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Abstract: Stroke risk prediction based on electronic health records is currently an important research
topic. Previous research activities have generally used single-time physiological data to build
static models and have focused on algorithms to improve prediction accuracy. Few studies have
considered historical measurements from a data perspective to construct dynamic models. Since
it is a chronic disease, the risk of having a stroke increases and the corresponding risk factors
become abnormal when healthy people are diagnosed with a stroke. Therefore, in this paper, we
applied longitudinal data, with the backward joint model, to the Chinese Longitudinal Healthy
Longevity and Happy Family Study’s dataset to monitor changes in individuals’ health status
precisely on time and to increase the prediction accuracy of the model. The three-year prediction
accuracy of our model, considering three measurements of longitudinal parameters, is 0.926. This is
higher than the traditional Cox proportional hazard model, which has a 0.833 prediction accuracy.
The results obtained in this study verified that longitudinal data improves stroke risk prediction
accuracy and is promising for dynamic stroke risk prediction and prevention. Our model also
verified that the frequency of fruit consumption, erythrocyte hematocrit, and glucose are potential
stroke-related factors.
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1. Introduction

Strokes are the leading cause of death in China, leading to an expensive economic
burden of over RMB 40 billion per year [1]. According to the “Brief report on stroke prevention
and treatment in China, 2020”, there are approximately 2.8 million new stroke patients in
China every year [2]. Fortunately, over 75% of strokes are preventable by controlling
metabolic and behavior risk factors [3]. Among these risk factors, high blood pressure,
cigarette smoking, and cholesterol imbalance, etc., are avoidable [4]. Various questionnaires
and tools are proposed to predict the risk resulting from the combination of these reported
risk factors. For example, the latest QRISK3 risk prediction algorithm was developed to
estimate the 10-year cardiovascular disease risk in the United Kingdom [5]. However, these
assessments only include present physiological parameters, attaining a static model that
can only represent health status at a given time point. Even when considering the historical
data in the prediction models, only the diagnosis of common diseases, e.g., diabetes and
atrial fibrillation, or medication history, is considered. However, stroke is a chronic disease,
so physiological information changes, and these variations can result in different stroke
risk stratification [6]. Hence, we propose using longitudinal dynamic risk factors.

The concept of longitudinal data is continuously duplicated measurements on the
same feature during a specific period, which reflect the variation in the feature [7]. In previ-
ous studies, longitudinal data have been used primarily to monitor the lesion progression
of cognitive problems and neurological diseases, rather than prevention. Moreover, the
prediction features were mainly images or disease-related biomarkers that required extra
examination, rather than physical routine examination data or electronic health records
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(EHRs). For example, in the study on functional changes during working memory in Hunt-
ington’s disease, Poudel et al. (2015) compared fMRI activity images over 30 months [8]. In
another study to predict the final outcome of primary biliary cholangitis, serum bilirubin,
albumin, and prothrombin were used as longitudinal data [9].

We found that the application of longitudinal data to predict cardiovascular diseases is
limited. Zhao et al. (2019) considered seven years of observations of cholesterol, body mass
index, blood pressure, smoking status, and other risk factors for cardiovascular disease
prediction. They exploited the temporal information by dividing the entire observation into
one-year slice windows and calculated the median, maximum, minimum, and standard
error for each feature, within each slice window. However, for the same features in different
slice windows, the authors treated them individually, regardless of changing trends over
the years [10]. This means their methods cannot reflect the impact of feature dynamic
changes on risk. Therefore, in this paper, we predicted the risk of having a stroke using risk
factors’ variation trends. In addition, the current situation regarding strokes in China is
serious, but fewer models are based on the Chinese elderly. According to this, the Chinese
Longitudinal Healthy Longevity and Happy Family Study’s (CLHLS-HF) dataset [11,12],
which contains abundant physiological and life habit information, was selected in this
research to construct an efficient prediction model that focused on this group of people.

From a model perspective, the previous stroke prediction models can be divided into
two categories. One is based on statistical models that use mathematical equations to
present stylized expressions of the relationship between the factors and the prediction
results. The shortcoming of these models is the relatively low prediction accuracy [13].
One recent example is the SCORE2-Older Persons algorithm, which estimates the 5- and
10-year risk of cardiovascular disease in people over 70 years of age, yielding c-indices
from 0.63 to 0.67 [14]. Another popular prediction model is applying machine-learning
algorithms that can handle high-dimensional features to attain remarkable prediction
accuracy. For instance, Singh and Choudhary (2017) combined a decision tree, a principal
component analysis, and a back-propagation neural network algorithm to predict the
results, with 97.7% accuracy [15]. However, the disadvantage here is that these algorithms
do not depend on the rule designed, so the relationships between factors and outcomes are
indistinct and difficult to explain. Moreover, overfitting is a frequent drawback of these
machine-learning models.

Apart from commonly used stroke risk prediction scales, the purpose of most recent
publications regarding stroke risk prediction has been algorithm validation. Mostly, only
the overall accuracy, sensitivity, and specificity of the models are reported [16,17]. Detailed
examples are rarely given to illustrate their practical applications and the feedback a patient
can receive. Therefore, we propose a solution to present the dynamic results, providing
information in the form of an individual dynamic prediction plot and the corresponding
risk level.

In this paper, we have presented a dynamic stroke risk model using longitudinal data.
Compared to prior research activities, which are considered single measurements, this is a
new direction for improving prediction accuracy by monitoring historical health records.
From the model’s perspective, a new algorithm, named the backward joint model, and some
attempts to fit the dataset, including another variance estimation method and validation,
were implemented. To the best of our knowledge, this is also the first time that this model
has been applied to a complex dataset with preprocessing work. To construct a model
specifically for the Chinese elderly population, the CLHLS–HF dataset was applied in this
research. Moreover, our model also used Random Forest–Recursive Feature Elimination
(RF-RFE), a machine-learning algorithm used to determine infrequently used factors. The
individual dynamic prediction plot indicates the variation in the risk of having a stroke over
the period of longitudinal data collection. This information can be further implemented
in the user interface, e.g., mobile applications, to provide the latest feedback on the risk
of having a stroke as well as its changes over time. Moreover, the resulting risk-of-stroke
values alert people to act according to the risk value and category they are assigned. In the
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future, the model can be applied to multimodal data and wearable devices for real-time
monitoring and can be promoted for more users and scenarios.

The remainder of this paper includes Sections 2 and 3, in which we describe the meth-
ods and results of the data preprocessing, model construction, and prediction performance.
In Section 4, we discuss the results based on the dataset and the model and give some
comparisons with other related studies. Conclusions are given in Section 5.

2. Materials and Methods

The dataset and prediction model applied in our study are introduced in Sections 2.1
and 2.2, respectively.

2.1. Dataset

The dataset was obtained from the Chinese Longitudinal Healthy Longevity and
Happy Family Study (CLHLS-HF), collected by the Centre for Healthy Aging and De-
velopment Studies of the National School of Development, at Peking University [11,12].
This open dataset is available for personal academic and policy research activities. The
dataset is composed of two parts. The first part is a questionnaire containing sections of
basic information, as follows: personality, mini-mental state examination (MMSE), lifestyle,
activities of daily living and instrumental activities of daily living, personal background,
objective examination, and illness diagnosis. The second part consists of biomarkers, with
blood and urine routine test information, e.g., blood cell count and urine microalbumin.
Each question and the recorded data on each physiological parameter, are considered as one
factor. Overall, there are over 300 parameters in this dataset. We used the latest available
dataset, including the investigations between 2008 and 2017, as shown in Figure 1.
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Specifically, first, only individuals without a stroke, identified before 2008, were
included in our study. Next, for everyone, the same factors were measured three times: in
2008, 2011, and 2014, with three-year gaps between each measurement. Since the data were
collected by the social science department, with wide coverage and a long time interval
between each measurement, we could only use these three longitudinal data points to
construct the prediction model. The end time point of the study was 2017, at which point
the final stroke status was collected, therefore, defined the limit of the prediction results.

