9], or on the specific placement
of PPG [10,11], others instead focused on reviewing the way that the signal has been ana-
lyzed [7,12–16] or the type of the sensor [17]. More than a decade ago, J. Allen [2] published
an interesting review about the applications PPG in clinical physiological measurement.
Kyriacou et al. [18] recently published a comprehensive book about Photoplethysmography
theory and principles, providing a detailed description of PPG optical components and
different signal analysis techniques. We will instead focus on PPG diagnostic aspects and
healthcare applications. The main objective of our review is to investigate different types of
diagnostic features and their potential applications on healthcare by reviewing the recent
publications and highlighting the impact and challenges facing the deployment of PPG
in healthcare.

In recent times, the PPG signal has been an important potential tool for diagnosis,
monitoring, and screening of several cardiovascular, respiratory, and neurological diseases.
Many of the analytical tools used in PPG studies have uncovered different diagnostic
features useful for those applications. The robust analysis and classification of these signals
is an important step towards developing affordable and convenient PPG-based tools in
many applications. Towards this goal, a systematic review of the literature on measurable
diagnostic features and usages in different clinical applications has been performed to
address the following critical questions:

(1) What are the main diagnostic features of PPG signal related to different clinical
applications?

(2) In which area can PPG signal have important impacts on future healthcare?

This systematic review of the literature on diagnostic features and potential appli-
cations of PPG signals in healthcare attempts to bridge this gap. The main objectives of
this review are to classify the literature, highlighting trends, and criticalities concerning
the use of photoplethysmography in healthcare. Besides, we tried to review the existence
use of PPG in healthcare more broadly and systematically. We compiled all peer-reviewed
published articles on the application of PPG signals and reviewed their diagnostic features
and related clinical applications. By analyzing the overall trends and architectural compar-
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isons made in individual studies, different PPG classification tasks were classified more
effectively with specific architecture design choices. We hope that this review can serve as
a starting point for future applications in architecture design of artificial intelligence and
deep learning techniques for PPG classification.

The rest of the paper is organized as follows. In Section 2, we have revealed the
methods in this systematic review. In Section 3, diagnostic features and current clinical
usages are discussed. Section 4 listed the potential applications of PPG in health care in
detail. Section 5 goes through the challenges. Finally, Section 6 is the conclusion.

2. Method of Systematic Review

A systematic literature search was done that involved searching and compiling avail-
able PPG literature. It was carried out to have enough background information and to
answer our defined research questions, which would guide further research in the clinical
use of PPG. The PRISMA 2020 guidelines for systematic reviews [19] were followed in
order to achieve a valid formulation in this study. This review is divided into four main
steps, as detailed below:

2.1. Search and Identification of Data Sources

A basic keyword-based search was made to gather as many publications as possible.
We have looked up popular scientific databases and search engines, including Web of
Science, Scopus, ProQuest, Elsevier, IEEEXplore, ScienceDirect, and ACM Digital Library
using keywords “photoplethysmography” OR “photoplethysmogram” OR “PPG” OR
“pulse oximeter” OR “photoplethysmographic” OR “oximetry”.

This systematic review covers important PPG application literature with a more focus
on recent research papers that have not been covered before in a review article. In addition,
we also consider older research papers with significant contribution in the PPG research
domain. Such extensive research returned almost 4000 scientific articles.

2.2. Eligibility

For a more focused search, the following criteria were met:

• C1: Original research work published in peer-reviewed journals or conferences.
• C2: Publication date from 1981 (oldest PPG paper in Web of Science) to 2021.
• C3: More focus toward recent studies (from 2015 till now).
• C4: Important work with significant number of citations before 2015 that opened a

new horizon in the field of PPG is considered.
• C5: If the keywords were not found in the title nor in the abstract, the paper was

excluded.

After applying such criteria, the number of papers was reduced to around 500.

2.3. Selection Process

To ensure enough search coverage, we considered the important citations found in
the original set of 500 papers. This process was done manually by screening each paper’s
references list.

All the abstracts were read and analyzed to finally decide the degree of relevance to
our objectives. This was achieved considering four more criteria:

• C6: Only works that considered the use of PPG as one of their main contributions.
• C7: Papers must be original—duplicate or very similar work were excluded.
• C8: Only studies on the area of healthcare were included (other areas like industrial

and education are not considered).
• C9: Studies on humans were considered only (other experimental studies on animals

like pigs and cows are excluded). This leaves us with 205 articles shown in Figure 2.
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Figure 2. Systematic review flowchart according to PRISMA 2020.

2.4. Results

To investigate and analyze PPG healthcare applications, all papers were carefully read
and classified based on their healthcare application domain. We tried to classify them as
much as we could, based on the similarity of the papers, reaching roughly nine diagnostic
feature and 12 potential applications, which finally falls under 4 main classes such as
diagnosis, monitoring, screening, and others.

3. Diagnostic Features and Their Clinical Usages

The device used to capture photoplethysmograph is remarkably simple and inexpen-
sive, and it consists of two components: a light-emitting diode (LED), which works as a
light or laser source (sender), and a photodiode, which works as a light detector (receiver).
Photoelectric plethysmography can be captured from fingers, toes, and nasal septum [20].
A PPG can be either transmission or reflection plethysmography (Figure 3).

Transmission plethysmography measures the LED light penetrating the body’s tissues,
and it is usually suitable for the fingertip or earlobe. Reflection plethysmography, where
the LED is next to the photodiode, continually records the scattering light from the tissue
and usually is suitable for the forehead or chest [21].

Red and infrared light are commonly used in pulse oximeters [22] since they can
penetrate human tissue deeper than green light [23]. The green light is often used in
commercial wearable devices like smartwatches, because there is a buildup of experience
from previous products to build on [23]. The PPG signal is clinically recorded using a
pulse oximeter, usually with a clip attached to the index finger; other fingers can be used,
even toes.
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Imaging photoplethysmography (iPPG), also known as remote photoplethys-
mography (rPPG) or non-contact photoplethysmography, was introduced in 2000 by
Verkruysse et al. [24,25]. The study shows that PPG signals can be remotely measured
from a face image sequence taken by a regular video camera. Recently, a couple of
mobile apps have put this technology within reach by taking advantage of the mobile
camera to monitor pulse rate continuously. iPPG offers a solution to use a regular
camera [26], a surveillance camera, or even a mobile camera to capture PPG from the
face, forehead, chest, finger, or any exposed skin from different body parts. iPPG
discovery opened up a new field of research and played an important role in remote
patient monitoring experiments [14,27–35]. Deep learning hype is also brought to the
field of iPPG [14,15].

PPG signal is a combined result of different effects due to the activities of different
organ systems. The light strength collected by the photodetector is affected by multiple
factors, such as the blood volume, blood vessel wall movement, and the orientation of red
blood cells [36]. There is a direct relationship between the PPG signal and human lungs and
heart, and this relation is already used clinically. There is also an indirect relation between
PPG and the human brain that is mainly used in observational studies [37,38]. The PPG
signal might reflect other body organs’ status, but the question remains, is this relation
reliable enough for diagnosing purposes? Figure 4 shows the important organs those have
effects on the PPG signal. It also shows different PPG signal acquisition means.

There are a few main characteristics of photoplethysmography (PPG) waveforms,
including amplitude (peak), height, area, width, maximum and minimum slope. These can
be analyzed in time domain or frequency domain [1]. There are also other characteristics
of PPG that were investigated widely in the literature, namely, pulse transit time (PTT),
pulse wave velocity (PWV), and pulse wave amplitude (PWA). PTT is the time required
for an arterial wave to propagate from two different arterial points. PTT can be measured
using the time delay between ECG and finger photoplethysmography (PPG) waveforms
(Figure 5). The relationship between PWV and PTT; that is, PWV = L/PTT, where L is the
distance between the heart and some peripheral sites [39]. PWV can be calculated using
PTT. It is noticeable that PTT is commonly used to estimate blood pressure [40], and PWV
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is commonly used to measure arterial stiffness [41]; both PTT and PWA are used during
sleep studies [42].
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Figure 5. Synchronized ECG and PPG, and the PTT between the two signals. Note. Adapted from [43]
Figure 2 “Blood Pressure Estimation Using On-body Continuous Wave Radar and Photoplethysmo-
gram in Various Posture and Exercise Conditions”, by Pour Ebrahim, M., Heydari, F., Wu, T. et al.,
2019, Sci Rep 9, 16346 (2019). (https://doi.org/10.1038/s41598-019-52710-8, accessed on 30 December
2021). CC BY 4.0.

In 1972, a Japanese study by Ozawa et al. [44] introduced the first and second deriva-
tives of the PPG (SDPTG) [16] as a method to recognize the inflection points of the PPG wave
more accurately. Since then, more researchers have relied on SDPTG as a prognostic tool for
many diseases, especially cardiovascular diseases (CVDs) [45–51]. Several studies [45,47,49]
show that SDPTG is significantly associated with CVD. Another study [50] also associated

https://doi.org/10.1038/s41598-019-52710-8
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SDPTG with metabolic syndrome (MetS) and other cardiovascular risk indicators. While
Terai et al. [52] pointed out that although SDPTG is not the most useful predictor of CVD
in hypertensive patients, it might help in large population screening. Another usage of
SDPTG was found on assessment of end-organ damage [53], and hemodynamic changes in
dementia patients [54].

