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Abstract: An early evaluation of colorectal cancer liver metastasis (CRCLM) is crucial in determining
treatment options that ultimately affect patient survival rates and outcomes. Radiomics (quantitative
imaging features) have recently gained popularity in diagnostic and therapeutic strategies. Despite
this, radiomics faces many challenges and limitations. This study sheds light on these limitations
by reviewing the studies that used radiomics to predict therapeutic response in CRCLM. Despite
radiomics’ potential to enhance clinical decision-making, it lacks standardization. According to
the results of this study, the instability of radiomics quantification is caused by changes in CT
scan parameters used to obtain CT scans, lesion segmentation methods used for contouring liver
metastases, feature extraction methods, and dataset size used for experimentation and validation.
Accordingly, the study recommends combining radiomics with deep learning to improve prediction
accuracy.
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1. Introduction

Colorectal cancer (CRC) is one of the most common types of cancer [1]. Colorectal
cancer (also known as bowel cancer) is the third most common cancer in the world. It is
the third most common cancer among men and the second most common cancer among
women. In 2020, there were more than 1.9 million new cases of colorectal cancer [2]. As
a result of pre-existing pre-cancerous colon polyps (adenomatous polyps), colon cancer
may develop over 5 to 20 years [3–5]. Approximately 135,430 new cases of colorectal cancer
were diagnosed in the United States in 2017, resulting in 50,260 deaths [6]. Additionally,
CRC is the second most common cause of cancer-related death among men and women,
with approximately 52,020 deaths reported in 2019 in the US [7,8].

Several factors contribute to the increased incidence of CRC globally, including low-
fiber and high-fat diets, excessive consumption of red meat, and sedentary lifestyles [9]. In
addition, CRC is often detected at an advanced metastatic stage due to late detection of the
tumor due to a lack of or poor adherence to screening programs [4].

CRC is classified into four stages based on the extent to which the tumor has spread
from the colon to lymph nodes and distant organs [10]. A screening program for CRC has
resulted in the early detection and removal of premalignant polyps or early-stage cancers,
thereby improving survival rates [3]. Nonetheless, 20–25% of cases present with distant
metastatic disease at diagnosis [11–13]. In addition, there are almost 20–40% of late-stage
CRC patients present with liver metastasis [14,15], which has been explained through
the hematogenous spread of cancerous cells throzugh the portal veins [14,16–19]. During
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the advanced stage of CRC, the survival rate is inferior, and the treatment options are
minimal [20]. However, the high accuracy of CRC detection and the effectiveness of early
detection treatment will assist in reducing the incidence rate before the transformation of
benign polyps to malignant tumors [21]. A patient’s prognosis is greatly affected by their
liver metastases, and the average survival time for patients with hepatic metastases from
gastrointestinal cancers is only 6 months without appropriate treatment. Therefore, it is
essential to accurately predict and differentiate liver metastases from CRC to make a proper
therapeutic plan and improve the patient’s prognosis [22].

The work-up of CRC patients involves the use of radiological imaging methods, includ-
ing colonoscopy, computerized tomography (CT scan), magnetic resonance imaging (MRI),
ultrasound, chest x-ray, and positron emission tomography (PET) or PET-CT scan [23].
Computed tomography (CT) is the most widely used imaging technology for the staging of
CRC [24]. Depending on the stage of the disease, patients may receive surgery, chemother-
apy, and radiotherapy [16]. The more advanced the disease, the fewer treatment options
are available, and most patients are treated aggressively or remain on palliative care. It is
worth mentioning here that CRC patients with unresectable liver metastases usually receive
systemic chemotherapy before or after surgery [7,16]. Based on the size of the metastatic
liver lesions, the response to chemotherapy is assessed, and subsequent treatment decisions
are made. However, the response of each patient to chemotherapy alone or combined with
targeted therapy differs, and the benefits are fewer.