The data cleaning started with the adaptation of the dataset to the model-required
format, then family and post-stroke information were excluded, as this information is
not relevant to an individual’s first stroke prediction. Referring to an earlier study, per-
sonality and mini-mental state examination (MMSE) [18] were located according to the
score and four corresponding levels: normal, mild disabilities, moderate disabilities, and
severe disabilities.

Longitudinal data show distinct superiority over the traditional single measurement
in imputing missing data since they contain personal history. Hence, more information
can be consulted to accurately estimate the missing value. The imputation methods can be
generalized into two types, according to different data categories. One type is categorical
data—a collection of information that is divided into groups, such as disease history
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and living area. The imputations were achieved by referring to the historical data of the
individual subject. For those that cannot be imputed by the existing data, the corresponding
proportion for each level was used, e.g., if one feature had two categories with 80% and 20%,
then these two categories became 4:1, randomly imputed to missing individuals [19]. The
proportion of the missing data imputed using this approach was up to 5%. Another type is
numerical data, which is in the form of numbers, such as the value of blood biomarkers.
Because of the complexity of this type, machine-learning methods are preferred for missing
data imputation. Personal history and others with the same gender and age were considered
to contribute to the imputation. This was achieved in our study by the multiple imputation
(MI) algorithm, with a small mean square error and effective imputation efficiency [20]. For
this type of data, the missing data proportion of each factor is approximately 5–18%. It has
been proven that MI can still produce reasonable imputation results in this case [21].

Concerning feature selection, in prior publications, predictors were commonly re-
stricted to preselected, established risk factors. Since the backward joint model was pro-
posed to accommodate multiple longitudinal data, a factor increment was considered by
machine-learning algorithms. Random Forest–Recursive Feature Elimination (RF-RFE) was
the preferred technique for examining all potential feature subgroups and finding the best
subgroup, with fewer features, to achieve the highest classification accuracy [22]. Feature
importance was also calculated for confirmation.

2.2. Model Implementation

The proposed model for our dataset was adapted from the backward joint model
(BJM) [9], with the advantage of resolving the issue that ordinary joint models must
contain time-to-event data, and of supporting the consideration of censored data for model
construction. Furthermore, it is computationally simpler, as it always has a one-dimensional
integral in the time domain.

Here are some notations for the model. The individual is indexed by i, the measure-
ment is indexed by j, and the main numerical factor is indexed by g. Yig denotes the value of
main numerical factors, and Zig denotes the value of remaining factors. The measurement
time point is denoted by tij, which, in our study were 0, 3, and 6. T̃i is the time-to-event
data, which, in our study was the time point identified as having had a stroke and may
have a value of 3, 6, or 9. Ci is the censored time, equaling the time point at which the
final status of being a no-stroke patient was recorded at 9 in our study. Ti = min (T̃i, Ci),
represents the time point when it comes first, and δi = 1{T̃i ≤ Ci} is the event indicator,
indicating whether a stroke was identified inside the follow-up time. This model assumes
that Ci is independent of T̃i, Yi is conditional on Zi, tij is conditionally independent of Yi

and conditional on T̃i, Ci, and Zi. The model can be summarized as follows:
The aim of this model is to predict the risk of stroke for a new subject, o, within a

pre-defined prediction horizon, as shown in the following equation:

P
(

s < T̃o ≤ s +4
∣∣∣Yo(s), To > s, Zo

)
=

P( Yo(s), s<T̃o≤s+4,To>s| Zo)
P(Yo(s),To>s| Zo)

=
P( Yo(s), s<T̃o≤s+4| Zo)

P( Yo(s),T̃o>s| Zo)

(1)

where s is the time point at which the prediction is made, and4 is the pre-defined prediction
horizon—three-year in our study. Yo(s) and Zo are the longitudinal history information
of main numerical factors and remaining factors until s. The second equality is due to
the assumption that Co is independent. For both the denominator and numerator of
Equation (1), their probabilities can be easily calculated with conditional joint distribution
f (Y, T̃

∣∣∣Z) , which can be decomposed into two conditions: f (Y
∣∣∣T̃, Z) and f (T̃

∣∣∣Z) . For

survival sub-model f (T̃
∣∣∣Z) , we used a Cox proportional hazard model, with piecewise
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constant baseline hazard function. For f
(

Y
∣∣∣T̃, Z

)
, we used multivariate linear mixed

models, such as the following:

yig
(
tij
)
= β0g + ZT

i β1g + T̃iβ2g + tijβ3g + T̃itijβ4g + γi0g + tijγi1g + εijg

= XT
ig

(
T̃i, Zi, tij

)
βg + AT

igγig + εig
(2)

This equation was specified for each main numerical factor, at each measured time
point, with its own parameters. It was intended to introduce the association between
main numerical factors and remaining factors and time. The interaction in fixed effects
was considered only between T̃i and tij, and tij was also treated as the random effect.
Equation (2) indicates that given remaining factors’ covariates, subjects with different
survival times will have different main numerical factor trajectories. It can be further
generalized to the second equality. After these, the multivariate linear model for all the
longitudinal biomarkers was as follows:

Yi|T̃i, Zi, γi = Xi

(
T̃i, Zi, ti

)
β + Aiγi + εi (3)

where Xi

(
T̃i, Zi, ti

)
and Ai denote block diagonal matrices of fixed and random effects

for main numerical factors, respectively. ti, β, γi are the concatenated vectors of feature
measurement time points, and fixed and random coefficients. εi is the specific measurement
error. γig =

(
γiog, γi1g

)T is assumed to have a multivariate normal distribution, as follows:

MVN

0, Ωgg =

 σ2
γ0g

(
T̃i

)
σγ0g σγ1g

(
T̃i

)
σγ0g σγ1g

(
T̃i

)
σ2

γ1g

(
T̃i

)  (4)

and εi is assumed to have normal distribution: N
(

0, σ2
εg

(
T̃i

))
, with both variance and

covariance parameters dependent on T̃i. The possible relationships between the different
main numerical factors are presented by the correlation between their random effects, i.e.,
the covariance between γig1

and γig2
is denoted by Ωg1g2

(
T̃i

)
(g1 6= g2).

The denominator and numerator of Equation (1) were calculated similarly, the only
difference being that s < T̃o ≤ s +4, or T̃o > s. For example, the denominator can be
decomposed as follows:

P
(

Yo(s), T̃o > s
∣∣∣ Zo

)
=

∞∫
s

f (Yo(s) |T̃o = u, Zo) f
(

T̃o = u,
∣∣∣Zo

)
du (5)

To properly integrate the entire support of T̃o, we assumed that T̃o was within Co,
given Zo. However, approximately half of the individuals in our study were categorized as
no-stroke patients during this period, especially for future application to new arrivals, those
without T̃o. Therefore, the present algorithm used a two-part model, involving verifiable
assumptions for this group of subjects, with T̃ larger than a pre-specified maximum follow-
up time, τ, which, in our study, was 9 years. This group of patients with T̃ > τ were
referred to as long-term survivors (LTS), and Equation (3) was modified to the following:

Yi|Zi, T̃i >τ, γi = Xi
e(Zi, ti)βe + Ai

eγi
e + εi

e (6)

The superscript e was used to distinguish the LTS group, which differs from Equation (3)
in that Ti was not added as an effect to Equation (6). This equation characterizes the longi-
tudinal trajectory of a heterogeneous group of subjects, with different survival times, T̃ > τ.
Therefore, the two-part model for f

(
Y
∣∣∣T̃, Z

)
can be summarized as follows:
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Yi|T̃i, Zi ∼ MVN
(

Xi

(
T̃i, Zi, ti

)
β, Vi = AiΩAi

T + Σi

) (
T̃i ≤ τ

)
(7)

Yi|T̃i, Zi ∼ MVN
(

Xi
e(Zi, ti)βe, Vi

e = Ai
eΩeAie T + Σi

e
)

(T̃i > τ) (8)

where MVN is multivariate normal distribution, Ω and Ωe denote the covariance structure,
combining Ωgg and Ωg1g2

(g1 6= g2). Σi and Σi
e denote the measurement error variance.

