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Abstract: We constructed and validated a mathematical model of infectious diseases to simulate the
impact of COVID-19 nosocomial infection outbreaks outside hospitals. The model was constructed
with two populations, one inside the hospital and one outside the hospital, and a population diffusion
rate k (0 ≤ k ≤ 1) was set as a parameter to simulate the flow of people inside the hospital to outside
the hospital. To validate the model, we divided the values of the population diffusion rate k into
k = 0–0.25, 0.25–0.50, 0.50–0.75, and 0.75–1.0, and the initial value at the beginning of the simulation
was set as day 1. The number of infected people was calculated for a 60-day period. The change in
the number of people infected outside the hospital due to the out-break of nosocomial infection was
calculated. As a result of the simulation, the number of people infected outside the hospital increased
as the population diffusion rate k increased from 0.50 to 0.75, but the number of people infected from
0.75 to 1.0 was almost the same as that from 0 to 0.25, with the peak day being earlier. In future, it
will be necessary to examine epidemiological information that has a large impact on the results.

Keywords: COVID-19; nosocomial infection; simulation

1. Background and Objectives

The first cases of the novel coronavirus (COVID-19) were reported in Wuhan, Hubei
Province, China, in December 2019, but since then, it has spread to almost all the countries
of the world. In Japan, the first infection was confirmed on 16 January 2020; thereafter, the
COVID-19 infection spread rapidly throughout Japan, with a mass infection on the cruise
ship Diamond Princess confirmed in early February [1,2]. On 7 April, due to mass infection
in many medical facilities, the Japanese government declared a state of emergency in the
seven prefectures of Tokyo, Kanagawa, Saitama, Chiba, Osaka, Hyogo, and Fukuoka [3]. In
the early stages of the contagion, large-scale outbreaks in medical institutions and facilities
for the elderly were attributed to an increase in the number of infected persons; as the
elderly accounted for a high proportion of the infected population, the number of severely
ill persons increased. Previous studies have predicted the peak period of infection spread
in Japan by simulations using a mathematical model, SEIR model, of infectious diseases as
a method for predicting future infection spread [4].

The SEIR model is an adaptation of the Kermack–McKendric model, a mathematical
model for representing the epidemic hypothesis of infectious diseases, proposed by William
Ogilvy Kermack (1898–1970) and Anderson Gray McKendrick (1876–1943) in 1927 [5]. Let
S(t) be the population of susceptible people (non-infected people who can be infected); I(t),
the population with infectivity; and R(t), the population that has acquired immunity to
an infectious disease at time t. The model is referred to as the SIR model in the dynamics
of variation of interaction between these populations and is expressed by the following
standard differential equations.

dS(t)
dt

= −σI(t)S(t) (1)
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dI(t)
dt

= σI(t)S(t)− ρI(t) (2)

dR(t)
dt

= ρI(t) (3)

Here, σ is the infection coefficient, which indicates the ease of transmission of the
infectious disease, and ρ is the immunity acquisition rate. Figure 1 shows the flow diagram
of the SIR model. The mathematical modeling assumes that infected individuals never
return to the population of susceptible individuals S.
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However, some infectious diseases have an incubation period, a period of inactivity
between infection and onset of disease; acquired immunodeficiency syndrome (AIDS) or
human immunodeficiency virus (HIV) fall into this category. With some infectious diseases,
the infected remain indistinguishable from the uninfected during the incubation period,
while with other diseases, the infected have little or no infectivity during the incubation
period. In the present study, the incubation period of COVID-19 was confirmed, and it was
reported that COVID-19 is, for the most part, not infectious during the incubation period [6].
The SEIR model, in which population E representing the infected during the incubation
period is introduced into the SIR model, can be considered by the following equation.

dS(t)
dt

= −σI(t)S(t) (4)

dE(t)
dt

= σI(t)S(t)− βE(t) (5)

dI(t)
dt

= βE(t)− ρI(t) (6)

dR(t)
dt

= ρI(t) (7)