Consequently, assessing the response to these therapies is imperative to avoid their
toxic effects and high costs [25]. There is a strong correlation between the therapeutic
response of liver metastases and their prognosis [14]. The Response Evaluation Criteria
in Solid Tumors (RECIST 1.1) is commonly used to assess the response to treatment. It
measures the difference between the longest axial diameter of the metastatic liver lesion
before and after chemotherapy [12,15,16]. Tumors are categorized as responsive (if their
size decreases), non-responsive (if their size does not change), and progressing (if their
size increases). However, RECIST1.1 is limited because it does not consider the spatial
heterogeneity of metastatic lesions [16,26]. RECIST does not accurately predict the response
to bevacizumab in patients with CRC liver metastases, according to a recent study [27].
This is due to the fact that bevacizumab’s cytostatic action has a small impact on liver tumor
size. Patients with respectable CRC liver metastases treated with bevacizumab plus XELOX
(capecitabine and oxaliplatin) were found to respond better to CT morphological criteria
than RECIST [27]. In cancer treatment, tumor morphology is considered a biomarker. While
it is a useful biomarker, it is not a robust one since it is unable to predict the response to
treatment in patients receiving systemic therapy [28]. Additionally, different morphological
parameters have been reported by different studies, but none have been confirmed by
all authors. Additionally, morphological criteria (e.g., tumor size) can be modified by
chemotherapy, and it is unclear which value should be taken into consideration (prior to or
after treatment). Furthermore, tumor morphology provides only a snapshot of the tumor
and does not reflect its evolution over time [28].

Recently, radiomics-based approaches have gained attention due to their high pre-
diction power for response to chemotherapy in various types of tumors, including liver
metastases [11,12,16,19,26,29–34]. CT texture analysis is useful for diagnosing, staging, and
assessing therapy response in several studies [12,14,16,35]. Moreover, imaging techniques
can potentially characterize the histopathological features of CRCLM [36]. For example, the
feature of the interface between the normal liver and tumor influences the chemotherapy
selection [36]. However, there is an absence of studies that provide robust validation of
imaging techniques [36].

Nonetheless, several challenges hinder the clinical application of radiomics feature
analysis, beginning with variations in medical image acquisition protocols and moving on
to standardizing radiological scores. Therefore, an examination of recent studies focusing
on the use of CT texture features to predict the therapeutic response to CRC with liver
metastases is presented in this review. The primary objective of this study is to explore
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the standard CT texture features for therapeutic response assessment in CRC with liver
metastases, the CT acquisition parameters, existing radiomics texture feature extraction
tools, and the common limitations that can be addressed in future research.

As part of this review, various online resources regarding CRC liver metastases and
radiomics of CT were collected from different scientific journals. In this review, we reviewed
studies related to CRC liver metastases and the radiomics of CT for predicting therapeutic
response. A methodology diagram in Figure 1 outlines the criteria for including and
excluding studies from the review.

Healthcare 2022, 10, x  3 of 15 
 

 

metastases is presented in this review. The primary objective of this study is to explore 
the standard CT texture features for therapeutic response assessment in CRC with liver 
metastases, the CT acquisition parameters, existing radiomics texture feature extraction 
tools, and the common limitations that can be addressed in future research.  

As part of this review, various online resources regarding CRC liver metastases and 
radiomics of CT were collected from different scientific journals. In this review, we re-
viewed studies related to CRC liver metastases and the radiomics of CT for predicting 
therapeutic response. A methodology diagram in Figure 1 outlines the criteria for includ-
ing and excluding studies from the review. 

 
Figure 1. An illustration of the PRISMA flow diagram for a systematic review, including the data-
base searches, abstract screening, and full text retrieval. 

Figure 1. An illustration of the PRISMA flow diagram for a systematic review, including the database
searches, abstract screening, and full text retrieval.



Healthcare 2022, 10, 2075 4 of 14

As shown in Figure 1, only 12 studies have utilized radiomics of CT to predict the
response to chemotherapy in patients with CRC liver metastases.

The rest of the paper is structured as follows: A brief overview of radiomics’ role in
predicting therapeutic response to liver metastases in CRC is presented in Section 2. Then,
several factors that influence radiomics, such as CT acquisition parameters, contouring
methods of liver metastases, and extraction techniques of texture features, are described
and compared in Section 3. Finally, the conclusion is drawn in Section 4.

