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Abstract: The relationship between sleep posture and sleep quality has been studied comprehensively.
Over 70% of chronic diseases are highly correlated with sleep problems. However, sleep posture
monitoring requires professional devices and trained nursing staff in a medical center. This paper
proposes a contactless sleep-monitoring Internet of Things (IoT) system that is equipped with a
Raspberry Pi 4 Model B; radio-frequency identification (RFID) tags are embedded in bed sheets
as part of a low-cost and low-power microsystem. Random forest classification (RFC) is used to
recognize sleep postures, which are then uploaded to the server database via Wi-Fi and displayed
on a terminal. The experimental results obtained using RFC were compared to those obtained
via the support vector machine (SVM) method and the multilayer perceptron (MLP) algorithm to
validate the performance of the proposed system. The developed system can be also applied for sleep
self-management at home and wireless sleep monitoring in medical wards.

Keywords: sleep monitoring; internet of things (IoT); random forest classifier (RFC)

1. Introduction

Most people spend one third of their time sleeping, and the quality of their sleep
is closely related to their health. Sleep quality is affected by many sleep disorders, such
as sleep apnea, insomnia, and snoring. According to [1], over 70% of chronic medical
disorders (such as cancer, chronic renal failure, chronic obstructive pulmonary disease
(COPD), fibromyalgia, gastroesophageal reflux disease, heart failure, HIV-related disease,
nocturnal asthma, restrictive lung disease, etc.) are highly correlated with sleep problems.
However, few people can determine their own sleep habits and sleep quality because
accurate diagnosis requires sleep monitoring throughout the night. Conventional sleep-
monitoring equipment can induce feelings of discomfort, for example, pressure sensors
require a power supply such as batteries, and it is difficult ensure that the users not feel
them when laying on top of them [2,3], and there is usually a three-axis accelerometer
that strapped to the person’s chest [4]. Additionally, sleep monitoring systems that are
equipped with cameras, electrocardiograms (ECGs), or respiratory belts [5] raise concerns
about personal privacy. In addition, there is a higher risk of problems related pressure
ulcers on some parts of human body, especially the portions over bony or cartilaginous
areas, if the patient maintains the same sleeping position for a long time. In order to avoid
pressure ulcers, nursing staff need to help patients turn over every two hours [6,7]. As a
result, a system that can monitor sleep posture and record data can improve a patient’s
sleep quality and reduce the work of nursing staff, hospital stay costs, and the enormous
burden on healthcare systems [6,7].

In recent years, many kinds of hardware for sleep posture monitoring have been used.
Pressure sensor pads were employed to monitor the pressure changes exerted by a body on
a mattress [2,3]; noncontact electrocardiography (ECG) was adopted to monitor the user’s
QRS waveforms and thus detect their sleeping position [8]; A total of sixteen long and
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narrow force-sensing resistor sensors were used to estimate the kurtosis and skewness for
bed posture detection through Bayesian classification [9]; four hydraulic bed transducers
were placed underneath the mattress to investigate different sleep postures [7]; pressure
image data have been used to detect sleep posture and to identify different limbs [10];
depth cameras were previously used to capture three-dimensional images of a monitored
person [11]; and a three-axis accelerometer was strapped to a person’s chest to monitor
his/her sleeping position [4]. However, these hardware-based systems have an insufficient
level of comfort, high cost, low data collection stability, and image noise as well as privacy
problems. A radio frequency identification (RFID) tag-based sleep monitoring system
may overcome those problems and provide a non-intrusive, convenient, and comfortable
way to monitor sleep quality [5,12,13]. The NIGHTCare platform [5] provided a night
suit that contains four wearable RFID tags at abdomen, back, and left and right hip, a
mattress-embedded conventional dipole tag, and a bed with four tags positioned at each
side. Another sleep monitoring system has 64 RFID tags embedded into a bed sheet in
a matrix form and uses 400 groups of teaching data to train the system and 100 groups
of testing data with different postures to realize sleeping posture recognition and body
movement detection using a CNN algorithm [5]. Its average recognition rate is 86.284%.
A TagSheet system [13] based on 30 × 18 RFID tags was proposed to monitor sleeping
postures with a combination of hierarchical recognition and was able to obtain up to
96.7% accuracy. In addition, a novel non-invasive sleep monitor system that consists of a
smart glove sensor, a mobile application, and a remote server has also been proposed [14].
This glove sensor acquires a three-axis accelerometer signal, a photoplethysmography
(PPG), and a peripheral oxygen saturation signal from the index finger. After cloud
computing, the remote server performs different sleep monitoring activity tasks.