β is the incidence rate for the infection and represents the probability that an infected
person during the incubation period will develop the disease per day. Figure 2 shows the
flow diagram of the SEIR model. As in SIR, it is assumed that the population of infected
and immunized Rs will not become infected again.
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However, there are not many examples of detailed hypotheses testing for cases such
as nosocomial infection, which was one of the factors causing the spread of infection in the
early stages. In this study, we applied the SEIR model, one of the mathematical models
used for infectious diseases, to construct a model that can verify the effect of nosocomial
infection on the spread of infection outside the hospital. Therefore, using the SEIR model
makes it possible to validate the prediction of the spread of infected people.
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2. Materials and Methods

In this study, we constructed a model with reference to a mathematical model of
infectious diseases assuming nosocomial infection caused by severe acute respiratory
syndrome (SARS) by Fukudome et al. [7]. In this model, the in-hospital (“in” is expressed
to “admitting patients”) population transitions from the nonimmune (Sin), those with
no immunity to the virus, to those in the incubation period (Ein), and then the infected,
whereupon they join the hospitalized/homebound (H) group, and then the recovery or
death (R) group (Figure 3). In particular, it has been reported that COVID-19 is characterized
by a high proportion of asymptomatic cases and that it is difficult to diagnose COVID-19
when the only symptoms are a high fever and cough [8]. Therefore, the time required to
confirm infection varies from person to person. In addition, in Japan, if a person is found
to be positive, he or she is hospitalized for a certain period of time or isolated at home as a
measure to prevent the spread of infection. To distinguish this group from the nonimmune
group who are at risk of becoming infected, the new hospitalized/homebound group was
established.
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The simulation model of the transition process for the population outside the hospital
(suffix is indicated “out”) targeted citizens in the vicinity of the hospital. The population
transitioned from the nonimmune group (Sout) to those in the incubation period (Eout)
and then to the infected (Iout), as with the in-hospital model. As individuals were either
hospitalized or stay at home after a COVID-19 diagnosis, regardless of whether the in-
fection was contracted inside or outside the hospital, the hospitalized/homestay (H) and
recovery/death (R) groups were considered to be the same as those of the in-hospital
model and were grouped as one (Figure 4). As hospital visitors and healthcare workers are
considered vectors for the spread of infection to outside the hospital, we set a parameter for
the population diffusion rate k to establish how the flow of people from inside to outside
the hospital changes based on this factor.
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(1) S (nonimmune)

In this model, the population in a hospital and the population in the vicinity of the
hospital were assumed to be people who had not acquired immunity to SARS-CoV-2, the
virus that causes COVID-19. To validate the simulation assuming the initial stage after
nosocomial infection, the model assumed that once a person had acquired immunity to
SARS-CoV-2, he or she would not be infected again.

(2) E (those in the incubation period)

Studies of the early stages of the spread of SARS-CoV-2 have shown that when SARS-
CoV-2 infects a person, there is an incubation period of 2–12 days during which no symp-
toms appear. As COVID-19 is unlikely to be transmitted from a person in the incubation
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period, we constructed this model to avoid the influence of the incubation period on the
nonimmune population [8].

(3) I (the infected)

In this model, the population that developed symptoms of COVID-19 but had not been
hospitalized or placed in home isolation was considered to be relevant. To examine the
impact of delayed confirmation of infected patients on the spread of nosocomial infections,
we established a scenario in which population movement between inside and outside the
hospital occurs.

(4) H (hospitalization and home stay)

As the time required to confirm infection varies from person to person, and because in
Japan, at present, hospitalization or home isolation is used to prevent the spread of infected
people when they are found to be positive, a new group of “hospitalized/homebound”
was established to clarify the groups in which infection is extremely unlikely to occur.