2. Background

In both healthcare and computer science, radiomics is a promising field. For example, it
plays a significant role in cancer diagnosis when applied to radiological imaging techniques
such as CT, MRI, PET-scan, and others [37]. This approach uses radiological images to
extract high-throughput quantitative features that can be used for diagnosing and assessing
therapeutic outcomes [14,38].

Quantitative imaging features define the texture of tumors [39]. The quantitative
imaging features include shape, intensity, volume, size, and texture, which provide detailed
information on tumor microenvironment and phenotype compared to laboratory results,
clinical reports, and genomic or proteomics analyses [22]. Additionally, radiomics measures
spatial and temporal intramural heterogeneity non-invasively [40]. Thus, it is used to extract
tumor features inaccessible to the naked eye [41]. Radiomics has provided significant results
by identifying responders and non-responders across various treatment options, including
surgery, chemotherapy, immunotherapy, and targeted therapy [38]. It is possible to predict
the effectiveness of chemotherapy. Radiological tumor response has been associated with
decreased entropy and increased homogeneity of liver lesions following chemotherapy.
Some studies have reported that it is possible to predict response to systemic therapy by
analyzing the images at the time of diagnosis prior to chemotherapy; higher entropy and
lower homogeneity in liver metastases were associated with a higher response rate. As
compared to the standard RECIST criteria, texture analysis provided a more accurate and
earlier prediction [28].

It has been tested and applied to several types of cancer and has shown promising
results [42]. In addition, using already available radiological images can extract such
features non-invasively and with high predictive power [6].

Figure 2 illustrates the radiomics workflow:
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According to Figure 2, a radiomics workflow is composed of four main steps: (1) acqui-
sition of high-quality and standardized imaging; (2) segmentation of the region of interest
(ROI), which can either be done automatically or manually by an experienced radiologist
or radiation oncologist; (3) extraction of quantitative features from the segmented (ROI);
and (4) analysis of the extracted features [39,43].

CT scans, as part of CRC patients’ follow-up, are widely used to detect liver metas-
tases [6,44]. CT texture analysis is a mathematical approach for quantifying cancer het-
erogeneity by using algorithms that calculate features found in the ROI, such as coarse-
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ness distribution, irregularity of pixel intensities, and grey-level intensities [15,30]. As
demonstrated in several studies, CT texture analysis can help diagnose, stage, assess ther-
apy response, and identify disease survival biomarkers [16,45,46]. In addition, it helps
predict chemotherapy responses and classify patients into two groups (responders and
non-responders) [11,16]. As a result, there has been an increasing interest in using radiomics
to diagnose cancers and predict their response to treatment [14,38].

Among the strengths of radiomics is the ability to provide early prediction of the
outcome and noninvasive estimation of pathology specifics of colorectal metastases prior to
collecting data normally collected only after surgery. Furthermore, the ability to interpret
some radiomics features facilitates their implementation into clinical practice. For example,
entropy and heterogeneity, especially after contrast enhancement, indicate active disease
with heterogeneous clones, whereas homogeneity after chemotherapy indicates tumor
necrosis [28]. In addition to exploring subtle changes in tumor and liver texture before
and after treatment, radiomics can also be used to evaluate the response of CRLM lesions
to chemotherapy [22]. To better understand the occurrence and development of diseases,
radiogenomics can be used to discover radiomic features indicative of gene expression or
polymorphism. Noninvasive and conventional imaging methods are used in radiogenomics
to understand gene expression in diseases. At present, radiogenomics studies of liver
tumors are limited [22].

