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Abstract: Breast tumor segmentation is a critical task in computer-aided diagnosis (CAD) systems for
breast cancer detection because accurate tumor size, shape, and location are important for further
tumor quantification and classification. However, segmenting small tumors in ultrasound images
is challenging due to the speckle noise, varying tumor shapes and sizes among patients, and the
existence of tumor-like image regions. Recently, deep learning-based approaches have achieved
great success in biomedical image analysis, but current state-of-the-art approaches achieve poor
performance for segmenting small breast tumors. In this paper, we propose a novel deep neural
network architecture, namely the Enhanced Small Tumor-Aware Network (ESTAN), to accurately
and robustly segment breast tumors. The Enhanced Small Tumor-Aware Network introduces two
encoders to extract and fuse image context information at different scales, and utilizes row-column-
wise kernels to adapt to the breast anatomy. We compare ESTAN and nine state-of-the-art approaches
using seven quantitative metrics on three public breast ultrasound datasets, i.e., BUSIS, Dataset B,
and BUSI. The results demonstrate that the proposed approach achieves the best overall performance
and outperforms all other approaches on small tumor segmentation. Specifically, the Dice similarity
coefficient (DSC) of ESTAN on the three datasets is 0.92, 0.82, and 0.78, respectively; and the DSC of
ESTAN on the three datasets of small tumors is 0.89, 0.80, and 0.81, respectively.

Keywords: breast ultrasound; tumor segmentation; deep learning; small tumor-aware network

1. Introduction

Breast ultrasound (BUS) imaging is an effective screening method due to its pain-
less, noninvasive, nonradioactive, and cost-effective nature. Breast ultrasound image
segmentation aims to extract tumor region(s) from normal breast tissues in images. It is
an essential step in BUS computer-aided diagnosis (CAD) systems. However, because of
the speckle noise, poor image quality, and variable tumor shapes and sizes, accurate BUS
image segmentation is challenging.

According to the National Cancer Institute, in the United States, the relative survival
is 99% if breast cancer is detected and treated at the early stages, and only 27% if cancer
has spread to other organs of the body [1]. The early detection of breast tumors is the
key to reducing the mortality rate. However, in the early stages, most tumors are small
and occupy a relatively small region in BUS images. It is challenging to distinguish them
from normal breast tissues. Therefore, the accurate detection of small tumors is critical
for early breast cancer detection and can improve clinical decisions, treatment planning,
and recovery.
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Table 1. Deep learning approaches for BUS image segmentation.

Article Year Methods * Dataset Size Evaluation Metrics *

Huang et al. [2] 2018 FCN + Wavelet features + CRFs 325 TPR, FPR, JI
Yap et al. [3] 2018 Patch-based LeNet, U-Net, and AlexNet 469 TPR, FPR, F1

Amiri et al. [4] 2020 Transfer Learning 163 DSC

Nair et al. [5] 2020 Deep Neural Networks + Two Decoders +
Simulated Data 22230 DSC

Zhuang et al. [6] 2019 U-Net + Attention gate 1062 TPR, Sp, F1, Pr, JI, Acc, DSC,
AUC

Hu et al. [7] 2019 Dilated FCN + Active contour model 570 DSC, MAD, and HD

Vakanski et al. [8] 2020 U-Net + Attention blocks 510 TPR, FPR, DSC, JI, Pr,
AUC-ROC

Byra et al. [9] 2020 U-Net + Attention gate + Entropy maps 269 DSC, JI
Moon et al. [10] 2020 Ensemble CNNs 246 TPR, FPR

Lee et al. [11] 2020 U-Net + Channel attention module 163 FPR, F1, JI, AUC, Pr, Sp, TPR

Chen et al. [12] 2022 U-Net + Bidirectional attention +
refinement residual net 780 Acc, DSC, Sens, Sp, Pr, JI

Hussain et al. [13] 2022 U-Net + level set 349 Acc, DSC, JI

Shareef et al. [14] 2020 U-Net + Two encoders 725 TPR, FPR, JI, DSC, AER, MAE,
HD

* TPR: true positive rate, FPR: false positive rate, JI: Jaccard indices, DSC: dice similarity coefficient, Sp: specificity,
F1: F1 score, Pr: precision, Acc: Accuracy, AUC: area under curve, AER: area error rate, MAD: mean absolute
deviation, HD: average Hausdorff distance, ROC: receiver operating characteristic curve, Sens: sensitivity, MAE:
mean area error, CRFs: conditional random fields, and FCN: fully convolutional network.