(5) R (Recovery)

In this model, the population was assumed to have acquired immunity to COVID-19.
The proposed model can be calculated by applying standard differential equations to

the population change in each group for each unit time. The model equations are shown in
Equations (8)–(15) below.

dSin
dt

= −(1 − k) ∗ Rind ∗ Iin(t) ∗
Sin(t)

Nin
(8)

dEin
dt

= (1 − k) ∗ Rind ∗ Iin(t) ∗
Sin(t)

Nin
− Ein(t)

l
(9)

dIin
dt

=
Ein(t)

l
− Iin(t)

pin
(10)

dSout

St
= −Routd ∗ Iout(t) ∗

Sout(t)
Nout

− k ∗ Rind ∗ Iin(t) ∗
Sin(t)

Nin
(11)

dEout

dt
=

(
Routd ∗ Iout(t) ∗

Sout(t)
Nout

+ k ∗ Rind ∗ Iin(t) ∗
Sin(t)

Nin

)
− Eout(t)

l
(12)

dIout

dt
=

Eout(t)
l

− Iout(t)
pout

(13)

dH
dt

=

(
Iin(t)

pin
+

Iout(t)
pout

)
− H(t)

i
(14)

dR
dt

=
H(t)

i
(15)

Numerical values calculated using epidemiological information on COVID-19 were
used to determine the parameters to be used based on the model equation. The definition
and numerical values of each parameter are shown in Table 1 below.

Table 1. Parameters for simulation.

Parameter Definition Numerical Value Reference

Nin Total number of people in the hospital 500 -
Nout Total number of people outside the hospital 6000 -

k Population diffusion rate 0–1 -
l Time from infection to onset 5 [9]

pin Time from onset of illness to hospitalization (in hospital) 3.7 (95% Cl, 3.3–4.3) *1
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Table 1. Cont.

Parameter Definition Numerical Value Reference

pout Time from onset of illness to hospitalization (out of hospital) 6.6 (95%, 6.3–6.8) *1
Rin Basic reproduction number (in hospital) 10 *2

Rind Number of people infected per day during the onset period
(in hospital) Rin/pin -

Rout Basic reproduction number (out of hospital) 2.5 [10]

Routd
Number of people infected per day during the onset period

(outside hospital) Rout/pout -

i Convalescence period 10 [11]

In addition, supplementary information for each parameter is given below.*1 pin, pout:
To calculate the time required from the onset of illness to hospitalization, we attempted
to use a case report from Hokkaido, Japan, as there are no detailed reports in Japan that
clearly distinguish between in-hospital and out-of-hospital care. [12] Figure 5 shows the
data extraction method. As shown in the figure, we divided the data into in-hospital and
out-of-hospital categories and calculated the mean and 95% confidence interval. *2 Rin, Rout:
In this model, the basic reproduction number, which is the expected number of secondary
infections produced by a single infected person during their entire infection period, was
set to Rin = 10, assuming that superspreading occurs in the hospital. For out-of-hospital,
Rout = 2.6, based on prior research. In addition, the number of people infected by a person
per unit of time during the infection periods Rind and Routd was calculated using pin and
pout as Rin/pin and Rin/pout, respectively.
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To simulate a situation where healthcare workers or those visiting the hospital for
work or patient visits become infected inside the hospital and flow outside the hospital,
we divided the population diffusion rate k, the parameter representing the magnitude of
population outflow from inside the hospital to outside the hospital, into the following
four categories: 0–2.5, 0.25–0.5, 0.5–0.75, and 0.75–1.0. The initial value at the beginning
of the simulation was set as day 1, with 1 infected individual inside the hospital (Iin) and
outside the hospital (Iout), respectively; the number of infected people was calculated for a
60-day period. For the simulation, the size of the hospital was set to 500 people (Nin = 500).
Additionally, we used a Japanese city with reference to previous studies due to setting
the population outside the hospital [7]. Therefore, the population outside the hospital
was set to a city of Shiraishi-ku, Hokkaido (Nout = 6000), with a population density of
6000 (km/m2) [13]. We used the programming languages R (3.5.3) and Stan (2.16.0) to
implement iterative simulations using the Markov chain Monte Carlo (MCMC) method.
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3. Results
3.1. Building the Model

In this study, we constructed a model in which the populations inside and outside
the hospital transitioned from nonimmune to infected based on the parameters at each
unit of time, with the hospitalization/homestay and recovery/death groups treated as one
(Figure 6). To examine the impact of nosocomial infections outside the hospital, the flow of
the population inside the hospital to outside the hospital was also included in the model.
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3.2. Simulation of the Spread of Infection Outside the Hospital Based on the Population
Diffusion Rate

