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Abstract: With its standardized MRI datasets of the entire spine, the German National Cohort (GNC)
has the potential to deliver standardized biometric reference values for intervertebral discs (VD),
vertebral bodies (VB) and spinal canal (SC). To handle such large-scale big data, artificial intelligence
(AI) tools are needed. In this manuscript, we will present an AI software tool to analyze spine MRI
and generate normative standard values. 330 representative GNC MRI datasets were randomly
selected in equal distribution regarding parameters of age, sex and height. By using a 3D U-Net, an
AI algorithm was trained, validated and tested. Finally, the machine learning algorithm explored
the full dataset (n = 10,215). VB, VD and SC were successfully segmented and analyzed by using an
AI-based algorithm. A software tool was developed to analyze spine-MRI and provide age, sex, and
height-matched comparative biometric data. Using an AI algorithm, the reliable segmentation of
MRI datasets of the entire spine from the GNC was possible and achieved an excellent agreement
with manually segmented datasets. With the analysis of the total GNC MRI dataset with almost
30,000 subjects, it will be possible to generate real normative standard values in the future.

Keywords: German National Cohort; MRI; spine; artificial intelligence; large-scale data; convolu-
tional neural network; normative data

1. Introduction

Computer-aided tools with implemented artificial intelligence (AI) algorithms con-
stitute an exciting and growing field with solutions for medicine as well. These solutions
provide support for diagnosis and treatment planning for intervention in many clinical
areas. In the field of radiology, AI applications are conceivable for almost any work task. In
addition, many solutions for typical radiological tasks have already been brought into the
area [1–8].

In the last years, the number of magnetic resonance imaging (MRI) examinations has
increased substantially, especially spine MRI in the field of musculoskeletal and neurologi-
cal applications, for example, in patients with chronic back pain [9]. In Germany, there has
been an increase of 71% in MRI examinations between 2007 and 2016, but only a growth of
33% in radiologists within the last ten years [10–12].

The aim of the German National Cohort (GNC), a large population-based MR study
with over 200,000 people from Germany, is to investigate the causes of the development of
major chronic diseases. The analysis of the participant’s individual anatomy is an essential
part of the study and supports the correct diagnosis and treatment planning [13].

Degenerative disc disease (DDD) is a common imaging finding in the clinical routine.
It may be present with or without symptoms, and it is usually detected when symptoms
occur. Although there are a variety of grading scales to categorize the imaging findings [14],
little is known regarding the extent to which DDD is physiological in a certain population,
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depending on their age and gender. Currently, there are large-scale-based quantitative
biomarkers and data for morphometric analysis of the spine in relation to age, sex and
height available [15,16] but no real standardized reference values [17]. In these studies,
the spine was just partially analyzed, or segmentation was performed just manually. In
addition, the data of these studies were always acquired on a geographically local basis,
like in the “Study of Health in Pomerania” [15,16]. To our best knowledge, until now, there
is no study that evaluated the morphometry of the entire spine of more than 11,000 subjects
from the GNC by using AI. The GNC, with its standardized MRI data of the spine of
more than 30,000 people, has the potential to deliver further data toward standardized
biometric reference values. To handle such large-scale big data and to extract normative
morphometric values of the spine, AI tools are needed and have a great potential for
quantitative MRI analyses [18] because manual analysis of such large data is not practical
and reliable or would need tremendous expenditure in human resources [19].

In this manuscript, we will present a CNN-based software tool to analyze and generate
morphometric MR imaging parameters of the entire spine of a large-scale MR dataset to
generate reference values. CNN-based U-Nets are often used to segment pixels in images
or imaging data [20]. In the beginning, we will briefly introduce the GNC and our AI
approach. We will then present our results with a focus on statistical evaluation of the
AI-based segmentation and finally end with the discussion.

2. Materials and Methods
2.1. German National Cohort

All data used for this project was extracted from the ongoing prospective, multicentric
GNC [21,22]. The participants (n = 11,254) enrolled in the GNC study were volunteers
drawn from the general population. They underwent a whole-body MRI at 1 of 5 sites in
Germany (Augsburg, Berlin, Essen, Mannheim, Neubrandenburg) during the years 2014
to 2016. The MR images were acquired on 3T clinical MRI scanners (Magnetom Skyra,
Siemens Healthineers, Erlangen, Germany) with an identical configuration. A standardized
examination protocol for the entire spine was used as described elsewhere [13]. The
datasets were already combined to depict the entire spine by preprocessing using the
manufacturer’s software. For further analysis, the pseudonymized DICOM datasets were
converted into a NIFTI format. Segmentation was performed using ITK-Snap (Version
3.8.0) [23]. The demographic data for age, sex and height were provided by the GNC for
every MRI data set.