With the emerging integration of technology in every life aspect, wearable devices like
smartwatches have become very popular due to the incorporation of PPG sensors. Many
wearable-device manufacturers claimed that it could measure multiple health aspects like
heartbeat, blood pressure, stress level during exercise. Devices with a PPG sensor could
be worn on wrist, nasal [55], ankle, and chest [17]. Some researchers use PPG sensors
attached to multiple body parts at the same time [56,57]. Others used unusual PPG sensor
placement, like in bed mattress [58], body scale, or as a ring [59].

In the following subsections, we present the diagnostic features of PPG signal and their
clinical application. In each subsection, the utilization of PPG in various health applications
is discussed.

3.1. Pulse Rate and Its Variability

Pulse rate (PR) and pulse rate variability (PRV) are the vital signs that are essential
baseline evidence of patient health and useful for diagnosis, monitoring, and screening of
different diseases. Two different approaches of measuring pulse rate are known: contact
and non-contact PPG. In contact PPG [60–62], pulse rate is measured by placing a finger
on the phone rear camera while, in non-contact [33,34,63], iPPG is extracted from the face,
without the need for direct skin contact. In general, contact PPG-based apps showed better
accuracy than non-contact PPG-based apps [64].

The use of iPPG obtained from a smartphone camera or from a regular camera to
estimate PR is prevalent in the literature. PR was successfully extracted from the face
using affordable cameras, and high degrees of agreement with the standard tools were
achieved [26,65]. This was similarly true for iPPG from long-distance [66], and among the
crowd [67].

Different methods of PR estimation were compared using iPPG from the DEAP
dataset [31]. DeepPhys [68] is a deep convolutional network, proposed for heart and
breathing rate measurement, tested against four datasets. In [69–72], a time-domain algo-
rithm was proposed for real-time detection of the PR from wearable devices. Pulse rate
variability can be detected from the SDPTG as well [48–51,73].

3.2. Blood Oxygen Saturation

In the early 1970s, Takuo Aoyagi, developed the first commercial oximetry, where
PPG signal was obtained from the ear. In 1977, the Minolta Camera Company introduced
the finger oximeter [44]. A normal oxygen reading of a pulse oximeter for healthy lungs
usually ranges from 95% to 100%. Any abnormal reading is an alarm for several lung
diseases, such as chronic obstructive pulmonary disease (COPD), pneumonia, and asthma.

Pulse oximeters were originally used in the operating room by anesthesiologists
to observe unconscious patients. After that, the technology was approved for usage in
the intensive care unit (ICU) and vital sign checking [44]. Nowadays, the PPG signal is
practically used in clinical oximeters for oxygen saturation and pulse rate measurement in
primary clinics and as a fitness indicator in smartwatches.

Measuring patient SpO2 using a finger is a standard practice in inpatient monitoring or
outpatient checkup. When a patient has poor blood circulation in the fingers, an Ear Pulse
Oximeter with an ear probe can be used on the earlobe. A couple of studies investigated
PPG measurement behind the ear [74], and from the ear canal [75] compared to the finger
oximeter; both indicated that blood SpO2 from the ear canal had a significantly faster
response than finger oximeter. Digital video camera also can provide a rough screening
tool for SpO2 [76–79].
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3.3. Blood Pressure (BP)

Blood pressure (BP) evaluation is an essential measure in clinical practice. A patient’s
BP is routinely obtained at every physical examination, including outpatient visits and
inpatient monitoring. Many researchers evaluate the estimation of BP using PPG signal
only [43,80–89], while others paired it with other types of signals, such as ECG [43,90,91]
and BCG [40,92].

Many research on the usability of cuffless and continuous BP measurement has been
done [40,43,80,82–100]. A smartwatch with two PPG sensors was used to estimate BP in
real-time [81]. Wrist-worn bands [92,98], earlobe sensor [43] and even a special bathroom
weighing scale [40] are used to estimate BP continuously. A couple of studies [97,100–102]
monitor the BP iPPG from a camera; others used smartphone cameras [84,101].

BP is an identification of a wide variety of diseases, including hypertension, CVDs,
and kidney failure [103]. Multiple papers [93,94,96] estimate BP using PPG in the Or-
thostatic hypotension test. Ishbulatov et al. [104] added CVD assessment to a similar
study. Nuckowska et al. [95] studied slow breathing on BP measured by PPG. The vascular
tone was continuously measured using PPG and was found to be higher in hypertension
patients [105]. Some researchers use machine learning algorithms [106], such as deep
convolutional autoencoder (DCAE) [87], Nearest Neighbor (NN), Support Vector Machines
(SVM), Decision Trees (DT), Neural Networks [88,89,102,107,108], etc., to identify abnormal
BP from PPG signal.

PPG-PB measurement was found to be comparable to the gold-standard sphygmo-
manometer reading; nevertheless, PPG is a more convenient method for long-term BP
monitoring [81,98]. Although current technologies in measuring BP from PPG is not mature,
it is anticipated that soon, accurate, continuous BP measurements will be within reach from
mobile and wearable devices given their potentials [5].

3.4. Respiration Rate (RR)

The respiratory rate (RR), which is one of the vital signs, is the number of breaths in
one minute. Pulse oximeter reading for normal resting heart for adults ranges from about
60 to 100 beats per minute, although some cases might be lower like athletes [22].

RR may differ if a person has a medical condition [109] and PPG waveform is
also affected by respiration. Many methods were proposed to extract RR from PPG
signal [70,71,110,111] and a real-time estimation of RR from PPG is presented in [70]. Ex-
tracted RR from finger PPG has better quality than extracted from ear PPG [110]. RR signal
was also extracted from iPPG [112].

3.5. Arterial Stiffness and Aging

Aging is associated with major physiological and psychological changes in humans.
Aortic pulse wave velocity (PWV) is used as the ideal measurement of arterial stiffness
and PWV assessment can be acquired using PPG. Some studies try to investigate the
effect of aging over PPG signal characteristics [113–115]. On the other hand, a couple
of studies [45,56,57], examined the associations between aging and the SDPTG, to take
advantage of the fact that SDPTG is used as an arterial stiffness indication. In fact, arterial
stiffness tends to use SDPTG more than raw PPG. In 1998, Takazawa et al. [116] presented
the second derivatives of the PPG as an index of vascular aging.

Brillante et al. [117] consider PPG alone as a handy method of measuring arterial
stiffness. They also conclude that arterial stiffness is correlated with age, race, cholesterol,
blood pressure, and PR. Clarenbach et al. [118], Pilt et al. [119], and Wowern et al. [41],
compared the advantages of the stiffness index (SI) derived from PPG and the augmentation
index derived from arterial tonometry (AIx). SI and AIx are both used for the estimation
of vascular stiffness degree. The three studies recommend the use of PPG over arterial
tonometry. Since the SI method is fast, affordable, and operator-independent, it could
implicate benefits in clinical use.
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PPG was used to predict AIx through a Deep Convolutional Neural Network (DCNN) [120].
To understand the evolution of arterial stiffness, Fung et al. [121] conducted a genome-wide
association study for stiffness index (SI); 127,121 UK European participants were involved. The
research recognized four loci significantly associated with SI. A system that uses eight PPG
sites and 10 ECG sites was developed [56]. The main purpose of the system is to facilitate the
assessment of arterial stiffness. A study by Arnold et al. [122], reported a relationship between
inflammation, hemostasis, and arterial stiffness measured by PPG. The study emphasizes the
ability of SI to indicate patients at higher risk of future CVD and increased mortality. Multi-
site PPG system shows potential to assess cardiovascular risk linked to vascular aging [123].
Ohshita et al. [46], showed that post-challenge hyperglycemia is an independent predictor for
arterial stiffness.

3.6. Jugular Venous Pulse (JVP)

The jugular venous pulse (JVP) is useful to diagnose abnormalities in CVDs. The
standard golden method to extract JVP is invasive central venous line catheterization.
Several studies investigate noninvasive JVP measurement, using a contact PPG sensor
placed on the neck [69] or a regular video camera [124–126]. Both of these approaches
obtained remarkable results.

3.7. Ankle Brachial Index (ABI)

Ankle brachial index (ABI) is the ratio between BP in an artery of the ankle and the BP
in an artery of the arm. Usually, it is done to check peripheral artery disease (PAD) [127].
However, some studies focused on its ability to indicate arterial stiffness [128,129]. The
capability to predict ABI from PPG features was studied by Perpetuini et al. [129] and
Cho [128].

3.8. Microcirculatory

The main usage of a pulse oximeter is monitoring blood perfusion in human tissue;
precisely, it monitors the microcirculatory. A PPG sensor was attached to lower limbs
to record perfusion increase [130]. iPPG was used to detect blood flow changes during
thermal exposure to the skin [28]. It is also found that iPPG is also associated with cutaneous
perfusion [32].

3.9. Autonomic Nervous System

An article by Aileni et al. [37] studied the correlations between biomedical signals
(including PPG) that measure the electrical activity in the brain. Kawachi et al. [38] also
proposed a new protocol to monitor the autonomic nervous system in patients with syncope
that includes PPG.

Table 1 summarized PPG diagnostic features and their clinical application. Measurable
diagnostic features based on different PPG waveforms such as contact-PPG, iPPG, and
SDPTG are summarized in Table 2.
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Table 1. Measurable diagnostic features from different organ systems and their clinical applications.