3. Literature Review and Discussion

Many studies have been conducted to assess the therapeutic response of CRC pa-
tients with liver metastases [11,12,16,19,26,29–32,47–49]. According to the reviewed studies,
the therapeutic response was assessed by analyzing different CT textures (features) ex-
tracted from CT scans of patients. The therapeutic response was evaluated after treatment
with specific types of chemotherapy, such as bevacizumab-containing chemotherapy regi-
mens [30], FOLFOX (5-FU, leucovorin, and oxaliplatin) or FOLFIRI (5-FU, leucovorin, and
irinotecan) [11], regorafenib (a targeted cancer drug) [31], antiangiogenic therapies [11],
and oxaliplatin chemotherapy [48]. The reviewed studies provide valuable information
regarding radiomics’ role in predicting the therapeutic response to colorectal liver metas-
tases. This work aims to review these studies, considering the common limitations in
predicting the therapeutic response to colorectal liver metastases. This study reviewed
12 studies regarding the response of CRC liver metastases to therapy. It is worth men-
tioning that the assessment criteria used to assess the response to the treatment varies
among studies. For example, among the four CT scanners included in [11], CT texture
features such as skewness, mean attenuation, and standard deviation (SD) were compared.
The authors of [12] calculated the ratio between texture features (T) of metastases and
background liver (Metastases/Tliver) using entropy (E) and uniformity (U) extracted from
texture features (T). A comparison was made between the texture features and clinical
outcome parameters such as the extent of disease (number of metastases), response to
chemotherapy, and overall survival. In [16], the authors evaluated the mean intensity (M),
entropy (E), and uniformity (U) of the largest metastatic lesion using different filter values
(0.0 1/4no/0.51/4fine/1.51/4medium/2.51/4coarse filtration). To evaluate the prediction of
therapeutic response, ref. [48] used the least absolute shrinkage and selection operator
regression models for the calculation of radiomic scores.

The role of radiomics in determining the therapeutic response to chemotherapy has
been confirmed in all studies. By using radiomics, biological data can be extracted from
radiological images without invasive procedures, saving time, money, and eliminating any
risk to the patient. In many tumors, radiomic analyses provide a precise assessment of
biology, allowing for the identification of clinically relevant indices [14]. Using radiomics,
liver lesions can be detected noninvasively. While traditional prognostic and predictive
models have limitations, radiomic characteristics can be used to predict patient outcomes
and treatment effectiveness. The field of radiomics has the potential to make a significant
contribution to precision medicine. A study by Rao et al. in [16] demonstrated that radiomic
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features are superior to standard biomarkers for predicting chemotherapy response. In [11],
radiomics was found to be useful in predicting the therapeutic response after cytotoxic
chemotherapy in patients with colorectal cancer liver metastases. The authors concluded
that a lower skewness on the 2D (two dimensional) image and a narrower standard devia-
tion (SD) and a greater mean attenuation on the 3D image were significantly associated
with an improved response to chemotherapy with FOLFOX or FOLFIRI for colon can-
cer hepatic metastases. According to [19], the radiomics signature outperformed known
biomarkers (KRAS mutation status and tumor shrinkage based on RECIST 1.1) for predict-
ing treatment sensitivity and for guiding decisions regarding the continuation of cetuximab
treatment. As demonstrated in [26], it is possible to develop a radiomics model that can
predict the likelihood of response of an individual metastasis in patients with colorectal
cancer. In [30], the authors found that all texture parameters (radiomics), except kurtosis,
changed significantly during treatment. According to their findings, radiomics may be
useful for evaluating the efficacy of regorafenib treatment. Using FolFiri and bevacizumab
as a first-line treatment for CRCLM, ref. [31] found that a radiomic signature (which repre-
sents a decrease in the sum of the target liver lesions (sTl), density, and computed texture
analysis of the dominant liver lesion (Dll)) accurately predicts overall survival (OS) and
identifies good responders more efficiently than RECIST 1.1 (Conventional evaluation
criteria). Different CT texture features were calculated in each study. Thus, no standard
cut-off values for specific texture features can be considered a stable feature for assessing
good responders from poor responders to therapy. Several factors have contributed to
these measurement variations, including using different CT scanners, inhomogeneity of
the dataset, chemotherapy regimens, and segmentation methods for outlining the tumor
region. A summary of the CT scan acquisition parameters used in the studies reviewed in
this paper is shown in Table 1.