Additionally, there are three popular classification algorithms for sleeping posture
monitoring: the multilayer perceptron (MLP) algorithm [7,12,15], the support vector ma-
chine (SVM) algorithm [16–19], and random forest classification (RFC) [12–22]. An MLP,
also known as a feedforward neural network, is an artificial neural network (ANN) with a
forward structure. The main advantage of an MLP lies in its ability to quickly solve complex
problems and to recognize linearly inseparable data. ANNs have been refined and applied
in many fields, such as in robotics, medicine, the military, and the automotive industry.

SVM is a supervised machine-learning model that analyzes data for classification
and regression analysis; based on statistical learning frameworks, it is among the most
robust prediction methods. SVMs can be used to solve various real-world problems, such
as text and hypertext categorization, images classification, satellite data classification,
hand-written character recognition, and biological sciences.

The RFC method is an ensemble-based technique that can be used to perform classi-
fication tasks. RF method utilizes a multitude of classification trees randomly and then
generates a final result. These trees are randomly created by extracting samples from
different subsets of the same dataset, and different types of features are employed each
time to create the trees. Consequently, the RFC model does not overfit the data during
the decision tree process [20]. Once the trees have been constructed, classification may be
conducted to search the results of each tree, and the results are assigned to the class that
has been determined by the greatest number of trees.

Referring to [5,13] and considering factors of convenience, compactness, and cost, this
paper proposes a stable and comfortable sleeping posture recognition system based on
RFC and 5 × 5 RFID signals that provides stable data through their ability to penetrate
bedclothes but not the human body; only signal strength information is collected to address
privacy concerns. The system employs a Raspberry Pi 4 Model B as an artificial IoT (AIoT)
for data processing, integration, and prediction. Advantages include its low cost, low
power consumption, and sleeping posture prediction accuracy, which reaches the levels of
the other aforementioned sensors.

Three contributions/advantages of this system are summarized as follows:
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(1) The AIOT system with a Raspberry Pi microprocessor and nonintrusive passive
RFID tags embedded in the bed sheets provides safe, comfortable, low-cost, and privacy-
protected monitoring so that users can maintain their normal sleeping habits.

(2) This system can be applied in nursing homes and in hospitals to monitor a patient’s
prone position and to deliver reminders, reducing the workload of the nursing staff. The
system also provides a data collection function to allow users and doctors to view historical
records online.

(3) The RFC requires only 25 RFID tags and approximately 4000 data points to achieve
an accuracy of 88.9%. The results demonstrate that RFID has great potential as a monitoring
sleep posture method.

In this paper, the system description and methods are discussed in Section 2. The
experimental results are presented in Section 3. Discussions are provided in Section 4.
Finally, conclusions are drawn in Section 5.

2. System Description and Methods

This sleep posture monitoring system is largely based on the Raspberry Pi 4 Model
B microprocessor combined with a high-performance, ultra-high-frequency (UHF) RFID
Reader (QBG12X) and its tags; these components were used to construct an Internet of
Things system with integrated artificial intelligence (AI) for sleeping posture recognition
and monitoring, as depicted in Figure 1 [23]. Firebase mainly provides cloud services
for mobile application devices to replace some or all backend functions (Backend as a
Service, BaaS). It also supports Java Script and C++, which can be used in Web and desktop
applications, allowing developers to develop applications more efficiently. A system with a
peak recognition speed greater than 100/s, can be used to identify and monitor the sleeping
postures of individuals in a ward or at home, fully meeting the experimental requirements.
The RFID reader connects and communicates with the Raspberry Pi through the WIFI
antenna. The IP and port address of the reader are set up via the monitoring interface
of the Raspberry Pi. The RFID reader transmits the received data to the Raspberry Pi 4B
through the Transmission Control Protocol network. The processed data are inputted to the
trained model as features that can be used to recognize the user’s current sleeping posture.
Finally, the Raspberry Pi displays the interpreted sleeping posture on the monitoring screen
and uploads it to the database via the Internet. The current posture is simultaneously
displayed on the graphical user interface, with the time recorded to produce a trend graph
for the doctor or user’s reference. The construction of this system provides an accurate
sleep recording method without recognizing foreign bodies to improve the user’s sleep
experience and to enhance the efficiency of the medical staff.