2.2. Generation of Training Dataset

At first, volumetric analysis of the vertebral body and intervertebral disc, as well as the
spinal canal, was needed as ground truth for the 3D-Convolutional Neural Network-based
algorithm (3D-CNN). For the generation of this volumetric data, already acquired large-
scale MRI datasets of the GNC were explored, consisting of T2-weighted sagittal images
of the cervical, thoracal, and lumbar spine, which were composed during pre-processing
by the manufacturer's software. MRI parameters were: echo time: 126 ms, repetition time:
4800 ms, slice thickness: 3.0 mm, field of view: 814 × 432 mm2.

For the analysis, 330 MRI data sets of representative subjects regarding the parameters
of age, sex and height were selected from the GNC. Female and male subjects from all age
(age subgroups: <30.5 y (years), 30.5–40.5 y, 40.5–50.5 y, 50.5–60.5 y, >60.5 y) and height
groups (<165 cm, 166–175 cm, >175 cm) were randomly selected by an algorithm in an
equal distribution. Then, segmentation and labeling of the spinal canal, the intervertebral
discs and vertebral bodies of the 330 datasets were done manually by three readers. All
segmented data was then reviewed in consensus by 2 board-certified radiologists, each
with more than 10 years of experience in the evaluation of spinal MRI. Volumetric seg-
mentations were done using the “smooth curve polygon mode” in ITK Snap (Version
3.8.0, [23]). Vertebral bodies were segmented from C2 to L5, but without consideration of
vertebral arches, pedicles or the processes. The segmentation of the intervertebral discs was
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performed starting at the C1/2 level and including the L5/S1 level. The spinal canal was
segmented along the dural sac from the foramen magnum to the level of the S1 upper plate.
For quality control, 10% of all segmented datasets were randomly selected and reviewed
by a board-certified neuroradiologist, ensuring a high-quality training dataset with the
needed anatomical information for the machine learning algorithm.

2.3. Neural Network

For the neural network, we chose a 3D U-Net (Figure 1) similar to that defined by
Çiçek et al. [24]. The basic concept of the U-Net is first to encode the MRI image on
multiple resolutions so it can be decoded according to the desired output. As an encoder
for each depth, we chose a convolutional layer to obtain the desired number of feature
maps followed by a residual neural network (Figure 2) [25]. For the first encoder, the MRI
image is the input, whereas for the remaining encoders, the output of the previous encoder,
sub-sampled by factor 2, is the input. For the decoder, we chose a similar architecture to the
encoder but reduced the number of residual layers from 2 to 1. The output of the encoders
is used as input for the decoder. If available, the up-sampled output of the decoder of the
lower depth is also used as the input for the decoder. So, the decoder can generate useful
features taking into account the high resolution and local features from the encoder and
the low resolution and global features from the previous decoders. The output of the last
decoder is then the input of the last convolutional layer representing the output of the
neural network.
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Figure 1. The architecture of the neural network: 3D U-Net. The input is a sample with the spatial
dimension 400 × 400 × 16 of the MR image. The output has the same dimension containing
the probability of the three classes (vertebral bodies, intervertebral discs, and spinal canal). The
red numbers represent the number of feature maps, whereas the blue numbers define the spatial
dimension of the feature maps. All arrows define functions between these feature maps as described
in the picture. The Residual Blocks (ResBlock 1, ResBlock 2) are shown in Figure 2.
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We chose the depth of IV because additional depths did not lead to better performance.
The same was observed for the number of residual layers in the encoders and decoders.
We skipped batch norm layers because they resulted in more unstable training and did not
lead to better results. Dropout also had a negative influence, probably because our large
input augmentation preserved the neural network from overfitting.

The convolutional kernels at depth I have the kernel (3 × 3 × 3). Since the sagittal
MRI has a pixel spacing of 0.9 mm and a slice thickness of 3.0 mm in depths II, III and IV
of the U-Net, the convolutional layers only convolve in the sagittal plane with the kernel
(1 × 3 × 3).

2.4. Training of the Deep Learning Algorithm

The segmented and labeled “ground truth” dataset was split into three parts, a training
dataset (n = 250), a validation dataset (n = 50) and a test set (n = 30). While the training and
the validation datasets are chosen randomly, the test set contains one sample from each
cohort subgroup (5 age, 2 sex and 3 height groups). All datasets were non-overlapping.
The AI algorithm was trained on 250 datasets, and the results were validated on the
other 50 datasets. For training of the AI algorithm from the training set, sub-images of
the size of 400 × 400 × 16 were sampled. The network is trained as a voxel-classifier
using cross-entropy and focal loss (γ = 1.0). With 1.024 samples per epoch, the network
trained 400 epochs using the ADAM optimizer [26] with a decreasing learning rate. To
avoid overfitting on the training set, the MRI images are augmented with scaling, rotation,
flipping, contrast changes and blurring in the sagittal plane (Table 1).