In the estimation procedure, a two-stage pseudo-maximum likelihood estimation
procedure was proposed to fit BJM. The first stage was to fit the survival model of f (T̃

∣∣∣Z)
and obtain maximum likelihood estimators of its parameters. Next, the second stage was to
fit longitudinal models of f

(
Y
∣∣∣T̃, Z

)
by expectation–maximization (EM) algorithm, which

is divided into E-step and M-step. During the EM iterations, the survival model parameters
were fixed to their first-stage estimators. Both the random effects, γi, and the unobserved,
T̃i, were dealt with in this process. The coarsening approximation [23] was used here to
represent the residual lifetime distribution of Ti after the censoring time. It replaced the
continuous distribution of T̃ with a discrete mixture distribution, facilitating the calculation
of the EM algorithm.

In the E-step after mth iteration, we calculated the conditional expectation for γi and
γiγi

T, with known Yi, T̃i, δi and Θ̂(m), based on the conjugate prior in Bayes’ rule. Similar
process was also performed for the LTS model. Both f (T̃

∣∣∣Z) and f
(

Y
∣∣∣T̃, Z

)
were required

here to calculate the conditional expectation of {T̃i = lik} and 1{T̃i > τ}.
In the M-step, we computed the maximum expectation of complete data log-likelihood,

which was also the final derivation of Equation (5), as follows:

n
∑

i=1
(δi log( f (Yi|T̃i = Ti, Zi, γi; Θ)P(γi; Θ))

+(1− δi)
K
∑

k=1
(1{T̃i = lik} log( f (Yi|T̃i = lik, Zi, γi; Θ)P(γi; Θ))

+(1− δi)1{T̃i > τ} log( f (Yi

∣∣∣T̃i >τ, Zi, γi
e; Θe)P(γi

e; Θe)))

(9)

where Θ = {β, Ω, σ} and Θe = {βe, Ωe, σe}, lik is the stroke time point calculated by
coarsening approximation. K was assigned a value of 10 here, as it has been proved to
produce sufficient approximation and the result was not sensitive to further increase in
K [23]. P(γi; Θ) and P(γi

e; Θe) are the density function for individual random effects.
f (Yi

∣∣∣T̃i = s, Zi, γi; Θ) and f
(

Yi

∣∣∣T̃i >τ, Zi, γi
e; Θe

)
are from Equations (3) and (6). To

maximize the expectation, after mth iteration, the parameters in Equation (9) were replaced
by {Θ̂(m), Θ̂e(m)}. After the EM algorithm converged at the end of the iterations, we
obtained the denominator result of Equation (1). The numerator of Equation (1) was
calculated by the same procedure. Finally, we obtained the result of Equation (1), i.e., the
expected stroke risk prediction result.

Since this paper focused, not on algorithm construction, but on the application of this
novel model to stroke prediction, we only summarized the broad construction steps here.
Detailed equation derivations can be found in BJM proposed paper [9].

The original model, proposed by Shen and Li, used 300 bootstrap repetitions for
variance estimation, resulting in a large confidence interval [9]. Therefore, another com-
monly used method, repeated 10-fold cross-validation [24], was also attempted for bias and
variance comparison in our work. Data preprocessing, analysis, model construction, and
validation were all performed using R on RStudio (version 4.1.1 for Windows 10, RStudio,
PBC., Boston, MA, USA).
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3. Results
3.1. Baseline Characteristics

The outcomes of stroke status in our prediction model were “no stroke” and “identified
as having had a stroke”, which were defined by either being diagnosed by medical doctors
in the hospital or self-reporting (a “yes” or “no” status). These two questions regarding
stroke identification were included in the questionnaire. After excluding individuals lost
in the study and those with an unclear stroke status, 317 participants were included in
2008, aged between 62 and 105 years. In all, 94 were identified as having had a stroke
between 2008 and 2011, 49 were identified as having had a stroke between 2011 and 2014,
and 12 were identified as having had a stroke between 2014 and 2017. The remaining 162
did not suffer a stroke before the end of the observation period (Figure 1). In summary,
714 measurement records were used to construct the prediction model.

With the completion of the preprocessing, the total number of predictors was reduced
from over 300 to 90 after we excluded their relatives and post-stroke information. In our
prediction model, the 20 most stroke-related factors were considered. Ten were established
factors, and ten others were determined using RF-RFE, as introduced in Section 2.1. The
established factors used in this paper were defined by a guideline named “American College
of Cardiology/American Heart Association (ACC/AHA) guideline on assessment of cardiovascular
risk” [25] and have also been widely used by other stroke risk calculators [5,26]. These
features include systolic blood pressure, diastolic blood pressure, total cholesterol, high-
density lipoprotein cholesterol, smoking, sex (male/female), age, province (south/north),
geographic location (rural/urban/town), and diabetes history (yes/no). The RF-RFE
features of choice are red cell count, platelet count, erythrocyte hematocrit, blood urea
nitrogen, hemoglobin, glucose, frequency of doing housework (every day/at least once a
week/at least once a month/sometimes/never), frequency of fruit consumption (almost
every day/quite often/occasionally/rarely/never), mini-mental state examination (MMSE)
(normal/mild/medium/severe), and hypertension history (yes/no). These 20 factors can
also be divided into main numerical factors and remaining factors.

First, the main factor must be numerical data, as categorical data do not have con-
tinuous numerical meanings. Next, for these 12 numerical factors, the main numerical
factors must fulfill at least one condition for its value or variation trend to distinguish
the stroke group from the no-stroke group clearly. The Welch t-test was used to compare
the differences between these two groups, and, finally, the p-value < 0.05 defined the
statistically significant difference [27]. In the numerical value comparison, we compared
the value of the initial features in 2008 for patients who were identified as having had
a stroke before 2011, and for those who did not have a stroke until 2011. The same was
then undertaken for the following years so that three p-values could be obtained for each
feature. The grouping here was based on the differences in single measurement. Systolic
blood pressure, total cholesterol, high-density lipoprotein cholesterol, platelet count, and
age showed significance at least once, while the remaining features were insignificant in
all three p-values. In comparing the variation trends, we calculated two variation values
between 2008 and 2011, and between 2011 and 2014 for the same feature, for everyone, so
that two p-values could be obtained for each feature. The grouping here was based on the
final status in 2017 because we believed that the stroke and the no-stroke patients would
have different longitudinal trajectories of risk factors. Therefore, these comparisons focused
more on the differences in dynamic changes.

Systolic blood pressure, diastolic blood pressure, and red blood cell count showed
significant differences between the stroke and no-stroke groups. In contrast, other factors
still did not show any significant difference. The full p-value table can be found in the
Supplementary Materials (Table S1). Based on the two comparisons above, seven factors
appeared to be significantly different between the two groups. Although age showed one
significant difference in the first measurement (2008), the individual variation slope was the
same, and it was also the same as the variation in measurement time, so we did not consider
it as a main numerical factor. After this consideration, the rest of the factors—systolic blood
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pressure, diastolic blood pressure, total cholesterol, high-density lipoprotein cholesterol,
red blood cell count, and platelet count—were defined as the main numerical factors. The
remaining were treated as remaining factors with categorical factors.