The approaches of BUS image segmentation can be classified into traditional ap-
proaches and deep learning-based approaches. Numerous traditional approaches have been
used for BUS image segmentation, such as thresholding [15–21], region growing [22,23],
and watershed [24,25]. Despite their simplicity, these methods require knowledge and
expertise in extracting features, and they are not robust due to poor scalability and high
sensitivity to noise. Refer to [26] for a comprehensive review of BUS image segmentation.

Recently, several deep learning approaches [2–14] have been developed for BUS
image segmentation; Table 1 lists the most recent deep learning approaches for BUS image
segmentation. Huang et al. [2] proposed a fuzzy fully convolutional network to perform
BUS image segmentation. Fuzzy logic is adopted to solve the uncertainty issue in the BUS
images and feature maps. Contrast enhancement and wavelet features were applied as
preprocessing techniques to augment the training data. The augmented training image
set and features from convolutional layers were transformed into a fuzzy domain by a
fuzzy membership function. The context information and the human breast structure were
integrated into Conditional Random Fields (CRFs) to enhance the segmentation results.
Yap et al. [3] evaluated the performance of three different deep learning approaches: a
patch-based LeNet, a U-Net, and transfer learning with a pretrained AlexNet on two BUS
datasets (Dataset A and Dataset B). The transfer learning AlexNet outperformed all others
on Dataset A for true positive and F-measure metrics and patch-based LeNet achieved the
best results on Dataset B for false positive per image metric. Although the results show that
the different deep learning approaches designed for other tasks can be adopted and trained
on BUS datasets, all the approaches could not achieve the best results for all the evaluation
metrics on both datasets. Amiri et al. [4] studied transfer learning and the significance of
fine-tuning configurations of U-Net architecture to solve the issue of scarce ultrasound
image data. Fine-tuning the shallow layers of U-Net for small BUS datasets achieved the
best results; however, there is no significant difference in fine-tuning the whole network or
shallow layers for large BUS dataset. Refer to [26,27] for more deep learning approaches
for medical image segmentation.

In addition, Nair et al [5] proposed a DNN with two decoders to create BUS images
and segmentation masks from raw single-plane wave channel data. This approach showed
promising results where both the segmentation masks and B-mode images were generated
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in a single network using raw data. Zhuang et al. [6] proposed an RDAU-Net model, based
on U-Net architecture, to perform the tumor segmentation task on BUS images. The dilated
residual blocks and attention gates were used to replace the basic blocks and original skip
connections in U-Net, respectively. The RDAU-Net design improves the overall sensitivity
and accuracy of the model. Similarly, Hu et al. [7] proposed a DFCN method that combines
the dilated fully convolution network with a phase-based active contour (PBAC) model
to automatically segment breast tumors. The DFCN with PBAC network is more robust
to noise and blurry boundaries, and successfully segments tumors with a large volume
of shadows.

Moreover, Vakanski et al. [8] integrated radiologists’ visual attention with a U-Net
model to perform BUS segmentation. The model designs attention blocks to ignore regions
with low saliency and emphasize more regions with high saliency. This study outperformed
the U-Net model, and has successfully combined prior knowledge information into a
convolutional neural network. Byra et al. [9] proposed a deep learning segmentation
approach for BUS images based on entropy parametric maps with the attention-gated
U-Net network. The model achieved a good improvement; however, there are insufficient
results and analysis to show the significance of entropy maps. Furthermore, Moon et al. [10]
proposed an ensemble CNN architecture for a CAD system comprising multi-models
trained on original BUS images, segmented image tumors, tumor masks, and fused images.
The fused images were prepared by combining an original image, segmented tumor, and
tumor shape information (TSI). The results show that the fused images achieved the best
results among all others, and the study provides a clear guide to choosing an approach for
a specific dataset size. Lee et al. [11] proposed a channel attention module with multi-scale
grid average pooling for segmenting BUS images. The approach utilizes both local and
global information and achieves good overall segmentation performance. Chen et al. [12]
proposed bidirectional attention and refine network that they added on top of the U-net to
accurately segment breast lesions. However, training such a network on a small dataset
makes it challenging to deal with overfitting/underfitting issues. These methods achieved
good overall performance. However, as shown in Figure 1, they failed to achieve good
performance in segmenting small tumors. First, these methods were designed to improve
the overall performance using general-purpose square kernels that were developed for
learning features in natural images. Second, all currently available BUS datasets are small,
and most deep learning-based approaches require a large and high-quality training set.