The experimental sample data were obtained by monitoring the sleeping position
of a single person on a bed with RFID tags. The experimental bed at the bottom left in
Figure 1 is 200 cm long and 100 cm wide. RFID tags are evenly pasted on the surface of
the bed sheet in a 5 × 5 matrix manner and at the same interval. The top tag is placed
at the shoulder position just below the neck, and the lowest tag is placed at the calf
position above the ankle. Each row of tags is about 30 cm apart, and each column is about
11.4 cm apart. The tags used in the experiment have a frequency range of 860~960 MHz, are
74 mm× 24 mm in size, and are suitable for paper and cloth surfaces. Since the RFID reader
has a maximum receiving distance of 5 m, in order to make the signal stable, the RFID
reader is placed about 1 m at the foot of the bed, and the transmission intensity is set to
30 dbm. The received signal strength indicator (RSSI) range of the UHF RFID reader is
30~90 and can be converted to−100~−40 dbm. The other reader transmission specifications
include 0–33 dbm and an adjustable, maximum reading distance of 5 m as well as a radio
frequency range of 902–928 MHz. The reader will decrease the sampling rate as the number
of sampled tags decreases, so the sampling rate under 25 tags is 2–3 times in 1 s.

A simple neural network was also previously employed for sleep posture classifica-
tion [7,12]. However, neural network models are prone to under fitting if inadequately
structured or to overfitting the training dataset if structured to meet every single item in the
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dataset [15]. Deep neural networks (DNNs) also have some disadvantages—they require
large amounts of training data, numerous parameters, and careful parameter tuning. As a
result, DNN is not suitable for a system that are constrained by a small dataset and low
computation and memory costs.
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The SVM method was combined with either the quadratic kernel to recognize differ-
ent sleep postures [16] or the radial basis function kernel to recognize four typical sleep
postures [17]. SVMs can also be combined with kurtosis and skewness estimation and
principal component analysis (PCA) for sleeping posture classification [18]. Variants of the
support vector machine (SVM)-enabled radial basis function (RBF) and SVM-Linear for
remote image sensing are proposed and implemented [19]. The results of the proposed sys-
tem were compared to those obtained by the traditional algorithms (maximum likelihood
classifier and minimum distance classifier) and the current state-of-the-art algorithms.

The RFC algorithm has the following advantages [15]: (1) it can handle high-dimensional
data (with many features) and does not require feature selection; (2) after training, it can
identify the most vital features; (3) it facilitates simple parallel processing at a relatively
fast speed; (4) it can be visually displayed for analysis; and (5) it can tolerate large noise
and balance errors. Many RFC based applications have been proposed. RFC was ini-
tially employed to predict relative humidity in the smart factory environment and showed
82.49% accuracy, which is considered excellent [21]. The random forest classification, de-
cision tree classification, gradient boosting classification, and Naive Bayes classification
image processing technologies were used to classify the types of rice leaf disease in Thai-
land. The best results were obtained by the random forest algorithm, which achieved
69.44% accuracy [22]. Various heart rate variability metrics can be used for driver sleepi-
ness classification. Subjective ratings based on the Karolinska sleepiness scale were used
as a ground truth during classifier training [24]. A random forest classifier (RFC) was
applied to a dataset with features that contained URL metadata to prevent users from
inadvertently accessing phishing websites [25]. The classification performance was com-
pared to those of the linear and nonlinear SVM algorithms when using two datasets. A
non-neural-network-style deep model with a lightweight multilayer RFC algorithm [26]
consisting of layer-by-layer RFs was proposed for conducting facial expression recognition
and for overcoming the disadvantages of the DNN. The RFC method was proposed to
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combine linear interpolation, matrix combination, and matrix transposition to solve filling
problems in large amounts of missing electric power data [27].

In the recursive process of building the classification tree, the classification and re-
gression tree (CART) consistently selects the feature with the smallest Gini information
gain in the current dataset as the node partition decision tree. The dichotomy of the CART
algorithm can simplify the scale of the decision tree and improve the efficiency at which
the trees can be created. To avoid overfitting, the CART decision tree must be pruned.

The operational process of RF classification can be described as follows [17]:
(1) RF first uses bootstrap sampling to create the training data. If N samples are

presented, each sample has M variables (features), and n training data are created through
random sampling with replacement.

(2) A different random vector θi is then generated for each training datum through the
random selection of m (m < M) variables and by attempting to split each variable. When
the minimum Gini coefficient is reached, the tree is split to create the CART.