Measurable Features
Clinical Applications

Diagnosis Monitoring Screening

Pulse rate and its variability -

• PR [33,34,61,63–65,68]
• PRV and CSC [62]
• CVD [66]
• Vital sign [26,67]

• PR [31,60]

Blood oxygen saturation - • SpO2 [74,75,79] • SpO2 [76–78]

Blood pressure

• Hypertension [5,99]
• Orthostatic hypotension

[93,94,96]
• CVD [104,105]

• CVD [91]
• BP

[40,43,80–100,102,106–108]
-

Respiration rate - • RR [70,71,110] -

Arterial stiffness

• Aging [45,57,113–115]
• PWV [117]
• SI [41,118]
• CVD [56,122]
• Vascular aging [116]

• SI [46,123]
• Cardiovascular risk [123]

• SI [119,121]
• AIX [120]

JVP - • JVP [69,124–126] -

ABI • CVD [119,120] - -

Microcirculatory - • Perfusion change [28,32,130] -

Automatic Nervous system
• Electrical activity in the

brain [37]
• Syncope [38] -

Table 2. Measurable diagnostic features based on different PPG waveforms.

Measurable Features
Signal Type

PPG iPPG SDPTG

Pulse rate and its
variability [50,64,69–72] [26,31,33,34,60–63,65,66,68] [48–51,73]

Blood oxygen saturation [74,75] [76–79] -

Blood pressure [40,43,80–100,102,106–108] [84,97,100–102] -

Respiration rate [70,71,110] [68,112] [111]

Arterial stiffness [41,113–115,117–121,123] [35,126] [45,46,56,57,116]

JVP [69] [124,126] -

ABI [128,129] - -

Microcirculatory [130] [28,32] [53,54]

Automatic Nervous
system [37,38] - -

4. Potential Applications of PPG Signal and Impacts on Healthcare

Today PPG found its applications in several sectors of healthcare, from vital sign
estimation like pulse rate, respiratory rate, and blood pressure to more complicated diag-
nosis areas like sleep staging and arterial steal syndrome. In 2015, the Apple Watch (AW)
with embedded PPG was released, and since then, it has become the leading personalized
wearable device with a touch of fashion. In 2018, the United States Food and Drug Ad-
ministration (FDA), identified AW as “PPG-AFib analysis software for over-the-counter
use” [131].
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It could be noted that some medical applications are directed into the use of PPG
signals more than others, like CVDs and sleep disorders. In the following subsections, we
discuss the potential clinical applications of photoplethysmography in diagnosis, monitor-
ing, screening and fitness.

4.1. Diagnosis

Adapting wearable devices that use PPG sensors contributes to early diagnosis and
prevents further health complications. In addition, it provides a continuous and con-
venient observation. PPG wearables show great potential to be used in CVDs risk esti-
mation [118], prognostic of suspected sleep apnea [132,133], and the clinical diagnosis
of hypertension [104], diabetes and psychiatric conditions. A combination of PPG and
acoustic Doppler analysis provides a reliable method for arterial steal syndrome (ASS) and
arteriovenous fistulas stenosis detection in patients receiving hemodialysis [134].

4.1.1. Cardiovascular Diseases (CVDs)

According to World Health Organization (WHO), cardiovascular diseases (CVDs), are
the leading cause of death globally. It includes a group of heart and blood vessels disorders,
such as: heart attack, stroke, and heart failure [135]. Cardiology is one of the primary
application areas of PPG signal for diagnosis, monitoring, and screening of cardiovascular
diseases (CVDs). Noninvasive and continuous CVD risk assessment and management have
gained a lot of attention recently, especially after news about commercial smartwatches
have been life-saving for multiple unaware CVD patients.

PPG signal and SDPTG have been utilized to diagnose several CVDs. It was found
that there is a noticeable association between the SDPTG and cardiovascular mortality [51].
The authors of [136] classify the output of diagnosis of CVDs in PPG signals using a fuzzy
model. A PPG device prototype was designed to identify heart failure (HF) [137]. PPG was
used to monitor obstructive sleep apnea in subjects with HF [138]. It was used to remotely
monitor jugular venous on HF patients [139]. It has also been studied and investigated to
measure other cardiac disorders, e.g., venous occlusion [140] and obstructive hypertrophic
cardiomyopathy [141], and to predict cardiac indexes, e.g., cardiac output [142] and arterial
compliance [143]. The stiffness index derived from PPG is simple and possibly yields an
advantage in CVDs risk estimation [118].

However, there is an evident need for further studies as well as tests before any such
employment could be made available. In addition, future works aiming to do other analysis
technics are needed, especially with deep learning, for a better classification of CVDs.

4.1.2. Sleep Disorders

Polysomnography (PSG), or sleep study, is an overnight test where the patient is
traditionally admitted to the hospital. It is used for diagnosing sleep disorders, including
obstructive sleep apnea syndrome (OSAS). PSG needs a lot of resources that place a large
burden on patients and healthcare providers at the same time [144].

iPPG enables continuous and convenient monitoring of pulse rate and oxygen sat-
uration during sleep [145]. Using PPG to diagnose sleep disorders has been widely in-
vestigated [42,132,138,146,147]. PPG is used to assess a patient’s blood pressure [42] or
cardiorespiratory status while sleeping [42,146]. Korkalainen et al. developed an accurate
deep learning model for recognizing sleep stages based on PPG [132].

The potential of having a portable and convenient method to diagnose sleep disorders
is motivating; it complements the standard Polysomnography (PSG) diagnostic techniques
by allowing unobtrusive sleep and respiratory monitoring.

4.1.3. Diabetes

Studies investigating non-invasive blood glucose monitoring are still in the early
stage, and the relation between blood glucose and PPG obtained from a pulse oximeter
is ambiguous. A study in 2012 [148] reported a false reading of pulse oximeter when
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used in a diabetic patient under oxygen therapy. However, some researchers use diabetes
patients as research subjects [149–154]. Others use machine learning models, like support
vector machine [155] and logistic regression [156], to differentiate between PPG signals for
diabetic patients and non-diabetic patients. With the aid of machine learning techniques,
PPG shows advances in measuring glucose levels [157,158]. DNN is used to build a
biomarker of diabetes from PPG signals collected using a smartphone app from 53,870
participants [159]. PPG readings from the diabetic neuropathic group were different from
those from the control group [149–151,160].

4.1.4. Psychiatry

According to the American Psychiatric Association [161], psychiatry is “the branch
of medicine focused on the diagnosis, treatment, and prevention of mental, emotional
and behavioral disorders”. Human emotions and expressions explanation is confusing
and interesting even for other humans. Humans’ ability to lie or pretend gives them the
power to hide their real emotions, but physiological signs cannot lie. In fact, PPG signal
has emerged as a new tool to detect human emotions, anxiety, and mental stress.

Human reactions towards video clips have been studied using biosignals, including
PPG in [162–164]. Lee et al. [162] studied drivers’ anxiety in different situations, while
Tanaka et al. [165] evaluated patient anxiety before an operation by examining vascular
tone taken from finger PPG. Recognizing drivers’ emotions toward a video clip using
PPG is possible [162], but it is challenging to classify their physiological response using
PPG because of the motion artifact effect [166]. A study [29] used iPPG to confirm that
physiological changes are related to spontaneous expressions. Perpetuini et al. [167]
suggested that PPG can be used in emotions recognition and estimate the state anxiety,
in the field of human–machine interaction. Fernández et al. [163] differentiate between
subjects’ responses based on the age group. KEmoCon [168] is a dataset that used PPG
along with other physiological signals to record the emotions of 32 participants in the
context of social interactions.

In order to assess mental stress from PPG, Charlton et al. [169] identify features of
PPG that can indicate mental stress. A PPG earlobe sensor was used to monitor PRV
induced by mental stress [170]. A person’s stress state was classified using convolution
neural networks [171]. Cognitive load increases with the challenging level of a game; PPG
signals can measure cognitive load during video game playing [172]. iPPG can predict
PRV remotely under cognitive stress [173–175] and under mental arithmetic test [176,177].
iPPG system can be used to measure peripheral hemodynamics during psychological stress
without contact [27].

Raheel et al. [164], conclude that PPG classifies human emotions better than electroen-
cephalography (EEG) and galvanic skin response (GSR). However, the research in this area
is yet nascent or immature; researchers do not know what psychiatry issues may emerge
from PPG data and avoid hypothesizing particular relationships between variables. More
efforts toward specific subtopics can reduce the fuzziness of the literature.

4.2. Monitoring

Patients admitted in the hospitals consume the most part of healthcare resources,
especially critical care patients, where they need continuous monitoring, that’s required
complex and expensive devices, and around-the-clock nursing staff and physicians. PPG-
based continuous monitoring offers affordable, accessible, convenient, and reliable long-
term monitoring systems. PPG is also used to monitor patients in the intensive care unit
(ICU) and the Neonatal Intensive Care Unit (NICU) [134,178,179].

4.2.1. Outpatient Care (OPD)

Outpatient services are usually done in a medical center. This includes tests, minor
procedures, scenes, and doctor consultations. Wearable devices such as smartwatches
and fitness bands could provide continuous patient monitoring without the need for
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admission [45], particularly for chronic disease that requires ongoing medical attention,
such as heart disease [180,181], and peripheral neuropathy [149]. Terminal illness care can
be provided at the convenience of home with the evolution of PPG wearables [54,58].

Continuous health monitoring for the management of chronic diseases through wear-
able PPG devices is more reasonable than iPPG solutions. On the other hand, iPPG solutions
through cameras are more suitable for population screening.