This work is inspired by the current progress in small object detection and/or segmen-
tation, which is an important task in computer vision, as it forms the foundation of many
image-related tasks, such as remote sensing, scene understanding, object tracking, instance
and panoptic segmentation, aerospace detection, and image captioning. Chen et al. [28]
proposed an augmented technique for the R-CNN algorithm with a context model and
small region proposal generator, which was the first benchmark dataset for small object
detection. Krishna et al. [29] designed a Faster R-CNN model with a modified upsampling
technique to improve the performance of small object detection. Guan et al. [30] proposed
a semantic context-aware network (SCAN), which integrates a location fusion module
and context fusion module to detect semantic and contextual features. The DenseU-Net
architecture was proposed by Dong [31] for the semantic segmentation of small objects
in urban remote sensing images. It uses residual connections and a weighted focal loss
function with median frequency balancing to improve the performance of small object
detection. To the best of our knowledge, STAN [14] was the first deep learning archi-
tecture designed specifically for small tumor segmentation. Three skip connections and
two encoders were employed to extract multi-scale contextual information from different
layers of the contracting part. The Small Tumor-Aware Network outperformed other deep
learning approaches for segmenting small tumors in BUS images. However, its average
false positive rate (FPR) on small tumors is much larger than the FPR on large tumors.
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Figure 1. Performance of state-of-the-art approaches for segmenting breast tumors with different
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The arrows point to BUS images with no tumor detected.

In this paper, we extend STAN and propose a new architecture, namely the Enhanced
Small Tumor-Aware Network or ESTAN, to achieve robust segmentation for tumors of
different sizes. The new architecture has two encoder branches. The basic encoder has five
blocks and learns features at different scales. The ESTAN encoder applies row-column-
wise kernels to adapt to the breast anatomy during feature learning. Specifically, the
human breast anatomy consists of four main layers: skin, premammary (subcutaneous
fat), mammary, and retromammary layers [32]. Each layer is characterized by a distinct
texture and corresponding echo patterns in ultrasound images. The tissue layers in BUS
images appear vertically stacked, with similar echo patterns propagating horizontally
across images. Breast pathology originates predominantly in the mammary layer. The
row-column-wise kernels were designed to learn the breast tissue structure and thus
improve detecting small tumor representations in BUS images. In the decoder, each block
has three skip connections that fuse rich contextual features from the two encoders. The
contextual features are robust to different tumor sizes and help distinguish tumor regions
from normal regions.

The rest of the paper is organized as follows: Section 2 presents the proposed ar-
chitecture; Section 3 demonstrates experimental results and implementation details; and
Sections 4 and 5 are the discussion and conclusion, respectively.

2. Enhanced Small Tumor-Aware Network

In this section, we introduce the proposed Enhanced Small Tumor-Aware Network
(ESTAN) for solving the issue of small tumor segmentation in BUS images. The Enhanced
Small Tumor-Aware Network builds upon two observations: (1) BUS images contain tumors
of a broad range of sizes, and current state-of-the-art approaches have poor performance
in segmenting small tumors; and (2) the current deep learning-based approaches use
square-shape kernels and have difficulty utilizing context information of BUS images, e.g.,
breast tissue anatomy. To alleviate these challenges, we propose ESTAN to extract and
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fuse image context information at different scales. The Enhanced Small Tumor-Aware
Network constructs feature maps using both square and large row-column-wise kernels.
These feature maps extract multi-scale context information and preserve fine-grained tumor
location information. Therefore, the new design enables ESTAN to accurately segment
breast tumors of different sizes and is especially effective in segmenting small tumors. The
overall architecture of the proposed approach is shown in Figure 2.
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2.1. Basic Encoder

The Enhanced Small Tumor-Aware Network consists of two encoders—the basic and
ESTAN encoders. The basic encoder downsamples the input feature maps to extract low-
level spatial and contextual information. The basic encoder comprises five blocks, where
each of the first four blocks contains two convolutional layers and a max pooling layer,
and the fifth block only has two convolutional layers. The basic blocks in the encoder
are different from the original U-Net [33] encoder blocks since the new architecture uses
two skip connections to copy feature maps from the encoder blocks to the corresponding
upsampling layers in the decoder module. Figure 2c illustrates the architecture of the
basic encoder.