Table 1. Comparison between studies based on CT scan parameters.

Study
Reference

CT Scan Acquisition Parameters

Scanner Type
(Detector Rows)

Tube Voltage
(kVp)

Radiation
Dose (mAs)

Slice
Thickness Scanner Phase Contrast

[29] 4 or 16 slices NM NM NM triphasic liver phase
or single phase Ioversol

[16] 16-slice or 64-slice NM NM 3 mm PVP NM

[11]
64-slice
16-slice
8-slice

120 kVp
120 kVp
120 kVp

200 mAs
200 mAs
250 mAs

3 mm
3 mm

2.5 mm

arterial and PVP
phases

PVP_ONLY

370 mgI/mL
iopromide

[12] 64-slice 100 kVp–120 kVp NM 3 mm or 5 mm (PVP) 300 mgI/mL
iopromide

[30] 256-slice 100 kVp or 120 kVp 100 mAs 5 mm

Non-contrast
enhanced DCE-CT

peak arterial
enhancement DCE-CT

(PVP)

320 mgI/mL
Or

350 mgI/mL
iodixanol

[31] 128-slice 120 kVp 210 mAs 5mm NM 350 mgI/mL
Iomeron

[32] NM NM NM 3mm or 5mm (PVP) NM

[19] NM 122 ± 6 kVp 242 ± 99 mAs 5.1 ± 1.0 mm (PVP) NM

[26] NM NM NM NM (PVP) NM

[47] NM NM NM NM (PVP) NM
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Table 1. Cont.

Study
Reference

CT Scan Acquisition Parameters

Scanner Type
(Detector Rows)

Tube Voltage
(kVp)

Radiation
Dose (mAs)

Slice
Thickness Scanner Phase Contrast

[48]
iCT 256/IQon
Spectral CT/
Brilliance 64

NM NM 3–5 mm (PVP) 600 mgI/kg
Iopamiron

[49] Brilliance iCT 120 kVp 240–400 mAs 5 mm (PVP)
100 mL

Iopromide
370 mg/mL

Abbreviations: CT: computed tomography. kVp: kilovoltage peak (the peak potential applied to the X-ray tube).
mAs: milliampere-second (tube current-time product). PVP-CT: portal venous phase computed tomography.
NM: not mentioned.

As illustrated in Table 1, various CT scan parameters have been used to acquire the
CT scan, such as the scanner type (ranging from 4 slices up to 128 slices), tube voltage
(100 to 120 kVp), radiation dose, or tube current (100 up to 242 mAs), slice thickness
(2.5 up to 5mm), different scanner phases, and contrast (300 mg/mL up to 370 mg/mL). A
recent study was conducted in 2019 to determine whether CT scan parameters affect the
measurement of CT radiomics-based texture features of lung nodules [50]. In the study, it
was found that CT scan parameters have a significant impact on the obtained imaging data.
The study suggested normalization is required when the images are acquired with different
CT scan parameters to analyze texture features accurately. Moreover, the study reported
that other CT scan parameters could affect qualitative CT features due to the artifacts that
affected the tumor texture [51]. As an example, noise increases with thinner slice thickness
and vice versa. In [31], a thick slice was preferred over a thinner slice to minimize image
noise’s influence on fine texture parameters. As reported in [52], slice thickness may affect
measured radiomics features. However, according to Mackin et al. [53], some CT scan
parameters have no significant effect on radiomics features.

Nonetheless, a significant difference was observed in extracted features when the
scan tube current was between 30 mAs and 120 mAs, as reported in [51]. Therefore, it is
recommended that high mAs be used to reduce motion artifacts [50]. Typically, CT scans
are performed at high voltages (120–140 KVp). By increasing the KVP, a better image can
be obtained, reducing scanning time. Furthermore, the kilovoltage setting affects dose and
contrast. In [54] examined the effects of different iodine concentrations on the liver’s image
quality of CT scans using a 128-slice scanner.