(3) The resultant tree grows without pruning.
(4) The results of n trees are combined, and the majority voting method is used to cast

the predicted value.
The Gini coefficient IG(t) is expressed in the following equation:

IG(t) =
M

∑
i=1

p(i|t)(1− p(i|t)) = 1−
M

∑
i=1

(p(i|t))2 (1)

where p(i|t) represents the proportion of the category i at a certain node t. If the variables
have multiple collinearity or unbalanced data, the RF algorithm can be used [13].

A common strategy used to verify whether the classifier can accurately predict un-
known data (testing data) is to separate the dataset into two parts, one of which is consid-
ered unknown. The prediction accuracy obtained from the unknown set precisely reflects
the classification performance on an independent dataset. An improved version of this
procedure is called K-fold cross-validation, where the training set is first divided into K
subsets of equal size, and then one subset is sequentially tested using the classifier trained
on the remaining K − 1 subsets. Thus, each instance of the whole training set is predicted
once, and the cross-validation accuracy is the percentage of data that are correctly classified.
In addition, the grid-search method is recommended for the cross-validation procedure to
prevent overfitting. The grid search screens all candidate parameter selections and tests
every possibility until the best-performing parameter is identified. The principle is similar
to that of determining the maximum value in an array.

3. Experimental Results

The Raspberry Pi 4 Model B processor [28] consists of a 1.5 GHz Broadcom BCM2711
(quad-core Cortex-A72), upgraded Bluetooth 5.0, two universal serial bus (USB) 2.0 interfaces,
two USB 3.0 interfaces, a power supply with a newer USB-C interface, and an onboard memory
capacity that is up to 4 GB, which is four times higher than that of the Raspberry Pi 3b. QBG12X
is a high-performance UHF RFID all-in-one reader that uses a high-performance INDY R2000
chip solution, efficient signal processing algorithm, excellent multitag anticollision function,
and working frequency of 902–928 MHz or 865–868 MHz to provide a high electronic tag
reading rate and rapid reading and writing capabilities. It is widely used in various RFID
application systems such as in intelligent remote parking lots, personnel access control,
logistical storage, production process control, quality traceability, and anticounterfeiting.

The RFID principle for sleeping posture monitoring is that RFID electromagnetic
waves cannot penetrate human tissues, so the tags covered by human tissues will not be
read by the reader. There are 5 × 5 tags that are evenly set up on the bed sheet, so each
posture has one received signal strength indicator (RSSI) value corresponding to a set
of 25 tags. The sleeping posture is labeled corresponding to each set of data as follows:



Healthcare 2022, 10, 513 6 of 12

supine posture as 1, lying right as 2, lying left as 3, and empty bed status as 0. This process
generates the dataset.

A total of 41 participants were enrolled in the experiment, and each participant
performed his own version of three sleeping postures (120 sample data points) with slight
posture changes in each sleeping position. The participants were 20 to 30 years old, weighed
40 to 110 kg, were between 150 and 185 cm in height, and were healthy. Deleting some
duplicate data to ensure the diversity of the information, 3854 samples were obtained from
the total of 4920. At the end of the experimental stage, the 3854 samples will be divided,
70% from 29 participants being used for training and the remaining 30% from the other
12 participants being used for testing.

The proposed RFC-based sleep posture monitoring system was verified using the
aforementioned hardware system and datasets. In addition, the experimental results based
on RFC were compared to those obtained using the SVM method and MLP algorithm
to demonstrate the superior performance of the proposed system. The Scikit-learn func-
tion library [29], a free software machine-learning library for the Python programming
language, was employed to provide various classification and regression and clustering
algorithms including SVMs, RFs, gradient boosting, k-means, and the density-based spatial
clustering of applications with noise. The grid search, cross-validation, and evaluation
model used in the library were the GridSearchCV sklearn.model_selection, cross_val_score
from sklearn.cross_validation, and classification_report from sklearn.metrics, respectively.
A schematic of the overall parameter selection and model training process are presented in
Figure 2.
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For RFC, four parameters were adjusted: the number of subtrees N that had the
greatest effect on the classifier; the number of maximum features M that can complicate
or simplify the model; the minimum number of samples for the branch nodes of the tree;
and the maximum depth of the decision tree, which can be generally adjusted according to
the size of the sample data. The optimized parameter set obtained through the grid search
was (177, 1, 20, 9). For the MLP, three parameters were adjusted: the size of the hidden
layer and the crucial hyperparameter of the MLP that represents the number of layers and
number of neurons in the hidden layer; the number of maximum iterations of the classifier;
and the solver function used for weight optimization, which includes the limited-memory
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Broyden–Fletcher–Goldfarb–Shanno (LBFGS) algorithm, stochastic gradient decent, and
adaptive moment estimation. The BFGS algorithm is an iterative method that can be used
to solve unconstrained nonlinear optimization problems and that determines the descent
direction by preconditioning the gradient with curvature information. The computational
complexity of the update of the BFGS matrix without requiring matrix inversion is only
O(n2) compared to O(n3) when using Newton’s method. The optimized parameter set
obtained through grid search was ((100, 50), 250, LBFGS). For the SVM, we adjusted three
parameters: the penalty coefficient C of the objective function, which is used to balance
the classification interval and misclassified samples; one of four kernel functions, namely
the radial basis function (RBF), linear, polynomial, and sigmoid functions; and gamma, the
coefficient of the RBF kernel function that determines the number of support vectors and
affects the generalization performance. The Gaussian RBF kernel is expressed as