Let X ∈ Rh×w×c denote the input images, where h, w, and c are the height, width,
and number of channels, respectively. Let f be the convolution function for square kernels
followed by a rectified linear unit (ReLU) activation function, Ki be the number of kernels,
and Si be kernel size in the ith convolution layer. The output of the jth block of the basic
encoder is defined by

Bj = φ
(

fS2,K2

(
fS1,K1(X)

))
(1)

where Bj is the output, and φ is the pooling operation. Additionally, the kernel size S1 and
S2 in Basic Block 1, 2, 3, 4, and 5 are all set to 3. The number of kernels K1 and K2 in Basic
Block 1, 2, 3, 4, and 5 have values 32, 64, 128, 256, and 512, respectively.

2.2. ESTAN Encoder

The receptive field in CNNs is important in building effective feature maps that model
contextual information. It defines the input image region that impacts output features,
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and image regions outside the receptive field of a feature will not contribute to the feature
calculation. To ensure the coverage of all relevant image regions and achieve enhanced
performance, many dense prediction tasks used large receptive fields [34,35]. Several
techniques have been applied to increase the receptive field, such as stacking more layers,
sub-sampling, and dilated convolutions [36]. However, in BUS images, a large receptive
field can result in poor performance for small tumor segmentation [37]. The goal of the
ESTAN encoder is to avoid the large receptive field and capture small tumors.

The Small Tumor-Aware Network [14] proposed a two-encoder architecture and
applied kernels of sizes 1 × 1, 3 × 3 and 5 × 5. The small kernel size can avoid a large
receptive field. The two encoders fused contextual information at different scales by
producing features using different sizes of receptive fields. This design improved the
overall performance of small breast tumor segmentation. However, STAN produced high
false positives for some BUS images with small tumors.

To overcome this problem, we redesigned the encoder by applying row-column-wise
kernels. The small square kernels in STAN constructed feature maps using only square
image regions. The motivation for the design is because BUS images are composed of
vertically stacked tissue layers (Figure 3). Applying row-column-wise kernels in CNNs
can avoid calculating features using image regions from multiple anatomical layers and
produce more accurate and meaningful feature maps. In addition, in this study, ESTAN
is compared with nine state-of-the-art approaches on three datasets, while STAN was
compared with only three state-of-the-art approaches on two datasets.
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The ESTAN encoder comprises five blocks, named ESTAN blocks, which are parallel
with the basic encoder blocks. Each block has four square kernels and two row-column-
wise kernels in two parallel branches. Such kernels can efficiently extract contextual and
fine-grained details of small tumors in the BUS images. Furthermore, ESTAN blocks add
one extra non-linearity to each encoder block. Figure 2b illustrates the design of each
ESTAN block. Let Ci be the number of kernels, and Ai be the kernel size. The output of jth
ESTAN block is defined by

Ej = φ
(

fA5,C5

(
fA2,C2

(
fA1,C1(X)

)
+ fA4,C4

(
h1,A3,C3

(
hA3,1,C3(X)

))))
(2)

where Ej is the output of the jth ESTAN block, and φ is the pooling operation, h is the
row-column-wise convolution function followed by a rectified linear unit (ReLU) activation
function with the size of A3 × 1 and 1× A3, respectively. The size of A3 in ESTAN Block
1, 2, 3, 4, and 5 are 15, 13, 11, 9, and 7, respectively. The size of A5 in ESTAN Block 2 and
5 is 5, and in the rest is 1. Furthermore, block 5 has no pooling operation for both encoders.
Moreover, the number of kernels (Ci) in each ESTAN Block 1, 2, 3, 4, and 5 have values 32,
64, 128, 256, and 512, respectively.
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2.3. Decoder and Skip Connections

The decoder module comprises four upsampling blocks, where each has one upsam-
pling layer followed by three convolution layers. Unlike the U-Net architecture, where the
decoder has two convolution layers, the ESTAN adds an additional kernel after the first
convolution kernel to control the post-concatenation channels. Let f be the convolution
function followed by a rectified linear unit (ReLU) activation function, Yi be the number of
kernels, and Mi be the kernel size. The output of the jth block of the decoder is defined by

Uj = fM3,Y3

(
fM2,Y2

(
fM1,Y1(Ψ)

))
(3)

where Ψ is the upsampling layer. Kernel sizes M1 and M3 in all blocks are 3, M2 in blocks 1,
2, and 3 is 1, and M2 in Block 4 is 5. In addition, Y1, Y2 and Y3, which represent the numbers
of kernels in jth Up Block, have the same values in each block, and their values are 256, 128,
64, and 32, respectively.