The average and standard deviation of the six main predictors at each measurement
are summarized in Table 1. Table 2 summarizes the characteristics of the remaining 14 pre-
dictors. All the patients were divided into a stroke group or a no-stroke group. The number
of no-stroke patients (not identified as having had a stroke before the end of the study) was
162, and we used Equation (2). The other group comprised stroke patients and the total
number changed because patients’ longitudinal data collection stopped after the stroke
onset. More specifically, 2008 saw 155 patients, including all those who were identified
as having had a stroke during the study. In 2011, there were 61 patients, as 94 patients
were identified as having had a stroke in 2008–2011, so their measurements were stopped.
In 2014, there were only 12 stroke patients, as 49 patients were identified as having had a
stroke between 2011 and 2014 and their measurements were ended.

Table 1. Average and standard deviation of six main numerical risk factors at each measurement for
stroke and no-stroke individuals.

Stroke No Stroke

Average SD Average SD

2008 (155/162)

Systolic Blood Pressure (mmHg) * 143 21.75 140.5 18.31
Diastolic Blood Pressure (mmHg) * 79.5 11.60 79 9.98

Total Cholesterol (mmol/L) * 3.71 1.34 3.22 1.26
High-Density Lipoprotein Cholesterol

(mmol/L) * 1.16 0.34 1.06 0.35

Red Cell Count (1012/L) 5.68 2.73 5.95 2.76
Platelet Count (109/L) 248.48 156.93 250.97 138.59

2011 (61/162)

Systolic Blood Pressure (mmHg) * 134.5 16.85 138 19.63
Diastolic Blood Pressure (mmHg) * 83.5 11.38 83 11.20

Total Cholesterol (mmol/L) * 4.36 1.00 4.14 0.92
High-Density Lipoprotein

Cholesterol (mmol/L) * 1.35 0.40 1.22 0.34

Red Cell Count (1012/L) 4.36 1.54 4.91 1.65
Platelet Count (109/L) 167.79 83.78 219.28 97.48

2014 (12/162)

Systolic Blood Pressure (mmHg) * 138 26.13 143 22.35
Diastolic Blood Pressure (mmHg) * 75.5 9.46 81.5 12.61

Total Cholesterol (mmol/L) * 4.99 1.11 4.70 0.99
High-Density Lipoprotein

Cholesterol (mmol/L) * 1.41 0.50 1.367 0.39

Red Cell Count (1012/L) 4.19 0.86 4.34 0.80
Platelet Count (109/L) 152.78 66.31 195.50 60.26

Factors with * are established factors. SD—standard deviation. 2008, 2011, and 2014 are the years longitudinal
data were measured. The information in brackets after the years are the number of stroke individuals/number of
no-stroke individuals.
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Table 2. Characteristics of remaining risk factors at each measurement for stroke and no-stroke individuals.

Abbreviations in
Equations (10)–(21)

Stroke No stroke
Mean (SD) Mean (SD)

2008 (155/162)

Sex * sex Female: 77, Male: 78 Female: 73, Male: 89
Age * age 79.2 (11.96) 76.3 (10.41)

Provenience * prov South: 97, North: 58 South: 98, North: 64

Residence Location * residenc City: 0, Town: 23,
Rural: 132

City: 5, Town: 30,
Rural: 127

Diabetes History * diabetes No: 149, Yes: 6 No: 159, Yes: 3
Smoke (number per

day) * smoke 2.8 (5.60) 3.7 (10.41)

Erythrocyte
Hematocrit (%) hct 45.41 (15.48) 45.60 (12.99)

Blood Urea Nitrogen
(mmol/L) bun 6.19 (1.82) 6.20 (1.79)

Hemoglobin (g/L) hgb 135.2 (23.25) 140 (22.34)

Housework house 1: 90, 2: 17, 3: 3, 4: 10,
5: 35

1: 120, 2: 8, 3: 10, 4: 3,
5: 21

MMSE MMSE 0: 70, 1: 42, 2: 25, 3: 18 0: 92, 1: 50, 2: 12, 3: 8
Hypertension

History hypertension No: 128, Yes: 27 No: 150, Yes: 12

Fruit Consumption fruit 1: 7, 2: 35, 3: 67, 4: 46 1: 16, 2: 59, 3: 66, 4: 21
Glucose (mmol/L) glu 5.65 (2.32) 5.26 (1.80)

2011 (61/162)

Sex * sex Female: 45, Male: 16 Female: 73, Male: 89
Age * age 80.4 (11) 79.3 (10.41)

Provenience * prov South: 45, North: 16 South: 98, North: 64

Residence Location * residenc City: 0, Town: 7,
Rural: 54

City: 5, Town: 30,
Rural: 127

Diabetes History * diabetes No: 58, Yes: 3 No: 152, Yes: 10
Smoke (number per

day) * smoke 1.48 (4.41) 3.01 (6.77)

Erythrocyte
Hematocrit (%) hct 40.09 (7.62) 42.07 (10.92)

Blood Urea Nitrogen
(mmol/L) bun 6.86 (1.71) 6.48 (1.70)

Hemoglobin (g/L) hgb 133 (21.72) 136.2 (25.64)

Housework house 1: 32, 2: 4, 3: 2, 4: 5,
5: 18

1: 105, 2: 19, 3: 3, 4: 6,
5: 29

MMSE MMSE 0: 43, 1: 7, 2: 5, 3: 6 0: 114, 1: 30, 2: 12, 3: 6
Hypertension

History hypertension No: 37, Yes: 24 No: 112, Yes: 50

Fruit Consumption fruit 1: 5, 2: 12, 3: 31, 4: 13 1: 9, 2: 44, 3: 73, 4: 36
Glucose (mmol/L) glu 4.32 (3.78) 4.40 (1.56)
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Table 2. Cont.

Abbreviations in
Equations (10)–(21)

Stroke No stroke
Mean (SD) Mean (SD)

2014 (12/162)

Sex * sex Female: 7, Male: 5 Female: 73, Male: 89
Age * age 80.5 (6.87) 82.3 (10.41)

Provenience * prov South: 9, North: 3 South: 98, North: 64

Residence Location * residenc City: 0, Town: 1,
Rural: 11

City: 5, Town: 30,
Rural: 127

Diabetes History * diabetes No: 10, Yes: 2 No: 136, Yes: 26
Smoke (number per

day) * smoke 0.83 (2.89) 2.82 (6.91)

Erythrocyte
Hematocrit (%) hct 39.7 (8.31) 40.18 (6.68)

Blood Urea Nitrogen
(mmol/L) bun 6.48 (1.94) 6.15 (1.67)

Hemoglobin (g/L) hgb 130.8 (25.56) 132.3 (19.20)

Housework house 1: 11, 2: 0, 3: 0, 4: 0,
5: 1

1: 100, 2: 13, 3: 3, 4: 4,
5: 42

MMSE MMSE 0: 9, 1: 2, 2: 1, 3: 0 0: 115, 1: 25, 2: 11,
3: 11

Hypertension
History hypertension No: 8, Yes: 4 No: 92, Yes: 70

Fruit Consumption fruit 1: 2, 2: 5, 3: 5, 4: 0 1: 12, 2: 56, 3: 65, 4: 29
Glucose (mmol/L) glu 5.094 (0.78) 5.34 (1.46)

Factors with * are established factors. SD—standard deviation. 2008, 2011, and 2014 are the years longitudinal
data were measured. The information in brackets after the years are the number of stroke individuals/number of
no-stroke individuals). Housework (frequency of doing housework): 1 = almost every day; 2 = at least once a
week; 3 = not every week, but at least once a month; 4 = not every month, but sometimes; and 5 = never. MMSE
(mini-mental state examination): 0 = normal; 1 = mild; 2 = medium; and 3 = severe. Fruit consumption (frequency
of fruit consumption): 1 = almost every day; 2 = quite often; 3 = occasionally; and 4 = rarely or never.