k(xi, xj) = exp(−γ‖xi − xj‖2), γ > 0 (2)

and the optimization problem is

min
w,b,ξ

1
2

wTw + C
l

∑
i=1

ξi (3)

which is subject to
yi(wT ϕ(xi) + b) ≥ 1− ξi, ξi ≥ 0 (4)

where (xi, yi), i = 1, · · · , l is a training set of instance-label pairs, xi ∈ Rn and y ∈ {1,−1}l .
The optimized parameter set obtained through the grid search was (100, RBF, 1).

Ten K-fold cross-validation on the training samples was performed, and the recognition
accuracy of the three classifiers was compared (Table 1). This experiment explored the
generalization of each model, and the three pretrained models were used to predict the test
data. Their prediction accuracy rates as determined by MLP, SVM, and RFC are detailed in
Table 2.

Table 1. Ten K-fold cross-validation results of each classifier.

Classifier K-Fold
1

K-Fold
2

K-Fold
3

K-Fold
4

K-Fold
5

K-Fold
6

K-Fold
7

K-Fold
8

K-Fold
9

K-Fold
10 Average

SVM 92.8% 91.2% 95.6% 82.4% 90.2% 70.4% 87.5% 87.0% 90.6% 91.6% 87.9%
MLP 94.1% 86.8% 95.3% 83.9% 91.2% 75.8% 89.1% 84.6% 90.3% 85.3% 87.7%
RFC 95.3% 97.2% 96.1% 79.8% 85.0% 78.2% 88.6% 86.5% 97.7% 84.6% 88.9%

Table 2. Results obtained using the MPL, SVM, and RFC to predict new data.

Precision (MPL, SVM, RFC) Recall (MPL, SVM, RFC) F1-Score (MPL, SVM, RFC)

Supine 82%, 74%, 84% 83%, 90%, 88% 82%, 81%, 86%
Lying right 95%, 99%, 99% 96%, 90%, 93% 95%, 95%, 96%
Lying left 84%, 86%, 86% 82%,74%, 88% 83%, 79%, 87%
Macro avg 87%, 86%, 90% 87%, 85%, 90% 87%, 85%, 90%

weighted avg 87%, 87%, 90% 87%, 85%, 90% 87%, 86%, 90%
Accuracy 87%, 85%, 90%

This system has two interfaces for monitoring the user’s sleeping posture. The first is
the Raspberry Pi terminal, which constitutes the monitoring interface of the user terminal.
This interface displays the current user’s sleeping posture and a trend graph. Before system
initialization, the Internet Protocol, port address of the RFID Reader, sheet tag number,
sleeping posture reminder time, and user’s number or name must be inputted. The second
interface is the terminal interface for managers or terminal operators; it displays the real-
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time sleeping posture changes of the user, as depicted in Figure 3. This interface combines
the data from all of the clients to form a monitoring management interface that displays
the status of the subordinate clients and queries historical data and trend graphs using the
local MySQL database, as illustrated in Figure 4. The summary flowchart is presented in
Figure 5.
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Table 2. Results obtained using the MPL, SVM, and RFC to predict new data. 