We have introduced two skipping connections to copy feature maps at different scales
from two encoders to the decoder. The first skip connection combines the result of fS1,K1
in the basic encoder block and the result of fA5,C5 in the ESTAN encoder block and are
concatenated to the upsampling layer. The second skip connection concatenates the results
of fS2,K2 and fM2,Y2 . The output layer utilizes a 1 × 1 convolution followed by a sigmoid
activation to predict the final results. Figure 2d illustrates the decoder block.

3. Experimental Results
3.1. Datasets, Evaluation Metrics and Setup

We use three public BUS datasets: BUSIS [20,26,38,39], BUSI [40] and Dataset B [3]. The
BUSIS dataset contains 562 images collected from three hospitals using GE VIVID 7, LOGIQ
E9, Hitachi EUB-6500, Philips iU22, and Siemens ACUSON S2000. The BUSIS dataset
includes 306 benign and 256 malignant breast ultrasound images. The BUSI dataset is from
Baheya Hospital for Early Detection & Treatment of Women’s Cancer in Egypt using the
LOGIQ E9 ultrasound system and the LOGIQ E9 Agile ultrasound system with ML6-15-D
Matrix linear probe transducers. The BUSI dataset has 780 images, of which there are
133 normal, 487 benign, and 210 malignant images collected from 600 women patients aged
25 to 75 years old. In addition, radiologists from Baheya Hospital reviewed and modified
the ground truth masks. The Dataset B has only 163 breast ultrasound images, and the
UDIAT Diagnostic Centre of the Parc Taul’ı Corporation, Sabadell (Spain) collected the
images using a Siemens ACUSON Sequoia C512 system with a 17L5 linear array transducer
(8.5 MHz). Dataset B consists of 53 malignant, and 110 benign images from different women
with a mean image size of 760 × 570 pixels. The Dice loss [41] function is used in this work.

The tumor size is an important variable, and Figure 4 illustrates the histograms of
tumor size distributions of the three datasets based on their original resolution. The physical
sizes of most tumors in the three datasets are unavailable; therefore, we define the tumor
size as the length (in pixels) of the longest axis of a tumor region in the original BUS image.
The distributions of BUSI and Dataset B show positive skewness where many tumors are
smaller than 150 pixels. The BUSI dataset has more large tumors compared to the other
datasets, and the sizes of most tumors are between 150 and 250 pixels. In addition, the
images in the BUSIS dataset were collected with five different BUS workstations; thus, the
image quality has large variations.

To evaluate the segmentation results, both area and boundary metrics are employed.
The metrics are true positive rate (TPR), false positive rate (FPR), Jaccard index (JI), Dice
similarity coefficient (DSC), area error rate (AER), Hausdorff distance (HD), and mean
absolute error (MAE). For detailed information about the seven metrics, refer to [26]. We
perform five-fold cross-validation individually for each dataset to evaluate the test perfor-
mance of all methods, and the input image size is 256 × 256 pixels for all the approaches.
In this study, we compare the proposed method with nine state-of-the-art approaches:
AlexNet [42], SegNet [37], U-Net [33], CE-Net [43], MultiResUNet [44], RDAU-Net [6],
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SCAN [30], DenseU-Net [31], and STAN [14]. These approaches have different backbone
networks and different training strategies. We employ a transfer learning technique for
AlexNet, which is pretrained on ImageNet. SegNet, U-Net, CE-Net, MultiResUNet, RDAU-
Net, SCAN, and DenseU-Net are trained from scratch.
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Note that the FPR is calculated as the ratio between the number of false positives and
the total number of actual positives [22,26,38], which is different from the commonly used
FPR formulation as the ratio between the number of false positives and actual negatives. In
the definition, if the size of false positive regions is larger than the size of the actual positive
regions, FPR will be greater than 1. The new FPR definition is preferred in BUS image
segmentation because of the large size of negative regions (denominator) in the old FPR.

All experiments are performed on a workstation with a 3.50 GHz Intel(R) Xeon(R)
CPU, 32 GB of RAM, and an Nvidia Titan Xp GPU.

3.2. Overall Performance

In this section, we compare the proposed approach with AlexNet, SegNet, U-Net,
CE-Net, MultiResUNet, RDAU-Net, SCAN, DenseU-Net, and STAN. The results are shown
in Figure 5 and Table 2.

Figure 5 shows the segmentation results of four sample BUS images. In the first row,
the tumor in the BUS image is small, and AlexNet, U-Net, MultiResUNet, SCAN, and
DenseU-Net have poor segmentation performance. In the second and third samples (second
and third rows), all approaches, except the proposed ESTAN, produce a high false positive,
which demonstrates that they have difficulty distinguishing tumor regions from tumor-like
regions. In Figure 5k, STAN can segment small tumors accurately but still produces false
tumor regions. Figure 5l shows that ESTAN segments the four images accurately without
any false tumor regions.