Table 1. Training parameters of the neural network.

Training Parameter

sample size 400 × 400 × 16

optimizer ADAM with a decaying learning rate

loss cross-entropy with focal loss (γ = 1.0)

samples per epoch 1024

number of epochs 400

In the second step, the algorithm was tested and compared to human segmentation
on the remaining 30 data sets. Therefore, we calculated a voxel-wise classification for
all MRI images. The voxel classification was compared to the human segmentation by
using precision, which is the fraction of relevant among the retrieved instances, the recall,
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which is the fraction of relevant instances that were retrieved and the Dice score, which
characterizes the similarity of the 2 samples.

2.5. Extraction of Population-Based Data

Finally, the machine learning algorithm explored the sagittal spine MR-images of the
full dataset (n = 11,254) regarding morphometry of vertebral bodies, intervertebral discs
and spinal canal. During this process, 1039 data sets were rejected by the algorithm and
had to be excluded for the following reasons: DICOM/NIFTI files were not readable, slice
orientation was not orthogonal to each other, or there were some missing slices in the data
set. For every data set, the anatomical dimensions of vertebral bodies and intervertebral
discs, as well as the spinal canal, were labeled, resulting in an individual 3D model. The
disc volume was calculated by the number of voxels multiplied by the voxel dimension.
For the calculation of the paraxial spinal canal, the following steps were applied: a principal
component analysis was conducted on the voxel coordinates classified as a specific disc.
Both first eigenvectors were used to determine the disc plane. In the second step, all voxel
coordinates classified as spinal canal were extracted, which are near the disc plane. A
projection of these voxel coordinates on the disc plane resulted in a 2D point set. The area
of the minimal convex hull around these points was determined as the spinal canal area.

Using the extracted parameters of disc volume and minimal paraxial area of the
spinal canal at every spine segment from 10,215 datasets (median age: 53 years, max:
72 years, min: 20 years, distribution in the age subgroups: <30.5 years, n = 581; 30.5–40.5
y, n = 921; 40.5–50.5 y, n = 2705; 50.5–60.5 y, n = 3208; 60.5–80 y, n = 2800), morphometric
standard values were calculated for age-, sex-, height-correlated groups. Afterward, the
derived morphometric standard values were integrated into a supportive real-time analysis
software tool.

3. Results

10.215 datasets of the GNC were successfully analyzed by using an AI-based machine
learning algorithm with a 3D U-Net architecture. Vertebral bodies, intervertebral discs
and the spinal canal could be segmented completely and automatically (Figure 3). The AI-
based segmentations of the test datasets (n = 30) were statistically evaluated in comparison
to the manual segmentations. The precision, recall and Dice score were all higher than
90% (Table 2).
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Table 2. Statistical evaluation of the AI-based segmentation of the vertebral bodies (VB), intervertebral
discs (VD) and spinal canal (SC) in comparison to the human segmentations.

VB VD SC

Precision 0.908 0.902 0.926

Recall 0.909 0.908 0.924

Dice-score 0.908 0.905 0.925

The precision was 0.902 for intervertebral discs, 0.908 for vertebral bodies, and 0.926
for the spinal canal. The recall was 0.908 for the intervertebral discs, 0.909 for the vertebral
bodies, and 0.924 for the spinal canal. It was possible to analyze the morphometry of the
spine in excellent correlation to manually annotated data by trained radiologists (Figure 4).
The Dice score, which is used to gauge AI model performance, ranges from 0 to 1. A Dice
score of 1 corresponds to a pixel-perfect match between the AI model output segmentation
and ground truth segmentation by the radiologists, and zero corresponds to no overlap
between both segmentations. The Dice score was 0.905 for intervertebral discs, 0.908 for
vertebral bodies and 0.925 for the spinal canal.
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Figure 4. T2-weighted sagittal images (A)—medial, (B)—mediolateral, (C)—lateral of the entire spine
with the evaluation of the AI-based vertebral body segmentation in comparison to the segmentation
of the radiologists (green—true positive, blue—false negative, red—false positive).

Based on the total of 10,215 datasets, it was possible to extract normative morphometric
data for the spine regarding the vertebral body and intervertebral disc, as well as the spinal
canal. By using this data, a machine learning-based software tool was developed to analyze
the standardized GNC spine-MRI in real time and provide age-, sex-, and height-matched
comparative data (Figure 5).
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4. Discussion

Degenerative disc disease is a common imaging finding in the clinical routine. It
may be present with or without symptoms, and it is usually detected when patients with
symptoms like low back pain obtain diagnostic imaging. Although there are a variety of
grading scales to categorize the imaging findings [14,27], little is known regarding to what
extent DDD is physiological in a certain population, depending on their age and gender.