4.2.2. Pediatrics

Pediatrics is a branch of medicine that deals with physical, mental, and social health of
children from birth to maturity. Children differ from adults in many health measurements
aspects [182]. Different vital signs induced from the iPPG signal of children are strong
enough to be measured. iPPG offers contactless monitoring which is important in pediatrics
especially monitoring NICU patients.

For young children, the measurement of the electrical activity of the heart is possible
by using PPG-based system [183] as an alternative of ECG [184]. Another study in [185]
shows the feasibility of using PPG to estimate PRV at home for pediatric oncology. A
couple of papers indicates the possibility to measure BP using PPG in toddlers [186], and
obese children [181]. PTT derived from PPG can be used as a noninvasive measure of
cardiovascular risk, especially in infants and toddlers [187].

Monitoring NICU patients’ cardiovascular [188,189], respiratory [190], and circulatory
parameters [189,191] is possible through PPG oximeter. iPPG also can aid in monitor-
ing SpO2, PR, and RR status from a video camera [78,191]. Pulse transit time of PPG
may aid in evaluating Patent Ductus Arteriosus (PDA) status in preterm infants [192].
Chung et al. [193], designed a small PPG-based, noninvasive, and relatively small adhesive
bandage that can be used in NICU or pediatric intensive-care units PICU for vital signs
continuous monitoring.

Challenges like low light level and child motion prevented successful and continuous
measurement from time to time. Better hardware and improved algorithms are required to
increase robustness.

4.2.3. Surgery

A pulse oximeter is one of the essential instruments that are attached to an anesthetic
patient during surgery. PTT is an effective way to evaluate the level of analgesia for
patients performing hand surgery [194]. A study investigated the characteristics of low-
frequency (LF) pulse rate variability (PRV) and PPG waveform change during cardiac
surgery and revealed that the synchronization between PPG and PRV probably came from
neurogenic nature [195]. A nasal PPG instrument was developed to evaluate analgesic
levels during surgery for patients under general anesthesia [55]. Chen et al. [179] found
an association between PPG and major hemorrhage in trauma patients during medical
helicopter transport.

iPPG obtained from the chest can be used after major surgery to assess the differences
in cutaneous perfusion [30]. It is also used to assess blood perfusion in the brain cortex
during open brain surgery [196]. PulseCam [197] is a sensitive camera that can capture
blood perfusion conveniently and affordably.

4.2.4. Remote Monitoring during COVID-19

While the world is still suffering from the pandemic of COVID-19, finding a convenient,
cheap solution would save healthcare providers a lot of effort and funds. SpO2 reading is
one of the first signs to be checked in ER to decide COVID-19 severity [198]. To assess patient
condition; healthcare workers should evaluate pulse-oximetry for individuals presenting
with respiratory symptoms, fatigue, or malaise. iPPG systems and PPG wearable sensors
provide a convenient remote way to monitor patient vital signs, especially COVID-19
patients. It also could facilitate keeping patients away from medical staff. PPG wearables
can measure a patient’s PR, BP, SpO2, and respiratory rate [75,199,200].
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Recently FDA published several guidelines and an enforcement policy [201] for non-
invasive remote monitoring devices manufacturer regarding COVID-19. This highlights
the important role of wearable devices such as smartwatches in monitoring patient health
in such pandemics. Apple website [202] announced detailed instructions for patients and
health care providers to emphasize the usefulness of the watch in telemedicine visits during
COVID-19. There is also a need to develop algorithms that can indicate the possibility of
infection in the early stages of COVID-19. Additionally, the interesting idea is to estimate
the quarantine duration for each individual using wearable devices [199].

More studies are needed to determine the feasibility and validity of iPPG systems
for mass screening against COVID-19. Although these systems may be used for initial
individuals’ temperature evaluation, in high throughput places like airports, shopping
malls, and sporting events, their validity, when used for multiple people simultaneously,
needs further investigation.

4.2.5. Neurology

Neurology is the branch of medicine concerned with the diagnosis and treatment
of nervous system diseases that affect the brain, the spinal cord, and the nerves [203]. It
includes pain, headache, sleep, epilepsy, etc. [204]. Wearable PPG sensors can be promising
to monitor Alzheimer’s patients [58], and multiple sclerosis patients [205]. Finger SDPTG,
which provides hemodynamic changes, was studied in Alzheimer’s and Binswanger’s
patients [54].

The visual analog scale or the numeric rating scale is generally used in clinical practice
to assess pain severity, but these scales cannot be used for unconscious patients or those
with dementia [206]. Several publications have appeared trying to measure pain using PPG
and putting patients under different stimuli, e.g., electrocutaneous [206], heat [207], stimuli
images [208], and pain provoked in a social experiment [209].

4.2.6. Dialysis

Wieringa [210] suggested a wide adoption of smart sensors for patients on dialysis
(including PPG), as they need continuous monitoring to optimize treatment efficacy and
patient care. Arterial steal syndrome is one of the dialysis complications. PPG can be used
for arterial steal detection [134].

4.3. Screening and Fitness

PPG signals collected from mobile phone applications can be very beneficial to build
standard health indices and measurements nationwide. Considering the affordability and
availability of digital cameras everywhere, iPPG has tremendous potential for the future of
mass screening. The Huawei Heart Study provided an excellent example of the benefits of
PPG to perform general population screening [211].

4.3.1. Atrial Fibrillation (AFib)

Atrial fibrillation (AFib) is defined as an abnormal and often rapid heartbeat. It has
clear connections with other CVDs, including HF, diabetes mellitus, and hypertension [212].
Commonly used methods to detect AFib are instant ECG examination and 24 h ECG Holter
observation. However, due to its clinical limitation, the ECG method might miss some AFib
episodes [178]. On the other hand, on the standard clinical monitor, PPG is an outstanding
indicator of cardiac arrhythmia in general. PPG is highly sensitive to any irregularity of the
pulse [213].

Detecting AFib using wearable devices is a feasible and reliable approach during
inpatient physical activity [214] or free-living conditions [180,215,216]. However, the
accuracy is degraded based on the intensity of the movement [162]. An interesting AFib
risk score assessment is developed in Huawei Heart Study on 644,124 individuals [211].
The result of the study could ease future population screening and prevention against AFib.
DeepBeat [216] is a multi-task deep learning model to estimate signal quality and detect
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arrhythmia episodes simultaneously in wearable PPG. In 2017, Tang et al. [178] proposed a
novel clinical study to investigate the effectiveness of PPG signals in identifying AFib. The
study simultaneously recorded ECG and PPG signals in patients admitted to the ICU with
a stroke. Taking into consideration the need for annotated, public PPG databases with an
abnormality, Sološenkoa et al. [217], used ECG databases with AFib episodes to generate
artificial PPG signals.

Although the above research indicated that PPG could correctly detect AFib most of
the time, this sort of application still needs to be tested in a larger population. There is a
need to prove that PPG can differentiate between AFib and other kinds of arrhythmias.
However, if future trials prove successful, it could be a cost-effective, convenient way to
screen people early for this common problem.

4.3.2. Fitness

Smartwatches and fitness trackers are usually advertised as personal assistants and
health monitor devices that can count your steps, calories and measure pulse rate. These
PPG-based technologies have the ability to enhance the quality of individuals’ life. The ele-
vation of personal lifestyle and fitness level have a direct impact on the public health level.

Fitness smartwatch is the most common application for PPG usage in daily life. It
can measure SpO2 and PR continuously and accurately. PPG waveform changes while
exercising, which might be useful for measuring cardio stress [218], and cardiac output [142].
‘Heartbeats’ is a system designed to produce different kinds of music based on synchronized
PPG, based on the claim that music can enhance athletic performance [219].

4.4. Others

There are other medical applications of PPG waveform that have not gained much
attention, like fertility monitoring [220], end-organ damage [53], wound healing predic-
tion [221], and hematologic disorder [222].

Table 3 summarizes the main application areas of PPG together with different types of
signal such as contact-PPG, iPPG, and SDPTG. Table 4 lists specific applications of different
PPG in employment areas. Finally, Table 5 presents public datasets of PPG signal used in
the literature. The Venn diagram in Figure 6 illustrates literature classification based on
healthcare application domains.

Table 3. Different PPG waveforms and their application based on health domain.

Application
Signal Type

PPG iPPG SDPTG

Diagnosis

CVDs [136–139,141–143] [140] [49–52]

Sleep disorders [42,132,138,146,147] [145]. -

Diabetes [148–158,160] - -

Psychiatry [162–165,167,169–172] [27,29,173–177] -

Monitoring

OPD [58,149,180,181] - [54]

Pediatrics [181,184,186–190,192,193] [78,191] -

Surgery [55,179,195] [30,196,197] -

COVID-19 [75,199,200] - -

Neuro [58,205–209] [196] [54]

Dialysis [134,210] [210]

Screening
AFib [180,214–216,219] - -

Fitness [142,218,219] - -

Others [220–222] - [53]
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Table 4. Specific applications of PPG signal in healthcare in each domain.