Table 2 presents the quantitative results of all approaches on the three datasets. The
proposed ESTAN achieved the best overall performance on all three datasets. AlexNet and
SegNet obtained high TPRs, but at the cost of high FPRs.

To investigate the statistical significance of all approaches, the Wilcoxon signed-rank
test was employed to compare ESTAN against all other approaches for FPR, JI, DSC,
AER, HE, and MAE metrics on the three datasets. The significance level is defined as
p-value < 0.05. The obtained p-values from the Wilcoxon signed-rank test were corrected
using the Holm–Bonferroni method for multiple comparisons. The results indicate a
statistically significant difference for the six metrics on the three datasets, except for the
cases that are marked with (*) in Table 2.
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Table 2. Overall performance.

Datasets Methods TPR FPR JI DSC AER HD MAE

BUSIS [20,26,38,39]

AlexNet 0.95 0.34 0.74 0.84 0.39 25.1 7.1
SegNet 0.94 0.16 0.82 0.90 0.22 21.7 4.5
U-Net 0.92 0.14 0.83 0.90 0.22 26.8 4.9

CE-Net 0.91 0.13 0.83 0.90 0.22 21.6 4.5
MultiResUNet 0.93 0.11 0.84 0.91 0.19 18.8 4.1

RDAU-NET 0.91 0.11 0.84 0.91 0.20 19.3 4.1
SCAN 0.91 0.11 0.83 0.90 0.20 26.9 4.9

DenseU-Net 0.91 0.16 0.81 0.88 0.25 25.3 5.5
STAN 0.92 0.09 0.85 0.91 0.18 18.9 3.9

ESTAN 0.91 0.07 0.86 0.92 0.16 16.4 3.2

Dataset B [3]

AlexNet 0.87 1.17 0.47 0.61 1.30 40.8 14.5
SegNet 0.85 0.83 0.60 0.71 0.98 41.6 11.4
U-Net 0.78 0.41 0.65 0.75 0.63 39.6 10.8

CE-Net 0.74 0.48 * 0.61 0.72 0.74 40.1 10.5
MultiResUNet 0.79 0.26 0.66 0.75 0.48 37.1 10.7

RDAU-NET 0.78 0.30 * 0.67 0.77 0.52 32.4 8.3
SCAN 0.75 0.29 * 0.65 0.74 0.54 43.7 9.9

DenseU-Net 0.71 0.43 0.60 0.69 0.72 48.9 15.5
STAN 0.80 0.27 * 0.70 * 0.78 0.47 * 35.5 9.7 *

ESTAN 0.84 0.22 0.74 0.82 0.38 25.5 7.0

BUSI [40]

AlexNet 0.87 1.14 0.55 0.68 1.27 47.4 14.1
SegNet 0.77 0.55 0.62 0.72 0.78 46.5 13.3
U-Net 0.77 0.56 0.63 0.73 0.78 59.0 13.7

CE-Net 0.77 0.64 0.64 0.73 0.88 43.9 12.4
MultiResUNet 0.78 0.37 0.67 0.75 0.59 41.2 12.0

RDAU-NET 0.80 0.42 * 0.68 0.76 0.62 39.2 12.0
SCAN 0.73 0.43 0.63 0.72 0.70 47.0 13.8

DenseU-Net 0.74 0.43 0.64 0.72 0.69 47.4 15.5
STAN 0.76 0.42 * 0.66 0.75 0.66 46.5 12.1

ESTAN 0.80 0.36 0.70 0.78 0.56 34.8 9.9

* refers to the statistically significant results. The bold results are the best performance according to a metric.
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3.3. Small Tumor Segmentation

The physical size for all images of the three datasets is not available. Therefore, the
length of the longest axis of a tumor region in the original BUS image (non-resized) is used
as a criterion for selecting small tumors, and the length threshold is set to 120 pixels. BUSIS,
BUSI, and Dataset B contain 49, 151, and 76 small tumors, respectively. Figure 6 illustrates
the FPR comparison between the overall and small tumor segmentation. All ten approaches
have higher FPR for small tumors on BUSIS and Dataset B datasets. The FPR of AlexNet
increases dramatically for small tumor segmentation. The ESTAN approach is superior in
comparison to all nine approaches and achieves the lowest false positive for both overall
and small tumor segmentation. Table 3 shows the results of all approaches on the three
datasets using the selected seven quantitative metrics. The Enhanced Small Tumor-Aware
Network outperforms all the other nine approaches for small tumor segmentation on the
three datasets. AlexNet and SegNet obtain high TPRs, but at the cost of high FPRs.
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Table 3. Performance of small tumor segmentation.