3.2. Longitudinal Biomarker Equations and Relationships with Other Risk Factors

Based on Equations (3) and (6), Equations (10)–(21) were constructed for each of the
main numerical factors. The initial model contained all the remaining factors. Next, we used
the analysis of variance to calculate the F-values and p-values to determine the significance
of the remaining factors. Considering that the significance of the categorical factors can vary
in different categories, we also referred to the t-values and their corresponding p-values,
which were obtained by the R function, “lme”. If one category of a categorical factor
had a significant effect, we also considered this factor in the final model. The R function,
“regsubsets”, considered multiple model selection criteria together and was also used to
find all the best possible models. Finally, we decided on the final model by referring to
the coefficients, standard errors, and p-values. The p-values for the last selected features
were all less than 0.1, and the final model included as many factors as possible, as we were
also interested in the relationship between the main numerical factors and the remaining
factors. All features were expressed as abbreviations, and the different numbers indicate
the levels of categorical data. The corresponding details can be found in Table 2.

The difference between the stroke and LTS groups was that LTS group individuals
did not have a stroke-identified time point (T̃i). The following are equations based on the
stroke individuals’ longitudinal data, where i denotes the individual and j denotes the
measurement time point:

Systolic Blood Pressure = β01 + T̃iβ11 + hctiβ21 + buniβ31 + MMSE1iβ41
+MMSE2iβ51 + MMSE3iβ61 + hypertensioniβ71
+ fruit2iβ81 + fruit3iβ91 + fruit4iβ101 + tijβ111
+T̃itijβ121 + γi01 + tijγi11 + εij1

(10)
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Diastolic Blood Pressuree = β02 + house2iβ12 + house3iβ22 + house4iβ32
+ house5iβ42 + MMSE1iβ52 + MMSE2iβ62
+ MMSE3iβ72 + hypertensioniβ82 + T̃iβ92
+ tijβ102 + T̃itijβ112 + γi012 + tijγi12 + εij2

(11)

Total Cholesterol = β03 + sexiβ13 + ageiβ23 + proviβ33 + hctiβ43
+ house2iβ53 + house3iβ63 + house4iβ73
+ house5iβ83 + MMSE1iβ93 + MMSE2iβ103
+ MMSE3iβ113 + gluiβ123 + tijβ133 + γi03
+ tijγi13 + εij3

(12)

High-Density Lipoprotein Cholesterol = β04 + T̃iβ14 + ageiβ24 + residenc3iβ34
+ hctiβ44 + hgbiβ54 + gluiβ64 + tijβ74 + γi04
+ tijγi14 + εij4

(13)

Red Cell Count = β05 + proviβ15 + diabetesiβ25 + hgbiβ35
+ MMSE1iβ45 + MMSE2iβ55 + MMSE3iβ65
+ fruit2iβ75 + fruit3iβ85 + fruit4iβ95
+ t2

ijβ105 + T̃iβ115 + tijβ125 + T̃itijβ135 + γi05

+ tijγi15 + εij5

(14)

Platelet Count = β06 + T̃iβ16 + proviβ26 + house2iβ36
+ house3iβ46 + house4iβ56 + house5iβ66
+ MMSE1iβ76 + MMSE2iβ86 + MMSE3iβ96
+ tijβ106 + T̃itijβ116 + γi06 + tijγi16 + εij6

(15)

The models constructed by the LTS groups’ longitudinal data were:

Systolic Blood Pressure = βe
01 + buniβ

e
11 + MMSE1iβ

e
21 + MMSE2iβ

e
31

+ MMSE3iβ
e
41 + hypertensioniβ

e
51 + smokeiβ

e
61

+ tijβ
e
71 + t2

ijβ
e
81 + γe

i01 + tijγ
e
i11 + εe

ij1

(16)

Diastolic Blood Pressure = βe
02 + sexiβ

e
12 + hctiβ

e
22 + buniβ

e
32 + hgbiβ

e
42

+ house2iβ
e
52 + house3iβ

e
62 + house4iβ

e
72

+ house5iβ
e
82 + hypertensioniβ

e
92

+ tijβ
e
102 + t2

ijβ
e
112 + γe

i02 + tijγ
e
i12

+εe
ij2

(17)

Total Cholesterol = βe
03 + sexiβ

e
13 + ageiβ

e
23 + proviβ

e
33

+ residenc2iβ
e
43 + residenc3iβ

e
53 + hctiβ

e
63

+ house2iβ
e
73 + house3iβ

e
83 + house4iβ

e
93

+ house5iβ
e
103 + fruit2iβ

e
113 + fruit3iβ

e
123

+ fruit4iβ
e
133 + tijβ

e
143 + t2

ijβ
e
153 + γe

i03
+ tijγ

e
i13 + εe

ij3

(18)

High-Density Lipoprotein Cholesterol = βe
04 + smokeiβ

e
14 + gluiβ

e
24 + tijβ

e
34 + γe

i04
+ tijγ

e
i14 + εe

ij4
(19)

Red Cell Count = βe
05 + proviβ

e
15 + smokeiβ

e
25 + hgbiβ

e
35

+ hypertension2iβ
e
45 + tijβ

e
55 + t2

ijβ
e
65 + γe

i05
+ tijγ

e
i15 + εe

ij5

(20)

Platelet Count = βe
06 + proviβ

e
16 + MMSE1iβ

e
26 + MMSE2iβ

e
36

+ MMSE3iβ
e
46 + fruit2iβ

e
56 + fruit3iβ

e
66

+ fruit4iβ
e
76 + tijβ

e
86 + γe

i06 + tijγ
e
i16 + εe

ij6.
(21)
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The goodness of fit of each submodel can be found in the Supplementary Materials
(Table S2). We then iterated the fixed and random effect coefficients that were obtained
here in the EM algorithm. The final estimated values were used to calculate the probability
density function of multivariate normal distribution, f

(
Y
∣∣∣T̃, Z

)
, by Equations (7) and (8).

The final estimated fixed coefficients and random effect covariance structures can be found
in the Supplementary Materials (Tables S3–S5). For Equations (10)–(21), their significance
lies in that, while calculating the stroke risk value through the risk factors, they can also
describe the relationship between the six main numerical factors and the other 14 remaining
factors to conveniently provide personalized prevention suggestions, according to the
different risk factors in the applications. For example, we found that MMSE and province
(south/north) were most strongly associated with the main numerical factors, because they
showed significance (p-value < 0.1) in seven and six of the above equations, respectively.
In contrast, the effects of diabetes were less influential than in previous studies on this
sample of elderly people, as it was only considered in one of the final equations. In terms of
the coefficients, it may not be reasonable to directly compare the values of the coefficients
between different factors because their interval values are different. For example, the
normal range of blood urea nitrogen is 2.1~7.1 mmol/L [28], and erythrocyte hematocrit is
commonly in the vicinity of 36.1~50.3% [29]. However, we can still derive the relationship
between the remaining factors and the main numerical factors according to the positive
and negative coefficients, e.g., hypertension and blood pressure are positively related (β71,
β82, βe

51, and βe
92). Another interesting finding was the province. Patients in the northern

province seem to have higher total cholesterol, red blood cell count, and platelet count, as
the coefficients of the northern province were all positive, compared to the default southern
province population, representing a positive influence (β33, β15, β26, βe

33, βe
15, and βe

16).
According to this, we need to pay more attention to the high value of total cholesterol, red
blood cell count, and platelet count for elderly people in the northern province, while the
low value of these three factors for elderly people in the southern province needs to be
given more attention. Moreover, our study combined the established factors with RF-RFE
factors. For RF-RFE selected features, there have been previous studies on the relationship
between these factors and strokes, but they have rarely been considered as predictive
factors in a model. For instance, the frequencies of housework and fruit consumption
were associated with stroke recurrence in hospitalized Chinese patients with a first acute
ischemic stroke [30]. MMSE is also a frequently used tool to screen for cognitive impairment
in elderly and hospitalized stroke patients [18]. The functional near-infrared spectroscopy
(fNIRS) technique monitors variations in hemoglobin during brain activity to study post-
stroke recovery [31]. Our research supports that the factors above can also affect biomarker
changes and the risk of having a stroke.