The simulation results indicated that the number of infected persons outside the
hospital increased as the population diffusion rate k increased from 0 to 0.25, 0.25 to 0.5,
and 0.5 to 0.75, but did not increase from 0.75 to 1.0; instead, it transitioned to a level
equivalent to the 0–0.25 cohort (Figure 7). The number of infected people outside the
hospital during the 60-day period peaked at k = 0.25–0.5 and k = 0.50–0.75, reaching
229 infections at t = 54 for k = 0.25–0.50 and 365 infections at t = 46 for k = 0.50–0.75. The
number of infected people outside the hospital for k = 0–0.25 and 0.75–1.0 climbed without
peaking. From k = 0–0.25 to k = 0.50–0.75, the number of infected persons outside the
hospital peaked at an earlier point as the population diffusion rate increased.
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4. Discussion

An increase in the number of infected persons during the 60-day period was seen in
the k = 0.75–1.0 group with time, as with other values of k, but it was not accompanied
by an increase in the value of k and did not reach a peak within the 60-day period. The
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reason for this is believed to be that when the value of the population diffusivity k is at very
high values approaching 1, infected people in the hospital (Iin) at the initial stage after the
start of the simulation flow out of the hospital based on the established model. As a result,
most of the subsequent population changes would not reflect the flow dynamics limited to
within the hospital, and changes to the in-hospital population would not occur. The results
of predicting the spread of nosocomial infections caused by the human SARS suggest that
the number of infected people tends to increase with the number of factors that spread
outside the hospital [7], which differs from the results of the present study. These results
suggest that the epidemiological characteristics of SARS-CoV2 and SARS-CoV, which cause
novel coronavirus infections, should be examined to determine the validity of the model.

There are several possible limitations of the model developed in this study. First, the
populations of infected persons (Iin, Iout) in the model were not classified according to the
severity of their disease, as a variety of COVID-19 symptoms can be witnessed, and the
duration of infection and recovery time vary significantly depending on the severity of
the disease. In Japan, COVID-19-positive patients are treated according to their symptoms.
Asymptomatic or mildly ill patients are ordered to stay at home for about a week, while
those who require treatment are hospitalized and treated in the ICU.

In this study, the model was designed to determine the impact of one person with
COVID-19 in the hospital on the outside of the hospital in a population that had not
acquired immunity to COVID-19. The situation of the spread of infection in a hospital
varies, and this study assumed a superspreader, but it did not address other situations.
Therefore, the basic reproduction number that influences the increase in the number of
infected people may not be suitable for the model in some situations. In addition, the
population groups set up in the model were hypothetical and did not examine the impact
of any particular region or society.

Since the first confirmation of COVID-19 infection in Japan, the epidemiological
characteristics of COVID-19 have been elucidated, and a number of strict measures, such
as the first declaration of a state of emergency on 7 April 2020, have been enacted, labeling
the outbreak as an issue of national emergency. In addition, vaccination has become
widespread among the population, and measures are being taken to prevent the spread of
COVID-19 infection; however, the model developed in this study is unable to cope with
changes in the population mobility rate accompanying these policies.

Although the simulation model developed in this study has some limitations, we
believe it can be made more realistic by defining population groups and improving the
flow between groups. The issue of dividing the model by severity of disease mentioned in
the potential problems with this study can be solved by further dividing the populations
of infected persons (Iin, Iout) by symptoms. Furthermore, division into symptom groups
makes it possible to make predictions for the groups of people hospitalized or isolating at
home, and the usefulness of the model will be enhanced by understanding the necessary
medical resources in more detail.

5. Conclusions

In this study, we applied SEIR, a mathematical model for infectious diseases, to
construct a model that can verify the effect of nosocomial infection on the spread of
infection outside a hospital, and then we verified the model through simulations. The
simulation results showed that the greater the population inflow to the hospital, the greater
the spread of infection outside the hospital and the earlier the peak of the number of
infected people. In order to increase the applicability of the model, it will be necessary to
examine epidemiological information that has a large impact on the results and consider
simulations in which populations are divided by severity of disease, and we consider that
by dividing the population by symptoms to improve the flow between populations in
the model, we will be able to build a more reproducible model for COVID-19 with large
individual differences in symptoms.
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