On the other hand, a higher iodine concentration (400 mg/mL) enhances the liver’s ap-
pearance in the portal phase and improves the overall quality of the image [54]. Numerous
studies have demonstrated that higher iodine levels benefit CT scans [55,56]. Furthermore,
using the same CT scan parameters facilitates the reproduction of radiomics features [51].
Obtaining a stable analysis of texture features from radiomics requires homogeneity in
the dataset. In addition, all patients should receive the same treatment type and duration
throughout the study. Furthermore, the segmentation and extraction techniques for texture
features should be the same. As shown in Table 2, there are variations in the datasets,
chemotherapy treatments, segmentation techniques, and feature extraction methods used
in the reviewed studies.

As shown in Table 2, some reviewed studies used small datasets (ranging from 21 to
42) while others used large datasets (ranging from 230 to 667). Results obtained from a
larger sample size are typically more stable than those obtained from a smaller dataset. Nev-
ertheless, the small sample size is a common limitation in studies of CRC liver metastases
using CT images, as reported recently [14]. In addition, the patient’s treatment regimens
during these studies differed, as seen in Table 2. As a result, it is impossible to compare
the measured features among these studies because the response differs from one therapy.
Due to the high heterogeneity of CRC, patients respond differently to therapy for different
metastatic lesions in the same patient [10,47]. Therefore, assessing the response in a tiny le-
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sion leads to less accuracy. In CRC liver metastases, in the case of multiple lesions, different
lesions show a similar response to chemotherapy [16]. Manual segmentation was the most
commonly used segmentation method in the reviewed studies in which one or two readers
(radiologists) manually delineate the region of interest. Indeed, the manual segmentation
of ROI has an impact on texture features. Therefore, the inter-reader variability is critical
and affects the extracted radiomics texture features. According to Rizzetto et al. in [57],
describing the impact of inter-reader contouring variability on the textural radiomics of
colorectal cancer liver metastases, segmenting liver metastases is a challenging procedure
due to the location and boundaries of the liver. Consequently, 2D contouring has less
effect on radiomics features than 3D contouring in terms of inter-reader variability [57]. As
shown in Table 2, there is no standard tool for extracting texture features.

Table 2. Comparison between studies based on different radiomics influencing factors.

Study Dataset Size Targeted
Chemotherapy

Segmentation
Method

Feature
Extraction Tool

Extracted
Features

[29] 50 patients Chemotherapy and
bevacizumab NM NM
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[16] 21 patients
Capecitabine

plus oxaliplatin
(XELOX)

Manually MATLAB Script

[11] 145 patients FOLFOX *
FOLFIRI * Manually Medical Imaging

Solution ˆ

[12] 70 patients Different regimens Manually

In house-software
written in Python

(Pyradiomics
package)

[30] 27 patients Bevacizumab and
regorafenib

Intellispace 6.0
(ISP) ˆˆ TexRAD

[31] 43 patients

FOLFOX **
FOLFIRI **

Alone or with
bevacizumab

Manually MATLAB Script

[32] 230 patients FOLFIRI * and
bevacizumab) Manually TexRAD software

[19] 667 patients FOLFIRI * and
cetuximab

Counters were
drawn semi-

automatically
MATLAB script

[26] 24 patients NM Manual NM

[47] 24 patients NM Automatic NM

[48] 42 Patients Oxaliplatin Manual 3D slicer tool

[49] 192 patents

oxaliplatin (CAPEOX
or mFOLFOX6) or

irinotecan (FOLFIRI
or XELIRI)

Manual Pyradiomics
Package

Abbreviation: NM: not mentioned. FOLFOX *: (5-FU, leucovorin, and oxaliplatin). FOLFIRI *: (5-fluorouracil,
leucovorin, and irinotecan). FOLFOX **:(Oxaliplatin, 5-Fluorouracil and folinic acid). FOLFIRI ** (Irinotecan,
5-Fluorouracil and folinic acid). ˆ: For Segmentation and Texture Analysis (C++ BASED). ˆˆ: Multimodality Tumor
Tracking is a semi-quantitative 3D sculpt tool used for delineating tumors.