3.3. Model Performance

This section introduces the performance and results of the model in the following three
parts: a prediction accuracy evaluation of the different times of repeated measurements,
an individual dynamic stroke risk prediction plot, and comparisons with commonly used
classical stroke calculators.

3.3.1. Accuracy Assessment

Table 3 and Figure 2 display the results of the prediction accuracy evaluation. We
calculated the risk of stroke for each individual over a three-year prediction horizon,
based on the model in Section 2.2. These predictions are the result of one, two, and three
repeated measurements for everyone in three different years (2008, 2011, and 2014). Table 3
compares the area under the curve (AUC), Youden’s J statistic, sensitivity, specificity, and
the threshold of the models when including data from one year, two years, or three years.
The following equations calculate these values:

Sensitivity (True Positive Rate) =
True Predicted Stroke
All Predicted Stroke

(22)
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Specificity (True Negative Rate) =
True Predicted No Stroke
All Predicted No Stroke

(23)

Youden’s J Statistic = Sensitivity + Specificity - 1 (24)

Table 3. Prediction accuracy of the proposed model with different numbers of measurements.

AUC/
C-Index

Youden’s J
Statistic Sensitivity Specificity Threshold

Our Model

One Measurement
Obtained in 2008 0.741 0.398 0.766 0.632 0.242

Two Measurements
Obtained in 2008

and 2011
0.876 0.595 0.796 0.799 0.182

Three Measurements
Obtained in 2008, 2011,

and 2014
0.926 0.757 0.917 0.840 0.107

Cox Proportional
Hazard Model

One Measurement
Obtained in 2008 0.716 NA NA NA NA

One Measurement
Obtained in 2011 0.749 NA NA NA NA

One Measurement
Obtained in 2014 0.833 NA NA NA NA

Healthcare 2022, 10, x FOR PEER REVIEW 14 of 24 
 

 

Hazard 
Model 

One Measurement 
Obtained in 2014 0.833 NA NA NA NA 

Our model refers to the AUC and the Cox proportional hazard model and refers to the c-index. 
Youden’s J statistic, sensitivity, and specificity are not applicable to the Cox proportional hazard 
model. 

   
(a) (b) (c) 

Figure 2. Receiver operating characteristic (ROC) curves for dynamic prediction, with incremental 
number of measurements. The x-axis is the false positive rate, calculated as (1 – specificity) and the 
y-axis is the true positive rate, calculated as sensitivity. Black dots indicate the optimal threshold of 
ROC curve, with sensitivity and specificity in the bracket. (a) ROC curve with one measurement 
(2008) in 2008; (b) ROC curve with two measurements (2008, 2011) in 2011; and (c) ROC curve with 
three measurements (2008, 2011, and 2014) in 2014. 

To better-validate our model, we also compared the prediction accuracy based on the 
same year of data. Figure 3 presents the 3-year risk of stroke prediction results for patients 
who were not identified as having had a stroke before 2014. Figures 3a–c are based on one 
measurement, two measurements, and three measurements, respectively. When compar-
ing the AUC and Youden's J statistic, both parameters increased with the increasing in-
stances of repeated measurements. More specifically, the AUC value increased from 0.807 
to 0.926, and Youden's J statistic increased from 0.528 to 0.757. This result verifies that 
considering the longitudinal historical data of features can improve the prediction accu-
racy.  

   
(a) (b) (c) 
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(2008) in 2008; (b) ROC curve with two measurements (2008, 2011) in 2011; and (c) ROC curve with
three measurements (2008, 2011, and 2014) in 2014.

After receiving the stroke risk for everyone at each measured time point, we could
calculate the sensitivity and specificity by Equations (22) and (23), under different boundary
values. The boundary value was used to distinguish between stroke and stroke-free patients
at different threshold values, from zero to one. Receiver operating characteristic (ROC)
curves were created by plotting the true positive rate against the false positive rate at
various threshold settings, presenting the sensitivity or recall as a function of fallout. AUC
represents the degree or measure of separability, with a larger value indicating better
classification efficiency. Threshold is the optimal threshold for the ROC curve, i.e., the
classification value of stroke risk that most accurately distinguishes between the stroke
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and no-stroke patients. Because a patient’s stroke risk value may change as multiple
measurements accumulate, the optimal threshold for the corresponding stroke risk will
also change. The sensitivities, specificities, and Youden’s J indices in Table 3 were based on
the corresponding optimal thresholds. The results indicated an increase in the AUC value
when adding more data acquired during the three measurements, from 0.761 to 0.926. The
ROC curves of these three measurements are shown in Figure 2.

To compare the predictive efficiency with other frequently used models, the Cox pro-
portional hazard model with single measurement was also applied to the same sample, as
shown in Table 3. The c-indices for the predictions based on 2008, 2011, and 2014 were 0.716,
0.749, and 0.833, respectively. Since the c-index is equal to the AUC value when considering
the binary outcome (identified as a stroke or as not in our study) [32], the value can be
directly compared. It was found that the AUC values (0.741, 0.876, and 0.926) obtained by
the backward joint model and with longitudinal variation consideration, were all higher
than the c-indices (0.716, 0.749, and 0.833) obtained by the Cox proportional hazard model.
Sensitivity and specificity also increase gradually when we consider more longitudinal
data. Youden’s J statistic is also a classic method of summarizing the performance of a
diagnostic test, with larger values indicating better prediction accuracy [33]. In our re-
sults, Youden’s J statistic increased with more repeated measurements, demonstrating that
applying longitudinal data improves prediction accuracy.

Our model refers to the AUC and the Cox proportional hazard model and refers to
the c-index. Youden’s J statistic, sensitivity, and specificity are not applicable to the Cox
proportional hazard model.

To better-validate our model, we also compared the prediction accuracy based on the
same year of data. Figure 3 presents the 3-year risk of stroke prediction results for patients
who were not identified as having had a stroke before 2014. Figure 3a–c are based on one
measurement, two measurements, and three measurements, respectively. When comparing
the AUC and Youden’s J statistic, both parameters increased with the increasing instances
of repeated measurements. More specifically, the AUC value increased from 0.807 to 0.926,
and Youden’s J statistic increased from 0.528 to 0.757. This result verifies that considering
the longitudinal historical data of features can improve the prediction accuracy.
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3.3.2. Dynamic Stroke Risk Prediction

Figure 4 shows the longitudinal biomarker trajectories and the dynamic stroke risk
predictions of two representative cases from the dataset. Figure 4a presents the dynamic
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prediction of the risk of stroke for Subject 1, who was identified as having had a stroke
after the third measurement (2014–2017). This is an example of someone from the high-risk
population. Figure 4b presents the dynamic prediction of Subject 2’s risk of having a
stroke, who was not identified as having had a stroke by the end of the study. This subject
represents the low-risk group. The black dots indicate the three-year risk of stroke, defined
as the risk of developing a first stroke event within three years from the specified time
point. According to variations between these two examples, the stroke risk tended to show
a noticeable increase over time for the representative subject from the high-risk group
(Figure 4a). By contrast, the risk values of the representative subject from the low-risk
group were lower and maintained that low value (Figure 4b). Other markers indicated the
various factors measured at each time point. It was observed that Subject 1 consistently had
higher systolic blood pressure and total cholesterol levels than Subject 2, and these higher
physiological parameters were above the normal range (110~150 mmHg for systolic blood
pressure and 0~5.18 mmol/L for total cholesterol) [34,35] in the last two measurements.
The red blood cell count and platelet count values were lower in Subject 1 compared with
Subject 2, and were around the lower boundary of the normal range (3.5~5.5 × 1012/L
for red cell count and 150~450 × 109/L for platelet count) [36,37]. Other variations in
biomarkers showed relatively less differences, but the trends and numerical values still
followed the overall variations in the corresponding high-risk and low-risk groups, as
shown in Table 1. Overall, based on the personalized dynamic prediction plot, stroke risk
and risk factors can be clearly observed in the historical measurements. By adding the
newest repeated measurements to obtain the latest results, it is possible to formulate the
most appropriate treatment to improve the patient’s lifestyle at any time.