 Precision (MPL, SVM, RFC) Recall (MPL, SVM, RFC) F1-Score (MPL, SVM, RFC) 
Supine 82%, 74%, 84% 83%, 90%, 88% 82%, 81%, 86% 

Lying right 95%, 99%, 99% 96%, 90%, 93% 95%, 95%, 96% 
Lying left 84%, 86%, 86% 82%,74%, 88% 83%, 79%, 87% 
Macro avg 87%, 86%, 90% 87%, 85%, 90% 87%, 85%, 90% 

weighted avg 87%, 87%, 90% 87%, 85%, 90% 87%, 86%, 90% 
Accuracy   87%, 85%, 90% 

This system has two interfaces for monitoring the user’s sleeping posture. The first is 
the Raspberry Pi terminal, which constitutes the monitoring interface of the user terminal. 
This interface displays the current user’s sleeping posture and a trend graph. Before 
system initialization, the Internet Protocol, port address of the RFID Reader, sheet tag 
number, sleeping posture reminder time, and user’s number or name must be inputted. 
The second interface is the terminal interface for managers or terminal operators; it 
displays the real-time sleeping posture changes of the user, as depicted in Figure 3. This 
interface combines the data from all of the clients to form a monitoring management 
interface that displays the status of the subordinate clients and queries historical data and 
trend graphs using the local MySQL database, as illustrated in Figure 4. The summary 
flowchart is presented in Figure 5. 
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4. Discussion

From Tables 1 and 2, the comparison chart of the K-fold cross-validation results and
predictions of the test data is shown in Figure 6. The accuracy rates were largely consistent
with the cross-validation results; for the generalization performance and the accuracy of
the model for each posture, the RFC exhibited the best performance, with an accuracy of
88.9%. Furthermore, no overfitting occurred.
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In terms of privacy protection, with the exception of using RFID to replace a depth
camera to capture three-dimensional images of the monitored person, the implementation
of the proposed system is such that the sleeping posture results identified by the AI
algorithm are sent to the cloud database by Raspberry Pi via MQTT (encrypted process).
Users who query the real-time sleeping posture and sleeping posture history data in the
cloud database are verified by the system for anti-counterfeiting purposes at login. In
addition, all of the monitored objects to be checked are handled in accordance with the
relevant regulations of the country in terms of the disclosure of medical information. The
user at the front end of the system is only able to know the tag numbers of the RFID. Only
the authorized back-end cloud manager will know the person who uses the tags, that is,
the relation between tag numbers of the RFID and bed number.

Comparing three RFID-based sleep monitor systems [5,13] and the proposed system,
it is easy to see that [13] provided the highest accuracy of 96.7% when using PC, 480 RFID
tags, and hierarchical recognition that included image processing and polynomial fitting;
Ref. [5] also introduced a PC-based system with an additional 64 RFID tags and used 5-layer
CNN to achieve accuracy of 86.284%; however, our proposed system was Raspberry-based
and only had 25 RFID tags and used RFC to achieve an accuracy of 88.9%. That is, the
proposed AIoT system not only had the characteristics of being low cost and compact, safe,
and non-contact sensing, but it also provided accurate and privacy-protected monitoring.

5. Conclusions

The proposed system incorporates the Raspberry Pi 4 and RFID Reader and its tags to
construct an Internet of Things system with integrated RFC for sleeping posture recognition
and monitoring and that avoids sensing foreign bodies and protects user privacy. The
experimental results demonstrated that the proposed RFC-based system exhibited the best
performance compared with those using SVM and MLP, achieving an accuracy of 88.9%. In
a hospital or nursing home scenario, when a patient maintains a sleeping position for a
prolonged period of time, the proposed system notifies the nurses are that they should turn
the patient over.

With the technological innovation of RFID, the accuracy of this system can be increas-
ingly improved to provide more functions, such as those measuring user temperature and
the humidity and moisture in the bed. These tags can also be integrated into clothing to
monitor the movement and speed of the wearer in the room. In addition, our future work
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will determine advanced modifications that can be made to algorithm, and state-of-the-art
algorithms will be adopted for the designed system to improve its performance.

Author Contributions: P.-J.C. and M.-S.W. conceived and designed the experiments; T.-H.H. per-
formed the experiments; M.-S.W. and T.-H.H. analyzed the data; M.-S.W. and P.-J.C. contributed
materials and analytical tools; M.-S.W. wrote the paper. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Higher Education Sprout Project from the Ministry of
Education, Taiwan.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Parish, J. Sleep-related problems in common medical conditions. Chest J. 2009, 135, 563–572. [CrossRef] [PubMed]
2. Mineharu, A.; Kuwahara, N.; Morimoto, K. A study of automatic classification of sleeping position by a pressure-sensitive sensor.