To answer the question if biometric measurements of the spine are physiological
or pathological in a specific patient, MRI-based epidemiological studies are convenient
for finding normative values. The number of participants necessary and the manpower
needed to diagnose the imaging data to derive these normative values is huge. Manual
evaluation and segmentation are not suitable approaches for this task. As mentioned
before, in previous studies, the spine was just partially analyzed, or segmentation was
performed just manually. In addition, the data of these studies were always acquired on a
geographically local basis, like in the “Study of Health in Pomerania” [15,16]. In our study,
for the first time, the morphometry of the entire spine of more than 11,000 representative
subjects from all over Germany was evaluated by using AI.

Additionally, in recent years, the number of MRI examinations has already increased
by over 71%, especially spine MRI in patients with chronic back pain. In contrast, there
has been only growth of about 33% in radiologists within the last ten years. In the field of
radiology, computer-aided tools with implemented AI algorithms constitute an exciting
and promising field to compensate for radiologist staff shortage at some workflow stages
and may help to provide support for diagnosis and treatment planning for intervention.

In our study, the AI approach was able to analyze morphometric features of the spine
in a population-based study. The evaluated parameters were in excellent correlation to
human analyses and at the same quality level in comparison to other U-net algorithms used
in clinical studies [28,29]. Especially for specific MRI examinations, such as the analysis of
spinal canal stenosis, our developed software tool could support physicians by analyzing
the spine in real-time and providing age-, sex- and height-matched comparative data.

However, there are some limitations and different approaches to developing an even
more accurate deep learning model. First, for the learning process of the AI, 3D augmenta-
tions during the training process and changes in the architecture with different shapes of
the U-net could be used to test for higher achievable Dice coefficients. Second, the imaging
parameters could be improved to optimize the segmentation results of the AI algorithm.
Due to the slice thickness of about 3.0 mm provided by the GNC datasets, it is a great
challenge for the algorithm to analyze the lateral edges of the intervertebral discs, vertebral
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bodies and spinal canal. An increased resolution and smaller slice thickness could improve
the accuracy of the model.

Nevertheless, the standardized acquisition in large-scale MRI datasets, like the GNC
data, is ideally suited for the approach with an AI-based deep-learning algorithm, but the
question arises of how the AI algorithm would perform on not standardized clinical data.
This evaluation of the AI-algorithm performance on data obtained in clinical routine must
be done in future studies.

Another interesting approach in future studies could be the use of knowledge graphs,
also known as a semantic network, which represents a network of different entities and
makes a qualitative leap in knowledge representation [30,31]. When it comes to defining
the normative morphometrical values of the spine, semantic information of different
features like the volume and maximal or minimal height of VB could be evaluated by AI
using knowledge graphs. This approach may allow analyzing the importance of different
MRI features, e.g., variable image appearance or intensity ranges, regarding non-obvious
correlations to reference values of the spine.

The extracted features and morphometric values are already the largest-scale database
of the spine and enable capturing the variability of spine structures within a population of
adults between 20 and 72 years. Although more than 11,000 MRI datasets were already
evaluated in this study, the analysis of the additional 19,000 available datasets of the
GNC could contribute to getting real normative values of the spine for the entire German
population. Therefore, it is planned to analyze the additional datasets of the GNC and
provide this data in the developed software tool with implemented normative data of the
spine to other medical physicians and healthcare institutions. In addition, the robustness
and reliability of our algorithm must be evaluated by using non-standardized acquired
images from just parts of the spine and from different medical facilities and different devices.
By using the developed software tool, MRI of the spine could be analyzed in real-time
fully automatically, which supports the medical doctors by providing normative data. This
could lead to better classification and understanding of, for example, degenerative changes
of the spine like DDD.

We believe that the AI algorithm and the developed software will constitute an impor-
tant breakthrough in spine imaging by adding normative data from the German population.

5. Conclusions

Using a CNN-based algorithm, the reliable segmentation of MRI datasets of the entire
spine from the GNC, a population-based MRI study, was possible and achieved an excellent
agreement with manually segmented datasets. With the analysis of the total GNC MRI
dataset with almost 30,000 subjects, it will be possible to generate real normative standard
values for different cohorts based on various demographic parameters in the future. By
integrating these values in our software tool, medical doctors would be able to analyze
MRI examinations of the spine in an easier way, extracting anatomical features through
one-click quantitative measurements.
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