A comparison of two variance estimation methods based on the same individual was
also conducted. Figure 5a is the bootstrap repetition used in the original model, which was
proposed by Shen and Li [9], and Figure 5b used repeated ten-fold cross-validation (CV).
The total number of simulations was the same. It was shown that the deviations produced
by the ten-fold CV were relatively small. However, as the number of measurements
considered increased, the resulting confidence interval became wider. Conversely, bootstrap
repetitions produced relatively large biases, but the width of the confidence interval became
smaller as the number of measurements increased. The difference between the two methods
lies in the fact that the idea of bootstrap is completely random replacement sampling, which
produces a large bias and a small variance. However, the disadvantage is that it may lead
to overfitting and changes in the initial dataset’s distribution. Ten-fold CV enables all data
to be involved in training and prediction, and the data distribution is consistent, with a
smaller bias and a larger variance. The advantage is that it can avoid overfitting, and the
impact of noise is low.
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Figure 4. Dynamic risk of stroke prediction for two representative cases. (a) Personalized dynamic
prediction plot for Subject 1, who was identified as having had stroke between 2014 and 2017;
(b) personalized dynamic prediction plot for Subject 2, who was not identified as having had a stroke
until the end of study (2017). Follow-up years of 0, 3, 6, and 9 equate to 2008, 2011, 2014, and 2017,
respectively. The left y-axis is the three-year risk of stroke. The right y-axes are values of longitudinal
risk factors: sysBP—systolic blood pressure (mmHg); diaBP—diastolic blood pressure (mmHg);
cho—total cholesterol (mmol/L); hdlc—high-density lipoprotein cholesterol (mmol/L); rbc—red
blood cell count (1012/L); and plt—platelet count (109/L). Black dots indicate the three-year risk of
stroke at each measurement. Connected plain black lines represent the risk change trend. The vertical
interval of each point is the confidence interval calculated by repeated 10-fold cross-validation. The
vertical red dotted line is the time point of being diagnosed with a stroke and the vertical green
dotted line is the end of the observation time.
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Figure 5. Comparison of the confidence interval using (a) bootstrap repetition and (b) repeated
10-fold cross-validation on Subject 1. Follow-up years of 0, 3, 6, and 9 equate to 2008, 2011, 2014,
and 2017, respectively. The left y-axis is the three-year risk of stroke. The right y-axes are values of
longitudinal risk factors: sysBP—systolic blood pressure (mmHg); diaBP—diastolic blood pressure
(mmHg); cho—total cholesterol (mmol/L); hdlc—high-density lipoprotein cholesterol (mmol/L);
rbc—red blood cell count (1012/L); and plt—platelet count (109/L). Black dots indicate the three-year
risk of stroke at each measurement. Connected plain black lines represent the risk change trend. The
vertical interval of each point is the confidence interval calculated by repeated 10-fold cross-validation.
The vertical red dotted line is the time point of being identified as having had a stroke.
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3.3.3. Model Comparisons

Stroke risk prediction results vary depending on the databases, risk factors, and
algorithms on which they are based. We compared the results of six commonly used stroke
risk calculators with our model. Unlike our model, the calculated stroke risks from other
models were only based on single-time measured stroke risk factors. The comparison
was based on three measurements from Subject 1, who was identified as having had a
stroke between years six and nine. All the results are presented in Figure 6 and Table 4.
The most apparent abnormal biomarkers for this individual were systolic blood pressure
and total cholesterol. In the first measurement, the subject had 139 mmHg systolic blood
pressure and 4.44 mmol/L total cholesterol. These values were high but still within the
normal range (110~150 mmHg for systolic blood pressure and 0~5.18 mmol/L for total
cholesterol) [34,35]. Therefore, it was acceptable for her to be predicted as being at low risk
by our model, and no active reaction was needed. However, in the second measurement,
these two biomarkers increased to 150 mmHg and 5.67 mmol/L, over the normal range,
and continued rising in the third measurement. This led to a prediction result of high-risk
in the subject’s subsequent two predictions by our model. If they had some prevention
or treatment strategy, then their stroke risk value and level might have decreased in the
third prediction.
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Model C-index/AUC 95% CI 
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Figure 6. Stroke risk comparisons with seven models based on Subject 1, who was identified as
having had a stroke between years 6 and 9. The solid black line and black dots are based on the model
used in this paper. Other dotted lines with hollow shapes, in different colors denote the prediction
results produced by other stroke risk calculators. Details can be found in the legend and in Table 4.

From the individual prediction result’s perspective, in all models, the numerical values
of stroke risk were increased, which also verifies the accuracy of our model. In addition,
the numerical results calculated by our model rose more significantly, so it can serve as
a better warning for high-risk group patients. According to the results presented, some
models provide a reference risk level based on their models. Our model also classifies
the prediction results into high-risk and low-risk groups. The boundary value is the risk
classification value corresponding to the optimal threshold of the ROC curve, representing
the classification value of the stroke risk that most accurately distinguishes between high-
and low-risk patients. These values can be found in Table 3, in the “Threshold” column.
The China-PAR model and the Framingham study calculated similar changes in risk levels
to ours. Although UCLA showed risk value increases, it consistently classified the results
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as low-risk. QStroke, PREDICT, and pooled cohort equations calculated the risk values
without defined risk levels, e.g., a result of 2.6% for QStroke represented that 2.6 out
of 100 patients with the same risk factors were likely to have a stroke in the next ten
years. However, patients cannot understand whether the value indicates low- or high-risk
without a level classification. For example, 11.2% is classified as high-risk in the China-PAR
model, but as low-risk in our model. Therefore, this again proves the importance of the
corresponding reference value of risk stratification.

Table 4. Stroke risk comparison information, applying seven models to the case of Subject 1. The
stroke risk levels are also shown when available.

Models
Risk of Stroke Prediction

Horizon2008 2011 2014

Our Model 13.75%
Low-risk

30.43%
High-risk

63.87%
High-risk 3 Years

QStroke [38] 2.60% 3.60% 4.80% 3 Years
PREDICT [39] 7.30% 8.30% 8.30% 5 Years

China-PAR [26] 7.90%
Medium-risk

8.90%
Medium-risk

11.2%
High-risk 10 Years

Framingham [40] 13.70%
Medium-risk

21.5%
High-risk

24.8%
High-risk 10 Years

Pooled Cohort
Equations [25] 28.70% 40.30% 50.10% 10 Years

UCLA [41] 7.60%
Low-risk

11.10%
Low-risk

22.80%
Low-risk 10 Years

In terms of the prediction horizon, most existing models consider ten years. On the one
hand, if a patient is predicted to be at high-risk, warning and preventive measures could be
suggested at an early stage. However, on the other hand, because the 10-year prediction
horizon is too broad, it is difficult to determine the exact stroke onset. Moreover, for the
elderly, a premature warning can easily cause psychological panic. Only the PREDICT
model used a five-year prediction horizon and QStroke can calculate the three-year risk of
stroke. Therefore, the three-year prediction range provided by our model can give patients
narrower and more precise prediction information.