In Proceedings of the 2015 International Conference on Informatics Electronics Vision (ICIEV), Fukuoka, Japan, 15–18 June 2015;
pp. 1–5.

3. Liu, J.J.; Xu, W.; Huang, M.-C.; Alshurafa, N.; Sarrafzadeh, M.; Raut, N.; Yadegar, B. A dense pressure sensitive bedsheet design
for unobtrusive sleep posture monitoring. In Proceedings of the 2013 IEEE International Conference on Pervasive Computing
and Communications (PerCom), San Diego, CA, USA, 18–22 March 2013; pp. 207–215.

4. Chang, K.M.; Liu, S.H. Wireless portable electrocardiogram and a tri-axis accelerometer implementation and application on sleep
activity monitoring. Telemed. J. e Health 2011, 17, 177–184. [CrossRef] [PubMed]

5. Hu, X.; Naya, K.; Li, P.; Miyazaki, T.; Wang, K.; Sun, Y. Non-Invasive Sleeping Posture Recognition and Body Movement Detection
Based on RFID. In Proceedings of the 2018 IEEE International Conference on Internet of Things (iThings), Halifax, NS, Canada, 30
July–3 August 2018.

6. Pien, G.W.; Schwab, R.J. Sleep Disorders During Pregnancy. Sleep 2004, 27, 1405–1417. [CrossRef] [PubMed]
7. Enayati, M.; Skubic, M.; Keller, J.M.; Popescu, M.; Farahani, N.Z. Sleep Posture Classification Using Bed Sensor Data and Neural

Networks. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology
Society (EMBC), Honolulu, HI, USA, 18–21 July 2018.

8. Hong, J.L.; Su, H.H.; Lee, S.M.; Lim, Y.G.; Park, K.S. Estimation of Body Postures on Bed Using Unconstrained ECG Measurements.
IEEE J. Biomed. Health Inform. 2013, 17, 985–993. [CrossRef] [PubMed]

9. Hsia, C.-C.; Hung, Y.-W.; Chiu, Y.-H.; Kang, C.-H. Bayesian classification for bed posture detection based on kurtosis and
skewness estimation. In Proceedings of the 10th IEEE International Conference on e-Health Networking, Applications and
Services (HealthCom 2008), Singapore, 7–9 July 2008; pp. 165–168.

10. Ostadabbas, S.; Pouyan, M.B.; Nourani, M.; Kehtarnavaz, N. In-Bed Posture Classification and Limb Identification. In Proceedings
of the 2014 IEEE Biomedical Circuits and Systems Conference (BioCAS), Lausanne, Switzerland, 22–24 October 2014.

11. Metsis, V.; Kosmopoulos, D.; Athitsos, V.; Makedon, F. Non-invasive Analysis of Sleep Patterns via Multimodal Sensor Input.
Pers. Ubiquitous Comput. 2014, 18, 19–26. [CrossRef]

12. Occhiuzzi, C.; Vallese, C.; Amendola, S.; Manzari, S.; Marrocco, G. NIGHT-Care: A passive RFID system for remote monitoring
and control of overnight living environment. In Proceedings of the 2014 the 5th International Conference on Ambient Systems,
Networks and Technologies, Hasselt, Belgium, 2–5 June 2014.

13. Liu, J.; Chen, X.; Chen, S.; Liu, X.; Wang, Y.; Chen, L. TagSheet: Sleeping Posture Recognition with an Unobtrusive Passive Tag
Matrix. In Proceedings of the 2019 IEEE Conference on Computer Communications, Paris, France, 29 April–2 May 2019.

14. Lazazzera, R.; Laguna, P.; Gil, E.; Carrault, G. Proposal for a Home Sleep Monitoring Platform Employing a Smart Glove. Sensors
2021, 21, 7976. [CrossRef] [PubMed]

15. Random Forest. Available online: https://rpubs.com/jiankaiwang/rf (accessed on 20 May 2021).
16. Snigdha, F.; Islam, S.M.M.; Boric-Lubecke, O.; Lubecke, V. Obstructive Sleep Apnea (OSA) Events Classification by Effective

Radar Cross Section (ERCS) Method Using Microwave Doppler Radar and Machine Learning Classifier. In Proceedings of the
2020 IEEE MTT-S International Microwave Biomedical Conference (IMBioC), Toulouse, France, 14–17 December 2020.