Datasets Methods TPR FPR JI DSC AER HD MAE

BUSIS [20,26,38,39]

AlexNet 0.95 0.77 0.60 0.73 0.82 26.3 9.6
SegNet 0.92 0.25 0.75 0.84 0.33 22.4 6.2
U-Net 0.92 0.30 0.76 0.84 0.38 44.2 8.3

CE-Net 0.91 0.36 0.73 0.82 0.46 34.8 9.0
MultiResUNet 0.91 0.23 0.77 0.84 0.33 27.7 8.5

RDAU-NET 0.89 0.19 0.78 0.86 0.30 22.0 7.3
SCAN 0.88 0.18 0.77 0.85 0.30 27.4 6.2

DenseU-Net 0.90 0.50 0.72 0.81 0.60 34.5 8.2
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Table 3. Cont.

Datasets Methods TPR FPR JI DSC AER HD MAE

STAN 0.90 0.17 0.79 0.87 0.26 21.3 5.2
ESTAN 0.90 0.11 0.82 0.89 0.21 14.9 3.0

Dataset B [3]

AlexNet 0.87 1.86 0.35 0.49 2.00 49.2 18.4
SegNet 0.85 1.45 0.50 0.62 1.60 50.1 14.2
U-Net 0.77 0.68 0.59 0.68 0.91 43.1 13.8

CE-Net 0.72 0.88 0.53 0.63 1.15 50.0 14.4
MultiResUNet 0.79 0.42 0.62 0.71 0.62 39.3 11.5

RDAU-NET 0.78 0.52 0.62 0.71 0.73 34.1 8.8
SCAN 0.75 0.50 0.61 0.70 0.74 48.7 11.2

DenseU-Net 0.70 0.73 0.54 0.63 1.02 56.0 20.0
STAN 0.81 0.40 0.67 0.76 0.59 35.9 11.1

ESTAN 0.85 0.30 0.72 0.80 0.44 21.5 6.3

BUSI [40]

AlexNet 0.94 2.74 0.41 0.56 2.81 52.5 15.4
SegNet 0.81 1.42 0.55 0.66 1.61 52.1 16.6
U-Net 0.86 1.34 0.63 0.73 1.48 61.0 13.0

CE-Net 0.83 1.86 0.59 0.69 2.03 50.9 13.3
MultiResUNet 0.85 0.83 0.67 0.76 0.99 34.7 10.6

RDAU-NET 0.87 0.99 0.68 0.77 1.13 33.9 9.9
SCAN 0.80 1.13 0.63 0.73 1.33 42.4 12.5

DenseU-Net 0.81 1.06 0.65 0.73 1.26 40.9 13.7
STAN 0.86 1.10 0.67 0.76 1.25 49.2 11.3

ESTAN 0.89 0.77 0.72 0.81 0.88 24.2 6.1

The bold results are the best performance according to a metric.

3.4. Segmentation Tumors with Different Sizes

To demonstrate the effectiveness of the proposed ESTAN model, we split the BU-
SIS [20,26,38,39] dataset into four tumor-size groups. We chose the BUSIS dataset for the
following reasons: (1) the images were collected from three hospitals using five ultrasound
devices operated by different radiologists; (2) the ground truths of the BUSIS dataset
have less bias because they were prepared by four experienced radiologists, where three
radiologists generated tumor boundaries for each BUS image separately, and the fourth
radiologist—a senior expert—judged and adjusted the majority voting results; and (3) all
ten approaches achieved the best performance on the BUSIS dataset compared to BUSI and
Dataset B. We chose the length of the longest axis of a tumor as a criterion for selecting
tumor groups in the original BUS image. The first group contains 19 images with tumor
sizes from 0 to 100 pixels, the second group has 30 images from 100 to 120 pixels, the third
group consists of 81 images from 120 to 160 pixels, and the fourth group has 432 images
from 160 to 533 pixels.