Application Usages (Related Disease)

Diagnosis

CVDs

• Cardiac output [136,142]
• HF [137]
• OSA [138]
• JVP [139]
• Venous occlusion [140]
• Obstructive hypertrophic cardiomyopathy [141]
• Arterial compliance [143]

Sleep Disorders

• BP and PR [138]
• BP [42]
• CVD [42,146]
• Sleep staging [132]
• Apnea [133,138,147]

Diabetes
• Diabetes [155–157,159]
• Glucose level [157,158]
• Diabetic neuropathy [149–151,160]

Phychiatry

• Reactions [162–164].
• Anxiety [162,165,167]
• Vascular tone [165]
• Emotions [162,164,167].
• Physiological response [29,163,166]
• Age [163]
• stress [27,169–171]
• Cognitive load [172,174–177]

Monitoring

OPD
• CVDs [180,181]
• Peripheral neuropathy [149]
• Dementia [54,58]

Pediatrics

• PRV [183,185]
• BP [181,186]
• CVD [187–189]
• RR [190,191]
• PDA [192]
• Vital signs [193]

Surgery
• Anesthesia [55,194]
• PRV [195]
• Blood perfusion [30,179,196,197]

COVID-19 • PR, BP, SpO2, & RR [75,199,200]

Neuro
• Dementia [54,58]
• Multiple sclerosis [205]
• Pain [206–209]

Dialysis
• treatment efficacy [210]
• Arterial steal [134]

Screening

AFib • detect episodes [162,178,180,211,214–216]

Fitness • Exercising [142,218,219].

Others

• Fertility monitoring [220]
• End-organ damage [53]
• Wound healing prediction [221]
• Hematologic disorder [222]
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Table 5. Public datasets of PPG signal used in the literature.

Area Databases

CVDs
• CapnoBase [223] used in [136]
• PPG-DaLia [224] used in [72]

Psychiatry • K-EmoCon used in [168] for continuous emotion recognition

Neuro • International Affective Picture System (IAPS) [225] used in [208] for image stimuli.

AFib
• 2015 IEEE Signal Processing Cup [226] used in [216] for AFib episodes detection
• MIMIC and the University of Queensland Vital Signs Dataset [227] used in [217] for AFib modelingHealthcare 2022, 10, x FOR PEER REVIEW 5 of 28 
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5. Challenges

As we have shown before, the use of the PPG waveform could be useful for many
healthcare applications. However, it is not adopted yet in actual practice in most of the
domains due to several limitations and challenges.

1. Approvals and authorities: Although wearable devices have gained popularity among
a wide range of users to track their health and fitness, they need to seek health
authority’s approval to provide better, trusted solutions and avoid future legal issues.

2. Pulse oximeter clinical limitations: As the most used PPG device, the pulse oximeter
has a major limitation. The pulse oximeter is used to measure the SpO2 of the
hemoglobin in arterial blood, but it does not necessarily reflect how well the patient
is ventilated. Even when the SpO2 reading is normal, the pulse oximeter cannot
distinguish between blood saturated in oxygen or in carbon monoxide, which explains
the false positive reading obtained right away after smoking [22]. Another medical
limitation that clinicians must be aware of is the false reading for low peripheral
vascular perfusion patients.

3. PPG alone is not always enough: Usually, investigating the efficacy of PPG signal
is compared or paired with other biological signals or diagnosing methods that are
commonly used in practice. For example, ECG is the most common signal that is
usually combined with PPG; for sleep disorders, it is combined with PSG, or with
Electroencephalography (EEG) for neurology research. Therefore, after all, PPG alone
might not be enough, especially if we need a very accurate measurement.

4. Abstract representation: Clinical oximeter should be able to show more detailed infor-
mation about the PPG signal to the practicing clinicians [213]. Sometimes irregular or
anomaly readings of an oximeter could be found without a convincing explanation.

5. A hybrid field: Further research effort and a much greater focus on collaboration
between healthcare and engineering is needed to facilitate the adoption of wearable
devices in practice. Experts from both specialties are needed to reach an outstanding
outcome.

6. Quality of the acquired PPG wave: Another challenge facing the adoption of PPG-
based devices is that PPG signal quality might be reduced due to many artifacts.
Motion artifacts can interfere with the proper acquisition of reliable PPG signals.
Several approaches in the literature deal with the corruption of the signal using signal
processing algorithms.

7. The emergence of machine learning: Although multiple studies showed great per-
formance by applying deep learning to PPG signal, that area could face a couple of
challenges, including the required computation power and data annotation, besides
dealing with other wearable device limitations such as storage and battery.

8. Shortage of data in medical applications: Although there are a couple of medical
datasets that contain a PPG signal filed, three of them are drawn from the Medical
Information Mart for Intensive Care (MIMIC) database [228] with an alteration. There
is a lack of a PPG dataset with a large sample space in many healthcare topics.

9. Patient privacy and security: Wearable devices such as smartwatches raise multiple
security issues; before developing a remote medical system, multiple issues shall be
kept in mind, like insecure wireless connection, lack of encryption, and authentication.

6. Conclusions

PPG signal lately gained immense attention due to the availability of wearable sensors
and oximeters. This survey has revealed the diagnostic features of PPG signals besides
their potential clinical usage in healthcare. We have reviewed the potential impact of PPG
signals for diagnosing, monitoring, screening and fitness of inpatient and outpatient. To
aid future research, we have identified potential challenges that future adoption might
face. Although the investigation of PPG-based methods in diagnosis and monitoring is
not nascent, more collaboration between medical practitioners, engineers, and wearable
sensors manufacturers could give a jumpstart.



Healthcare 2022, 10, 547 19 of 28

Author Contributions: M.A.A. and M.S.I. reviewed and classified the literature. M.S.I. and S.A.-A.
designed the main conceptual ideas and supervised the work. A.S.B. approved medical terminolo-
gies, supervised medical aspects, and agreed to the classification. A.S.B. and M.S.I. proofread the
manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data generated or analyzed during this study are included in this
review.

Acknowledgments: The authors would like to thank the Deanship of Scientific Research at King
Saud University for funding and supporting this research through the initiative of DSR Graduate
Students Research Support (GSR).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Elgendi, M. On the Analysis of Fingertip Photoplethysmogram Signals. Curr. Cardiol. Rev. 2012, 8, 14–25. [CrossRef] [PubMed]
2. Allen, J. Photoplethysmography and its application in clinical physiological measurement. Physiol. Meas. 2007, 28, R1. [CrossRef]

[PubMed]
3. Md Lazin Md Lazim, M.R.; Aminuddin, A.; Chellappan, K.; Ugusman, A.; Hamid, A.A.; Wan Ahmad, W.A.N.; Mohamad, M.S.F.

Is heart rate a confounding factor for photoplethysmography markers? A systematic review. Int. J. Environ. Res. Public Health
2020, 17, 2591. [CrossRef] [PubMed]

4. Hosanee, M.; Chan, G.; Welykholowa, K.; Cooper, R.; Kyriacou, P.A.; Zheng, D.; Allen, J.; Abbott, D.; Menon, C.; Lovell, N.H.;
et al. Cuffless Single-Site Photoplethysmography for Blood Pressure Monitoring. J. Clin. Med. 2020, 9, 723. [CrossRef] [PubMed]

5. Elgendi, M.; Fletcher, R.; Liang, Y.; Howard, N.; Lovell, N.H.; Abbott, D.; Lim, K.; Ward, R. The use of photoplethysmography for
assessing hypertension. NPJ Digit. Med. 2019, 2, 60. [CrossRef] [PubMed]

6. Pereira, T.; Tran, N.; Gadhoumi, K.; Pelter, M.M.; Do, D.H.; Lee, R.J.; Colorado, R.; Meisel, K.; Hu, X. Photoplethysmography
based atrial fibrillation detection: A review. NPJ Digit. Med. 2020, 3, 3. [CrossRef]

7. Millán, C.A.; Girón, N.A.; Lopez, D.M. Analysis of relevant features from photoplethysmographic signals for atrial fibrillation
classification. Int. J. Environ. Res. Public Health 2020, 17, 498. [CrossRef]

8. Reisner, A.; Shaltis, P.A.; Warner, D.S.; Warner, M.A.; Mccombie, D.; Asada, H.H. VI REVIEW ARTICLE Utility of the Photo-
plethysmogram in Circulatory Monitoring. Am. Soc. Anesthesiol. 2008, 108, 950–958. [CrossRef]

9. Korhonen, I.; Yli-Hankala, A. Photoplethysmography and nociception: Review Article. Acta Anaesthesiol. Scand. 2009, 53, 975–985.
[CrossRef]

10. Tamura, T.; Maeda, Y.; Sekine, M.; Yoshida, M. Wearable photoplethysmographic sensors—Past and present. Electronics 2014, 3,
282–302. [CrossRef]

11. Lee, G.H.; Moon, H.; Kim, H.; Lee, G.H.; Kwon, W.; Yoo, S.; Myung, D.; Yun, S.H.; Bao, Z.; Hahn, S.K. Multifunctional materials
for implantable and wearable photonic healthcare devices. Nat. Rev. Mater. 2020, 5, 149–165. [CrossRef] [PubMed]

12. Moraes, J.L.; Rocha, M.X.; Vasconcelos, G.G.; Vasconcelos Filho, J.E.; de Albuquerque, V.H.C.; Alexandria, A.R. Advances in
photopletysmography signal analysis for biomedical applications. Sensors 2018, 18, 1894. [CrossRef] [PubMed]

13. Charlton, P.H.; Bonnici, T.; Tarassenko, L.; Clifton, D.A.; Beale, R.; Watkinson, P.J. An assessment of algorithms to estimate
respiratory rate from the electrocardiogram and photoplethysmogram. Physiol. Meas. 2016, 37, 610–626. [CrossRef] [PubMed]

14. Ni, A.; Azarang, A.; Kehtarnavaz, N. A review of deep learning-based contactless heart rate measurement methods. Sensors 2021,
21, 3719. [CrossRef] [PubMed]

15. Cheng, C.H.; Wong, K.L. Deep learning methods for remote heart rate measurement: A review and future research agenda.
Sensors 2021, 21, 6296. [CrossRef]

16. Qawqzeh, Y.K.; Uldis, R.; Alharbi, M. Photoplethysmogram second derivative review: Analysis and applications. Sci. Res. Essays
2015, 10, 633–639. [CrossRef]

17. Germain, A.R.D. levine susan hanson maureen A review on wearable photoplethysmography sensors and their potential future
applications in health care. Int. J. Biosens. Bioelectron. 2018, 176, 139–148. [CrossRef]

18. Kyriacou, A.; Panicos, A.J. Photoplethysmography Technology, Signal Analysis and Applications; Elsevier: Amsterdam, The Nether-
lands, 2021.

19. Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan,
S.E.; et al. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ
2021, 372, n160. [CrossRef]

20. Hertzman, A.B. Photoelectric Plethysmography of the Fingers and Toes in Man. Proc. Soc. Exp. Biol. Med. 1937, 37, 529–534.
[CrossRef]

http://doi.org/10.2174/157340312801215782
http://www.ncbi.nlm.nih.gov/pubmed/22845812
http://doi.org/10.1088/0967-3334/28/3/R01
http://www.ncbi.nlm.nih.gov/pubmed/17322588
http://doi.org/10.3390/ijerph17072591
http://www.ncbi.nlm.nih.gov/pubmed/32290168
http://doi.org/10.3390/jcm9030723
http://www.ncbi.nlm.nih.gov/pubmed/32155976
http://doi.org/10.1038/s41746-019-0136-7
http://www.ncbi.nlm.nih.gov/pubmed/31388564
http://doi.org/10.1038/s41746-019-0207-9
http://doi.org/10.3390/ijerph17020498
http://doi.org/10.1097/ALN.0b013e31816c89e1
http://doi.org/10.1111/j.1399-6576.2009.02026.x
http://doi.org/10.3390/electronics3020282
http://doi.org/10.1038/s41578-019-0167-3
http://www.ncbi.nlm.nih.gov/pubmed/32728478
http://doi.org/10.3390/s18061894
http://www.ncbi.nlm.nih.gov/pubmed/29890749
http://doi.org/10.1088/0967-3334/37/4/610
http://www.ncbi.nlm.nih.gov/pubmed/27027672
http://doi.org/10.3390/s21113719
http://www.ncbi.nlm.nih.gov/pubmed/34071736
http://doi.org/10.3390/s21186296
http://doi.org/10.5897/SRE2015.6322
http://doi.org/10.15406/ijbsbe.2018.04.00125.A
http://doi.org/10.1136/bmj.n160
http://doi.org/10.3181/00379727-37-9630


Healthcare 2022, 10, 547 20 of 28

21. Alian, A.A.; Shelley, K.H. Photoplethysmography. Best Pract. Res. Clin. Anaesthesiol. 2014, 28, 395–406. [CrossRef]
22. DeMeulenaere, S. Pulse Oximetry: Uses and Limitations. J. Nurse Pract. 2007, 3, 312–317. [CrossRef]
23. BSX, T. Red Light versus Green Light The Future of Optical Sensing in Wearable Devices. 2016. Available online: https:

//medium.com/bsxtechnologies/red-light-versus-green-light-74fdd5fe7027 (accessed on 14 January 2021).
24. Wu, T.; Blazek, V.; Schmitt, H.J. Photoplethysmography imaging: A new noninvasive and noncontact method for mapping of

the dermal perfusion changes. In Proceedings of the Optical Techniques and Instrumentation for the Measurement of Blood
Composition, Structure, and Dynamics, Amsterdam, The Netherlands, 22 November 2000; Volume 4163.

25. Verkruysse, W.; Svaasand, L.O.; Nelson, J.S. Remote plethysmographic imaging using ambient light. Opt. Express 2008, 16,
21434–21445. [CrossRef] [PubMed]

26. Poh, M.Z.; McDuff, D.J.; Picard, R.W. Advancements in noncontact, multiparameter physiological measurements using a webcam.
IEEE Trans. Biomed. Eng. 2011, 58, 7–11. [CrossRef] [PubMed]

27. McDuff, D.; Nishidate, I.; Nakano, K.; Haneishi, H.; Aoki, Y.; Tanabe, C.; Niizeki, K.; Aizu, Y. Non-contact imaging of peripheral
hemodynamics during cognitive and psychological stressors. Sci. Rep. 2020, 10, 10884. [CrossRef]

28. Volynsky, M.A.; Margaryants, N.B.; Mamontov, O.V.; Kamshilin, A.A. Contactless monitoring of microcirculation reaction on
local temperature changes. Appl. Sci. 2019, 9, 4947. [CrossRef]

29. Yang, F.; Hu, S.; Li, B.; Dwyer, V.M.; Hassan, H.; Wei, D.Q.; Shi, P. A Study of the Dynamic Relation between Physiological
Changes and Spontaneous Expressions. Sci. Rep. 2017, 7, 7081. [CrossRef]

30. Kukel, I.; Trumpp, A.; Plötze, K.; Rost, A.; Zaunseder, S.; Matschke, K.; Rasche, S. Contact-Free Optical Assessment of Changes in
the Chest Wall Perfusion after Coronary Artery Bypass Grafting by Imaging Photoplethysmography. Appl. Sci. 2020, 10, 6537.
[CrossRef]

31. Unakafov, A.M. Pulse rate estimation using imaging photoplethysmography: Generic framework and comparison of methods on
a publicly available dataset. Biomed. Phys. Eng. Express 2018, 4, 045001. [CrossRef]

32. Rasche, S.; Huhle, R.; Junghans, E.; Gama de Abreu, M.; Ling, Y.; Trumpp, A.; Zaunseder, S. Association of remote imaging
photoplethysmography and cutaneous perfusion in volunteers—Under review. Sci. Rep. 2020, 10, 16464. [CrossRef]

33. De Haan, G.; Jeanne, V. Robust pulse-rate from chrominance-based rPPG. IEEE Trans. Biomed. Eng. 2013, 60, 2878–2886. [CrossRef]
34. De Haan, G.; van Leest, A. Improved motion robustness of remote-PPG by using the blood volume pulse signature. Physiol. Meas.

2014, 35, 1913. [CrossRef] [PubMed]
35. Djeldjli, D.; Bousefsaf, F.; Maaoui, C.; Bereksi-Reguig, F.; Pruski, A. Remote estimation of pulse wave features related to arterial

stiffness and blood pressure using a camera. Biomed. Signal Process. Control 2021, 64, 102242. [CrossRef]
36. Kamshilin, A.A.; Nippolainen, E.; Sidorov, I.S.; Vasilev, P.V.; Erofeev, N.P.; Podolian, N.P.; Romashko, R.V. A new look at the

essence of the imaging photoplethysmography. Sci. Rep. 2015, 5, 10494. [CrossRef] [PubMed]
37. Aileni, R.M.; Pasca, S.; Florescu, A. EEG-brain activity monitoring and predictive analysis of signals using artificial neural

networks. Sensors 2020, 20, 3346. [CrossRef]
38. Nader-Kawachi, J.; Manrique-Mirón, P.C.; Pino-Peña, Y.C.; Andrade-Magdaleno, M.L.; López-Estrada, J. Feasibility of a new free

mobility procedure to evaluate the function of the autonomic nervous system in patients with syncope. Sci. Rep. 2020, 10, 13994.
[CrossRef]

39. Ding, X.; Zhao, N.; Yang, G.; Pettigrew, R.I.; Lo, B.; Miao, F.; Li, Y. Continuous Blood Pressure Measurement From Invasive
to Unobtrusive: Celebration of 200th Birth Anniversary of Carl Ludwig. IEEE J. Biomed. Health Inform. 2016, 20, 1455–1465.
[CrossRef]

40. Martin, S.L.O.; Carek, A.M.; Kim, C.S.; Ashouri, H.; Inan, O.T.; Hahn, J.O.; Mukkamala, R. Weighing Scale-Based Pulse Transit
Time is a Superior Marker of Blood Pressure than Conventional Pulse Arrival Time. Sci. Rep. 2016, 6, 39273. [CrossRef]

41. Von Wowern, E.; Östling, G.; Nilsson, P.M.; Olofsson, P. Digital Photoplethysmography for Assessment of Arterial Stiffness:
Repeatability and Comparison with Applanation Tonometry. PLoS ONE 2015, 10, e0135659. [CrossRef]

42. Almeneessier, A.S.; Alshahrani, M.; Aleissi, S.; Hammad, O.S.; Olaish, A.H.; BaHammam, A.S. Comparison between blood
pressure during obstructive respiratory events in REM and NREM sleep using pulse transit time. Sci. Rep. 2020, 10, 3342.
[CrossRef]

43. Pour Ebrahim, M.; Heydari, F.; Wu, T.; Walker, K.; Joe, K.; Redoute, J.M.; Yuce, M.R. Blood Pressure Estimation Using On-
body Continuous Wave Radar and Photoplethysmogram in Various Posture and Exercise Conditions. Sci. Rep. 2019, 9, 16346.
[CrossRef]