From the perspective of the overall model, we listed the C-index and 95% CI for all
available models, and some have sex-specific equations. All the information can be found
in Table 5. We found that, although the prediction efficiency of our model with a single
measurement was lower than some models, the accuracy rose and became the highest when
considering repeated measurements at 0.926. In addition, we applied our dataset to two
available open models, the China-PAR model and the Framingham study. All predictions
were based on a single measurement at each measured time point and the corresponding
C-index can be found in Table 6. Both models have unsatisfactory prediction results on our
dataset, with C-indices around 0.55. One reason might be that the target population in both
datasets focused mainly on middle-aged people from 30 to 74, whereas our dataset focused
on those aged 62 to 105. This, again, suggests that it is necessary to construct specific models
for the elderly in China. Moreover, for these older people, the prediction results tended
to be higher for all high- and low-risk patients. However, in our model, the specificity,
which reflects the prediction accuracy of low-risk patients, increased significantly with
the increment of repeated measurements (from 0.632 to 0.840). This indicates that our
prediction model is more friendly to low-risk patients than the other two models.
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Table 5. Table of AUC/C-index values of five available models and our model. The 95% CI of C-index
was also shown when available.

Model C-Index/AUC 95% CI

Our Model 0.741–0.926

QStroke
Male 0.71 [0.69,0.73]

Female 0.65 [0.62,0.67]
PREDICT 0.73 [0.72–0.73]

China-PAR
Male 0.794 [0.775,0.814]

Female 0.811 [0.787,0.835]

Framingham Male 0.763 [0.746,0.790]
Female 0.793 [0.772,0.814]

Pooled Cohort Equation 0.713–0.814

Table 6. Table of C-index results based on China-PAR model and Framingham study, implemented
on our dataset (number of stroke individual/number of no stroke individual).

Year Status
C-Index

China-PAR Model Framingham Study

2008 (155/162) 0.522 0.552
2011 (61/162) 0.514 0.538
2014 (12/162) 0.617 0.584

4. Discussion

Stroke epidemiology shows that the morbidity of strokes in China increases with age.
As the life expectancy lengthens and the proportion of older people increases, strokes
become more severe in the elderly [42]. Therefore, it is a crucial challenge for China, in
the future, to solve the problem of how to efficiently deal with stroke prevention and
management, and to achieve the reasonable allocation of medical treatment.

We compared our results with those from prior publications on stroke risk prediction,
based on the Chinese population. For example, Wu and Fang (2020) chose the same dataset
as us, using an SVM and decision tree, but only selected 2011 and 2014 for the baseline
and the predicted results. The highest AUC of their prediction model was 0.72, with
0.75 sensitivity and 0.69 specificity [43]. Another study we considered was the China-PAR
project, which used the simple Cox proportional hazard model and received a c-index of
0.794 for males and 0.811 for females [26]. As for longitudinal data, the most used model is
the joint model. For example, Kang et al. used the joint model to discover the conversion
to Alzheimer’s disease [44]. In this paper, we first used the backward joint model (BJM),
a new algorithm that has recently been proposed, so there are limited examples of its
use in recent cases. Compared with other joint models, the BJM has the advantage of
resolving the issue that ordinary joint models must contain time-to-event data, and it
supports the consideration of censored data for model construction. Furthermore, it can
consider multiple longitudinal factors with simple calculations, since the BJM contains
only a one-dimensional integral in the censored time domain in E-step, and a closed-form
solution in M-step for the EM algorithm. In comparison with machine-learning algorithms,
although fewer factors are considered, the relationships between the risk factors and stroke
risk values are more apparent. Therefore, clinicians can provide personalized prevention
suggestions based on this information. Meanwhile, compared with the Cox proportional
hazard model, the BJM can consider more predictive variables and variations to improve
the prediction accuracy. Second, our results with longitudinal data consideration achieved
higher AUC (0.741,0.876, 0.926), sensitivity (0.766, 0.796, 0.917), and specificity values (0.632,
0.799, 0.840), showing better predictive accuracy. This is the first time, as far as we are
aware, that health measurement longitudinal data have been used in stroke risk prediction
and as a new direction for using EHRs to run predictions. Moreover, the model can also
reflect variations in patients’ stroke risk value and risk factors in real time.



Healthcare 2022, 10, 2134 21 of 24

In terms of the dataset selection, the CLHLS-HF dataset was a prospective cohort study
of elderly people in China, which has been widely used in the medical field. For example,
it has been used to explore the relationship between the time of first smoking and the
prevalence of chronic respiratory diseases [45], and the association between socioeconomic
status and health in elderly people with diabetes [46]. Because it also collected information
related to the risk of strokes, we believed it would be valuable to use for stroke risk
prediction. In terms of the measurement period, we believed six years was an appropriate
time between the first and last observations, as the research conducted by Zhao et al. used
a similar observation window: seven years [10]. In our model, the predictive variables
have high accessibility, meaning no costly or time-consuming examinations are needed.
Thus, this prediction model can be included in annual health examinations or be applied to
the preliminary screening of large-scale, high-risk populations, and provide guidance for
stroke prevention and management in the elderly.

There were also some limitations to the study. First, most of the information was
collected through questionnaires, by self-reporting, which led to subject bias. Moreover,
the implemented dataset was not targeted at stroke research, so the final sample that could
be considered in the research was limited. To construct a model with higher accuracy
and wider applicability, it is crucial to obtain a larger dataset (e.g., >1000), which targets
cardiovascular disease in the future. It would also be meaningful to differentiate the final
status more specifically, e.g., to distinguish between ischemic and hemorrhagic strokes,
since their risk factors have been proven to be different [47]. In terms of data collection,
CLHLS-HF was measured every three years. Some longitudinal variations have been
observed, but more frequent continual monitoring is believed to provide higher accuracy
and more timely results. In terms of future applications, it is expected to be used for EHRs
or annual health examinations. Moreover, it can be combined with wearable devices to
obtain accurate physiological data in real time [48]. Finally, since there was only one dataset
in this research, the generalization ability of the model still needs to be tested. Therefore,
external validation by other datasets is necessary for future research.

In terms of its future applications, this model can be implemented to produce a
user interface or application. When patients provide their information on a form, the
model determines the risk values and the corresponding risk categories. Participants are
encouraged to input their health records as frequently as possible to increase the prediction
accuracy. When inputting multiple records, an individual dynamic risk prediction plot
would be produced to reflect the variations in the biomarkers and stroke risk over time.
Clinicians will be invited to optimize the prediction model to provide personalized care.
Because this model is flexible, it can be easily updated with new measurements.

5. Conclusions

This paper demonstrates that applying the backward joint model to longitudinal data
attains high-precision predictions of the risk of strokes. Our model achieves 0.926 accuracy
when considering three longitudinal measurements and has a higher prediction accuracy
than other conventional risk scales. In addition, 10 out of the 20 risk factors, which
are not commonly applied in other risk scales, were found to be useful for stroke risk
prediction. These predictors include red cell count, platelet count, erythrocyte hematocrit,
blood urea nitrogen, hemoglobin, glucose, frequency of doing housework, frequency of
fruit consumption, mini-mental state examination, and hypertension history. Regarding
variance, 10-fold cross-validation was chosen to avoid overfitting and to involve all data in
the model construction and validation. In terms of outcomes, dynamic prediction allows
for better monitoring of the value of stroke risk and variations in physical health, and in
assisting clinicians in formulating corresponding treatments and prevention strategies. It
is promising that the proposed model could be combined with health examination data
or electronic health records to further improve the prediction precision. We believe this
is a new advancement in real-time prediction. In the future, it is expected that better
quality, more frequently assessed, and larger sample sizes will be available, combined with
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multimodal data, such as from wearable devices, to better monitor the variations in risk
factors for strokes. The goal of using longitudinal data for dynamic prediction is timely
stroke risk monitoring and the rational allocation of medical resources.
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obtained from Equations (10) to (21) and estimated after mth iteration of the EM algorithm; Table S4:
the random effect covariance structure table Ω for the stroke individual, with T̃i ≤ τ obtained from
Equations (10) to (15) and estimated after mth iteration of the EM algorithm; Table S5: the random
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