17. Liu, G.; Li, K.; Zheng, L.; Chen, W.-H.; Zhou, G.; Jiang, Q. A Respiration-Derived Posture Method Based on Dual-Channel
Respiration Impedance Signals. IEEE Access. 2017, 5, 17514–17524. [CrossRef]

18. Hsia, C.C.; Liou, K.J.; Aung, A.P.W.; Foo, V.; Huang, W.; Biswas, J. Analysis and comparison of sleeping posture classification
methods using pressure sensitive bed system. In Proceedings of the 2009 Annual International Conference of the IEEE Engineering
in Medicine and Biology Society, Minneapolis, MN, USA, 3–6 September 2009.

http://doi.org/10.1378/chest.08-0934
http://www.ncbi.nlm.nih.gov/pubmed/19201722
http://doi.org/10.1089/tmj.2010.0078
http://www.ncbi.nlm.nih.gov/pubmed/21413872
http://doi.org/10.1093/sleep/27.7.1405
http://www.ncbi.nlm.nih.gov/pubmed/15586794
http://doi.org/10.1109/JBHI.2013.2252911
http://www.ncbi.nlm.nih.gov/pubmed/24240716
http://doi.org/10.1007/s00779-012-0623-1
http://doi.org/10.3390/s21237976
http://www.ncbi.nlm.nih.gov/pubmed/34883979
https://rpubs.com/jiankaiwang/rf
http://doi.org/10.1109/ACCESS.2017.2737461


Healthcare 2022, 10, 513 12 of 12

19. Razaque, A.; Frej, M.B.H.; Almi’ani, M.; Alotaibi, M.; Alotaibi, B. Improved support vector machine enabled radial basis function
and linear variants for remote sensing image classification. Sensors 2021, 21, 4431. [CrossRef] [PubMed]

20. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
21. Prihatno, A.T.; Nurcahyanto, H.; Jang, Y.M. Predictive Maintenance of Relative Humidity Using Random Forest Method. In

Proceedings of the 2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), Jeju
Island, Korea, 13–16 April 2021.

22. Mekha, P.; Teeyasuksaet, N. Image Classification of Rice Leaf Diseases Using Random Forest Algorithm. In Proceedings of the
2021 Joint International Conference on Digital Arts, Media and Technology with ECTI Northern Section Conference on Electrical,
Electronics, Computer and Telecommunication Engineering, Cha-am, Thailand, 3–6 March 2021; pp. 165–169.

23. Caring for the Elderly to Sleep. Available online: https://ixintu.com/all/zhaogulaorenshuijue.html (accessed on 20 May 2021).
24. Persson, A.; Jonasson, H.; Fredriksson, I.; Wiklund, U.; Ahlström, C. Heart Rate Variability for Classification of Alert Versus Sleep

Deprived Drivers in Real Road Driving Conditions. IEEE Trans. Intell. Transp. Syst. 2021, 22, 3316–3325. [CrossRef]
25. Jagadeesan, S.; Chaturvedi, A.; Kumar, S. URL Phishing Analysis using Random Forest. Int. J. Pure Appl. Math. 2018, 118,

4159–4163.
26. Jeong, M.; Nam, J.; Ko, B.C. Lightweight Multilayer Random Forests for Monitoring Driver Emotional Status. IEEE Access 2020, 8,

60344–60354. [CrossRef]
27. Deng, W.; Guo, Y.; Liu, J.; Li, Y.; Liu, D.; Zhu, L. A missing power data filling method based on improved random forest algorithm.

Chin. J. Electr. Eng. 2019, 5, 33–39. [CrossRef]
28. Raspberry. Available online: https://www.raspberrypi.org/products/raspberry-pi-4-model-b/ (accessed on 20 May 2021).
29. Scikit-Learn. Machine Learning in Python. Available online: https://scikit-learn.org/stable/ (accessed on 20 May 2021).

http://doi.org/10.3390/s21134431
http://www.ncbi.nlm.nih.gov/pubmed/34203466
http://doi.org/10.1023/A:1010933404324
https://ixintu.com/all/zhaogulaorenshuijue.html
http://doi.org/10.1109/TITS.2020.2981941
http://doi.org/10.1109/ACCESS.2020.2983202
http://doi.org/10.23919/CJEE.2019.000025
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/
https://scikit-learn.org/stable/

	Introduction 
	System Description and Methods 
	Experimental Results 
	Discussion 
	Conclusions 
	References