Table 4 lists the values of JI and FPR for the four tumor groups. AlexNet has poor
performance for segmenting the small tumor group with JI of 0.57 and FPR of 0.97, while
FPRs and JIs are improved dramatically in the other three groups. The results of segmenting
tumors in both mid-size groups (100–120, and 120–160) are close to each other, e.g., CE-NET
and SCAN have achieved the same JI with 0.81 and 0.80 in both groups, respectively. The
results show that the tumor sizes between (0–100) are the most difficult cases, and all
ten approaches cannot achieve as good performance as segmenting large tumors. On the
other hand, for the fourth group containing large tumor sizes (>160 pixels) all approaches
achieved better results than the other tumor groups. The proposed ESTAN achieved the
highest JI and lowest FPR values in all tumor groups.
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Table 4. Performance of four tumor size groups of BUSIS dataset.

Tumor Size Groups (0–100) (100–120) (120–160) (>160)

Number of Images 19 30 81 432

JI FP JI FP JI FP JI FP

AlexNet 0.57 0.97 0.63 0.64 0.68 0.44 0.76 0.27
SegNet 0.71 0.28 0.77 0.23 0.79 0.21 0.83 0.14
U-Net 0.72 0.34 0.78 0.27 0.80 0.18 0.84 0.11

CE-Net 0.62 0.63 0.80 0.19 0.80 0.16 0.84 0.09
MultiResUNet 0.71 0.34 0.80 0.16 0.82 0.17 0.86 0.09

RDAU-NET 0.72 0.26 0.82 0.14 0.81 0.17 0.85 0.09
SCAN 0.71 0.24 0.81 0.14 0.81 0.16 0.80 0.09

DenseU-Net 0.67 0.77 0.75 0.34 0.78 0.21 0.83 0.11
STAN 0.76 0.25 0.81 0.11 0.83 0.12 0.86 0.08

ESTAN 0.79 0.15 0.83 0.09 0.85 0.10 0.87 0.06

4. Discussions

The BUS images used in this work were obtained from different ultrasound devices
with non-uniform settings, and vary in image resolution, tissue depth, and contrast. It is
challenging to develop and train a robust deep model that performs consistently well
on BUS images from different sources. As shown in Table 2, the performance of all
approaches differs on images from different datasets. For instance, DenseU-Net achieved
a JI of 0.74 on the BUSIS dataset, but its JI on Dataset B is only 0.60. To improve the
robustness of deep learning models for BUS image segmentation, we recommend (a)
involving large and diverse BUS datasets collected from different resources in model
training, and (b) redesigning network architectures and training strategies to learn robust
features from ultrasound images.

The preparation of a large, diverse, and annotated BUS image dataset could be time-
consuming and prohibitively expensive. Therefore, in the short term, the more feasible
strategy is to develop robust deep networks and training processes. The results in Tables 2–4
indicate that the proposed two-encoder network architecture and the row-column kernels
could lead to more robust segmentation results. Another possible solution to this chal-
lenge is to develop image synthesis approaches that could generate realistic and diverse
BUS images.

The strengths of this study include (a) utilizing the human breast anatomical layers to
design convolution kernels, (b) using two encoders to learn features and three skip connec-
tions to transfer contextual information to the decoder to locate tumors more accurately,
and (c) validating the efficacy and weakness of the proposed approach using extensive
experiments on three publicly available datasets. Although ESTAN achieved remarkable re-
sults for segmenting tumors of various sizes on the three datasets, it failed to detect tumors
in 29 extremely challenging cases, because these cases had high speckle noise, extremely
low contrast, and no clear tumor boundaries. To extract features at different scales, ESTAN
uses two encoders that require more parameters, memory, and computational resources.
Therefore, optimizing ESTAN to eliminate unnecessary parameters and operations is sig-
nificant, specifically for resource-constrained systems such as mobile devices. In the future,
we will investigate long-range semantic information to improve the current approach.

5. Conclusions

In this work, we proposed the Enhanced Small Tumor-Aware Network (ESTAN) to
improve the segmentation of small tumors in BUS images. The Enhanced Small Tumor-
Aware Network is comprised of two encoder branches that extract and fuse image context
information at different scales. The proposed ESTAN encoder applies row-column-wise
kernels to adapt to breast anatomy. The decoder has three skip connections from the two
encoders to fuse features. The new design enhances the performance by incorporating
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multi-scale features and breast anatomy into the encoder layers. The proposed architecture
is sensitive to small breast tumors and identifies small tumors accurately. In addition, the
approach achieves state-of-the-art performance in segmenting tumors of different sizes. We
validated the proposed approach extensively using three datasets and compared it with the
other nine breast tumor segmentation approaches. The results demonstrate that ESTAN
achieves state-of-the-art performance on all datasets.
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