44. Nicolais, L. Wiley Encyclopedia of Composites; Wiley-Blackwell: Oxford, UK, 2011; ISBN 9780470128282.
45. Park, Y.J.; Lee, J.M.; Kwon, S.H. Association of the second derivative of photoplethysmogram with age, hemodynamic, autonomic,

adiposity, and emotional factors. Medicine 2019, 98, e18091. [CrossRef] [PubMed]
46. Ohshita, K.; Yamane, K.; Ishida, K.; Watanabe, H.; Okubo, M.; Kohno, N. Post-challenge hyperglycaemia is an independent risk

factor for arterial stiffness in Japanese men. Diabet. Med. 2004, 21, 636–639. [CrossRef] [PubMed]
47. Otsuka, T.; Kawada, T.; Katsumata, M.; Ibuki, C.; Kusama, Y. Independent determinants of second derivative of the finger

photoplethysmogram among various cardiovascular risk factors in middle-aged men. Hypertens. Res. 2007, 30, 1211–1218.
[CrossRef] [PubMed]

48. Lee, I.H.; Choi, C.J.; Kim, C.M.; Yoon, S.A.; Hong, J.Y.; Kim, J.Y. The examination of the acute vascular changes due to smoking
using second derivative of photoplethysmogram. Korean J. Fam. Med. 2010, 31, 679–687. [CrossRef]

http://doi.org/10.1016/j.bpa.2014.08.006
http://doi.org/10.1016/j.nurpra.2007.02.021
https://medium.com/bsxtechnologies/red-light-versus-green-light-74fdd5fe7027
https://medium.com/bsxtechnologies/red-light-versus-green-light-74fdd5fe7027
http://doi.org/10.1364/OE.16.021434
http://www.ncbi.nlm.nih.gov/pubmed/19104573
http://doi.org/10.1109/TBME.2010.2086456
http://www.ncbi.nlm.nih.gov/pubmed/20952328
http://doi.org/10.1038/s41598-020-67647-6
http://doi.org/10.3390/APP9224947
http://doi.org/10.1038/s41598-017-07122-x
http://doi.org/10.3390/app10186537
http://doi.org/10.1088/2057-1976/aabd09
http://doi.org/10.1038/s41598-020-73531-0
http://doi.org/10.1109/TBME.2013.2266196
http://doi.org/10.1088/0967-3334/35/9/1913
http://www.ncbi.nlm.nih.gov/pubmed/25159049
http://doi.org/10.1016/j.bspc.2020.102242
http://doi.org/10.1038/srep10494
http://www.ncbi.nlm.nih.gov/pubmed/25994481
http://doi.org/10.3390/s20123346
http://doi.org/10.1038/s41598-020-70701-y
http://doi.org/10.1109/JBHI.2016.2620995
http://doi.org/10.1038/srep39273
http://doi.org/10.1371/journal.pone.0135659
http://doi.org/10.1038/s41598-020-60281-2
http://doi.org/10.1038/s41598-019-52710-8
http://doi.org/10.1097/MD.0000000000018091
http://www.ncbi.nlm.nih.gov/pubmed/31764845
http://doi.org/10.1111/j.1464-5491.2004.01161.x
http://www.ncbi.nlm.nih.gov/pubmed/15154954
http://doi.org/10.1291/hypres.30.1211
http://www.ncbi.nlm.nih.gov/pubmed/18344627
http://doi.org/10.4082/kjfm.2010.31.9.679


Healthcare 2022, 10, 547 21 of 28

49. Inoue, N.; Kawakami, H.; Yamamoto, H.; Ito, C.; Fujiwara, S.; Sasaki, H.; Kihara, Y. Second derivative of the finger photoplethys-
mogram and cardiovascular mortality in middle-aged and elderly Japanese women. Hypertens. Res. 2017, 40, 207–211. [CrossRef]
[PubMed]

50. Kawada, T.; Otsuka, T. Factor structure of indices of the second derivative of the finger photoplethysmogram with metabolic
components and other cardiovascular risk indicators. Diabetes Metab. J. 2013, 37, 40–45. [CrossRef]

51. Miyashita, H. The time is ripe to reevaluate the second derivative of the digital photoplethysmogram (SDPTG), originating in
Japan, as an important tool for cardiovascular risk and central hemodynamic assessment. Hypertens. Res. 2017, 40, 429–431.
[CrossRef]

52. Terai, M.; Ohishi, M.; Ito, N.; Takagi, T.; Tatara, Y.; Kaibe, M.; Komai, N.; Rakugi, H.; Ogihara, T. Comparison of arterial functional
evaluations as a predictor of cardiovascular events in hypertensive patients: The non-invasive atherosclerotic evaluation in
hypertension (NOAH) study. Hypertens. Res. 2008, 31, 1135–1145. [CrossRef]

53. Tabara, Y.; Igase, M.; Okada, Y.; Nagai, T.; Miki, T.; Ohyagi, Y.; Matsuda, F.; Kohara, K. Usefulness of the second derivative of
the finger photoplethysmogram for assessment of end-organ damage: The J-SHIPP study. Hypertens. Res. 2016, 39, 552–556.
[CrossRef]

54. Iwamoto, T.; Kanetaka, H.; Takasaki, M.; Takazawa, K. Hemodynamic changes in Alzheimer’s and Binswanger’s diseases as
evaluated by second-derivative finger photoplethysmography. Geriatr. Gerontol. Int. 2003, 3, 243–249. [CrossRef]

55. Park, C.; Yang, M.H.; Choi, B.; Jeon, B.; Lee, Y.H.; Shin, H.; Lee, B.; Choi, B.M.; Noh, G.J. Performance of the nasal photo-
plethysmographic index as an analgesic index during surgery under general anaesthesia. Sci. Rep. 2020, 10, 7130. [CrossRef]
[PubMed]

56. Perpetuini, D.; Chiarelli, A.M.; Maddiona, L.; Rinella, S.; Bianco, F.; Bucciarelli, V.; Gallina, S.; Perciavalle, V.; Vinciguerra, V.;
Merla, A.; et al. Multi-site photoplethysmographic and electrocardiographic system for arterial stiffness and cardiovascular status
assessment. Sensors 2019, 19, 5570. [CrossRef] [PubMed]

57. Chiarelli, A.M.; Bianco, F.; Perpetuini, D.; Bucciarelli, V.; Filippini, C.; Cardone, D.; Zappasodi, F.; Gallina, S.; Merla, A. Data-driven
assessment of cardiovascular ageing through multisite photoplethysmography and electrocardiography. Med. Eng. Phys. 2019, 73,
39–50. [CrossRef] [PubMed]

58. Kourtis, L.C.; Regele, O.B.; Wright, J.M.; Jones, G.B. Digital biomarkers for Alzheimer’s disease: The mobile/wearable devices
opportunity. NPJ Digit. Med. 2019, 2, 9. [CrossRef]

59. Oura Ring: Accurate Health Information Accessible to Everyone. Available online: https://ouraring.com/ (accessed on 14
January 2021).

60. Avram, R.; Tison, G.H.; Aschbacher, K.; Kuhar, P.; Vittinghoff, E.; Butzner, M.; Runge, R.; Wu, N.; Pletcher, M.J.; Marcus, G.M.;
et al. Real-world heart rate norms in the Health eHeart study. NPJ Digit. Med. 2019, 2, 58. [CrossRef]

61. Remer, I.; Bilenca, A. Laser speckle spatiotemporal variance analysis for noninvasive widefield measurements of blood pulsation
and pulse rate on a camera-phone. J. Biophotonics 2015, 8, 902–907. [CrossRef]

62. Takeshima, K.; Tanaka, K.; Mori, R.; Wakatsuki, Y.; Onoe, H.; Sakakibara, T.; Kitagawa, Y.; Nakashizuka, H.; Tsuchiya, N. Central
serous chorioretinopathy and heart rate variability analysis with a smartphone application. Sci. Rep. 2020, 10, 14949. [CrossRef]

63. Maestre-Rendon, J.R.; Rivera-Roman, T.A.; Fernandez-Jaramillo, A.A.; Paredes, N.E.G.; Olmedo, J.J.S. A non-contact photo-
plethysmography technique for the estimation of heart rate via smartphone. Appl. Sci. 2020, 10, 154. [CrossRef]

64. Coppetti, T.; Brauchlin, A.; Müggler, S.; Attinger-Toller, A.; Templin, C.; Schönrath, F.; Hellermann, J.; Lüscher, T.F.; Biaggi, P.;
Wyss, C.A. Accuracy of smartphone apps for heart rate measurement. Eur. J. Prev. Cardiol. 2017, 24, 1287–1293. [CrossRef]

65. Takano, C.; Ohta, Y. Heart rate measurement based on a time-lapse image. Med. Eng. Phys. 2007, 29, 853–857. [CrossRef]
66. Amelard, R.; Scharfenberger, C.; Kazemzadeh, F.; Pfisterer, K.J.; Lin, B.S.; Clausi, D.A.; Wong, A. Feasibility of long-distance heart

rate monitoring using transmittance photoplethysmographic imaging (PPGI). Sci. Rep. 2015, 5, 14637. [CrossRef] [PubMed]
67. Mercuri, M.; Lorato, I.R.; Liu, Y.H.; Wieringa, F.; Van Hoof, C.; Torfs, T. Vital-sign monitoring and spatial tracking of multiple

people using a contactless radar-based sensor. Nat. Electron. 2019, 2, 252–262. [CrossRef]
68. Chen, W.; McDuff, D. DeepPhys: Video-Based Physiological Measurement Using Convolutional Attention Networks. In

Proceedings of the European Conference on Computer. 2018, Volume 11206 LNCS, pp. 356–373. Available online: https:
//arxiv.org/abs/1805.07888 (accessed on 30 December 2021).

69. García-López, I.; Rodriguez-Villegas, E. Extracting the Jugular Venous Pulse from Anterior Neck Contact Photoplethysmography.
Sci. Rep. 2020, 10, 3466. [CrossRef] [PubMed]

70. Park, C.; Lee, B. Real-time estimation of respiratory rate from a photoplethysmogram using an adaptive lattice notch filter. Biomed.
Eng. Online 2014, 13, 170. [CrossRef]

71. Lei, R.; Ling, B.W.K.; Feng, P.; Chen, J. Estimation of heart rate and respiratory rate from ppg signal using complementary
ensemble empirical mode decomposition with both independent component analysis and non-negative matrix factorization.
Sensors 2020, 20, 3238. [CrossRef]

72. Rate, P.T.H.; Devices, W. Photoplethysmographic Time-Domain Heart Rate Measurement Algorithm for Resource-Constrained
Wearable Devices and its Implementation. Sensors 2020, 20, 1783.

73. Elgendi, M.; Jonkman, M.; DeBoer, F. Heart rate variability measurement using the second derivative photoplethysmogram. In
Proceedings of the Third International Conference on Bio-inspired Systems and Signal Processing, Spain, Valencia, 20–23 January
2010; pp. 82–87. [CrossRef]

http://doi.org/10.1038/hr.2016.123
http://www.ncbi.nlm.nih.gov/pubmed/27682652
http://doi.org/10.4093/dmj.2013.37.1.40
http://doi.org/10.1038/hr.2016.175
http://doi.org/10.1291/hypres.31.1135
http://doi.org/10.1038/hr.2016.18
http://doi.org/10.1111/j.1444-1586.2003.00086.x
http://doi.org/10.1038/s41598-020-64033-0
http://www.ncbi.nlm.nih.gov/pubmed/32346057
http://doi.org/10.3390/s19245570
http://www.ncbi.nlm.nih.gov/pubmed/31861123
http://doi.org/10.1016/j.medengphy.2019.07.009
http://www.ncbi.nlm.nih.gov/pubmed/31358395
http://doi.org/10.1038/s41746-019-0084-2
https://ouraring.com/
http://doi.org/10.1038/s41746-019-0134-9
http://doi.org/10.1002/jbio.201500156
http://doi.org/10.1038/s41598-020-71938-3
http://doi.org/10.3390/app10010154
http://doi.org/10.1177/2047487317702044
http://doi.org/10.1016/j.medengphy.2006.09.006
http://doi.org/10.1038/srep14637
http://www.ncbi.nlm.nih.gov/pubmed/26440644
http://doi.org/10.1038/s41928-019-0258-6
https://arxiv.org/abs/1805.07888
https://arxiv.org/abs/1805.07888
http://doi.org/10.1038/s41598-020-60317-7
http://www.ncbi.nlm.nih.gov/pubmed/32103056
http://doi.org/10.1186/1475-925X-13-170
http://doi.org/10.3390/s20113238
http://doi.org/10.5220/0002743300820087


Healthcare 2022, 10, 547 22 of 28

74. Bradke, B.; Everman, B. Investigation of photoplethysmography behind the ear for pulse oximetry in hypoxic conditions with a
novel device (SPYDR). Biosensors 2020, 10, 34. [CrossRef]

75. Davies, H.J.; Williams, I.; Peters, N.S.; Mandic, D.P. In-ear spo2: A tool for wearable, unobtrusive monitoring of core blood oxygen
saturation. Sensors 2020, 20, 4879. [CrossRef]

76. Wei, B.; Wu, X.; Zhang, C.; Lv, Z. Analysis and improvement of non-contact SpO2 extraction using an RGB webcam. Biomed. Opt.
Express 2021, 12, 5227–5245. [CrossRef]

77. Sun, Z.; He, Q.; Li, Y.; Wang, W.; Wang, R.K. Robust non-contact peripheral oxygenation saturation measurement using
smartphone-enabled imaging photoplethysmography. Biomed. Opt. Express 2021, 12, 1746. [CrossRef]

78. Wieler, M.E.; Murphy, T.G.; Blecherman, M.; Mehta, H.; Bender, G.J. Infant heart-rate measurement and oxygen desaturation
detection with a digital video camera using imaging photoplethysmography. J. Perinatol. 2021, 41, 1725–1731. [CrossRef]

79. Humphreys, K.; Ward, T.; Markham, C. Noncontact simultaneous dual wavelength photoplethysmography: A further step
toward noncontact pulse oximetry. Rev. Sci. Instrum. 2007, 78, 044304. [CrossRef] [PubMed]

80. Kim, S.C.; Cho, S.H. Blood pressure estimation algorithm based on photoplethysmography pulse analyses. Appl. Sci. 2020,
10, 4068. [CrossRef]

81. Lazazzera, R.; Belhaj, Y.; Carrault, G. A newwearable device for blood pressure estimation using photoplethysmogram. Sensors
2019, 19, 2557. [CrossRef]

82. Shin, H.; Min, S.D. Feasibility study for the non-invasive blood pressure estimation based on ppg morphology: Normotensive
subject study. Biomed. Eng. Online 2017, 16, 10. [CrossRef]

83. Lin, W.H.; Chen, F.; Geng, Y.; Ji, N.; Fang, P.; Li, G. Towards accurate estimation of cuffless and continuous blood pressure using
multi-order derivative and multivariate photoplethysmogram features. Biomed. Signal Process. Control 2021, 63, 102198. [CrossRef]

84. Ding, X.; Yan, B.P.; Zhang, Y.T.; Liu, J.; Zhao, N.; Tsang, H.K. Pulse Transit Time Based Continuous Cuffless Blood Pressure
Estimation: A New Extension and A Comprehensive Evaluation. Sci. Rep. 2017, 7, 11554. [CrossRef]

85. Matsumura, K.; Rolfe, P.; Toda, S.; Yamakoshi, T. Cuffless blood pressure estimation using only a smartphone. Sci. Rep. 2018,
8, 7298. [CrossRef]

86. Xing, X.; Ma, Z.; Zhang, M.; Zhou, Y.; Dong, W.; Song, M. An Unobtrusive and Calibration-free Blood Pressure Estimation Method
using Photoplethysmography and Biometrics. Sci. Rep. 2019, 9, 8611. [CrossRef]

87. Sadrawi, M.; Lin, Y.T.; Lin, C.H.; Mathunjwa, B.; Fan, S.Z.; Abbod, M.F.; Shieh, J.S. Genetic deep convolutional autoencoder
applied for generative continuous arterial blood pressure via photoplethysmography. Sensors 2020, 20, 3829. [CrossRef]

88. Riaz, F.; Azad, M.A.; Arshad, J.; Imran, M.; Hassan, A.; Rehman, S. Pervasive blood pressure monitoring using Photoplethysmo-
gram (PPG) sensor. Futur. Gener. Comput. Syst. 2019, 98, 120–130. [CrossRef]

89. Martínez, G.; Howard, N.; Abbott, D.; Lim, K.; Ward, R.; Elgendi, M. Can photoplethysmography replace arterial blood pressure
in the assessment of blood pressure? J. Clin. Med. 2018, 7, 316. [CrossRef] [PubMed]

90. Liu, Z.D.; Zhou, B.; Li, Y.; Tang, M.; Miao, F. Continuous Blood Pressure Estimation From Electrocardiogram and Photoplethys-
mogram During Arrhythmias. Front. Physiol. 2020, 11, 1126. [CrossRef] [PubMed]

91. Couceiro, R.; Carvalho, P.; Paiva, R.P.; Henriques, J.; Quintal, I.; Antunes, M.; Muehlsteff, J.; Eickholt, C.; Brinkmeyer, C.; Kelm,
M.; et al. Assessment of cardiovascular function from multi-Gaussian fitting of a finger photoplethysmogram. Physiol. Meas. 2015,
36, 1801–1825. [CrossRef] [PubMed]

92. Yousefian, P.; Shin, S.; Mousavi, A.; Kim, C.S.; Mukkamala, R.; Jang, D.G.; Ko, B.H.; Lee, J.; Kwon, U.K.; Kim, Y.H.; et al. The
Potential of Wearable Limb Ballistocardiogram in Blood Pressure Monitoring via Pulse Transit Time. Sci. Rep. 2019, 9, 10666.
[CrossRef]

93. Dunn, C.E.; Monroe, D.C.; Crouzet, C.; Hicks, J.W.; Choi, B. Speckleplethysmographic (SPG) Estimation of Heart Rate Variability
During an Orthostatic Challenge. Sci. Rep. 2019, 9, 14079. [CrossRef]

94. Kim, J.M.; Choi, J.K.; Choi, M.; Ji, M.; Hwang, G.; Ko, S.B.; Bae, H.M. Assessment of cerebral autoregulation using continuous-
wave near-infrared spectroscopy during squat-stand maneuvers in subjects with symptoms of orthostatic intolerance. Sci. Rep.
2018, 8, 13257. [CrossRef]

95. Nuckowska, M.K.; Gruszecki, M.; Kot, J.; Wolf, J.; Guminski, W.; Frydrychowski, A.F.; Wtorek, J.; Narkiewicz, K.; Winklewski, P.J.
Impact of slow breathing on the blood pressure and subarachnoid space width oscillations in humans. Sci. Rep. 2019, 9, 6232.
[CrossRef]
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