Most studies have used MATLAB and Python scripts (pyradiomics packages [58]).
Some studies, however, used paid software such as TEXRAD, which is dedicated to
scientific research, particularly in oncology. Radiologists and specialists developed it
in IT healthcare to ensure the confidentiality of patient information. It extracts tex-
ture features from medical images, and over 100 academic publications rely on it.
TEXRAD has been used in about eight studies related to colorectal cancer and tex-
ture features [8,44,45,59–63]. Some studies used free, open-source software to extract
and quantify features. This software was written in Java and was intended for use by
researchers, radiologists, and oncologists [64,65]. In the reviewed studies, there are
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variations in CT scan acquisition parameters, ROI segmentation methods, feature extrac-
tion tools, and even analysis methods used to predict response. The following, Table 3,
summarizes the limitations of the reviewed studies:

Table 3. Summary of limitations from the reviewed studies.

Main Common Limitations

Small dataset and data inconsistency:
In most studies, external validation was required because they were retrospective studies

conducted for a single institution.
There was a difference in treatment among the patients.

Manual segmentation:
One reader (without taking into account interobserver variation) performed an image

segmentation.
Subject bias.

There is no standard method for determining the size of lesions.

More evaluation is required:
The texture measurements were not retested to assess their repeatability.

A single metastatic lesion was evaluated.
It was only possible to extract features from the large lesion and not from all metastases.

It is important to note that not all texture features were analyzed.

The use of radiomics and radiogenomics in clinical medicine research is becoming
increasingly popular due to their noninvasive nature and low cost. As a new field, it is
still at an early stage, with numerous limitations. For example, most of the research data
for radiomics comes from small samples and single center. In contrast, some data from
multicenter are different due to different scanning equipment and scanning conditions.
In addition, imaging delineation segmentation approaches may vary from one center to
another or from one study to another [22]. Further, the results obtained by the studies
require further validation and evaluation before they can be applied in clinical practice
due to the instability of calculated texture features caused by variations in CT parameters,
tumor segmentation, feature extraction techniques, and differences in treatment regimens’
patient status. Validation datasets are essential for improving generalizability of prelimi-
nary results [26]. Using a validation cohort of 90 patients, Ahn et al. demonstrated that
certain texture features were independently correlated with the response to chemotherapy
of the largest hepatic metastases. The filtered dataset shows prognostic correlations with
survival, according to [30]. Further validation in larger prospective studies is, however,
required. There are, however, some studies that did not incorporate validation into their
models, such as [12,16]. In addition, studies produced contradictory results that were
difficult to compare [41]. To achieve better outcomes in radiomics and radiogenomics,
future research and development will need to address these issues. Because of technical
complexity, data overfitting, lack of standardization for outcome validation, and unrecog-
nizable confounding factors in databases, radiomics is still a relatively new field of study.
However, by combining radiomics with other clinical information, correlation analysis
can be performed with clinical results, and radiomics can thus provide countless imaging
biomarkers for cancer diagnosis, detection, prognosis evaluation, prediction of treatment
response, and disease monitoring [22].

Recent advances in radiomics and deep learning models, such as convolutional neural
networks, have led to promising results, particularly in identifying and segmenting small
lesions. As a result of deep learning (DL), automatic feature extractions are possible,
reducing the laborious manual process of feature extraction. Combining deep learning with
radiomics has shown remarkable results in recent studies such as [66]. A lack of studies,
however, contributed to the use of deep learning for CRC liver metastases, as recently
discussed in [14]. In addition, the evidence for using deep learning in conjunction with
traditional hardcoded radiomics to predict chemotherapy response is still lacking [49]. In
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recent years, multimodal data fusion has become a significant research area due to its use
in various applications in which multiple data sources are combined [67].

It is noteworthy that in the medical domain, the data is divided into non-image (pa-
tient’s medical records) and raw medical image data, which includes a large amount of
undiscovered or hidden information. Thus, combining information from different modal-
ities to improve diagnosis accuracy is challenging [68]. Data fusion combines data from
various sources to obtain higher quality and more relevant information [69]. Essentially, this
concept refers to integrating data from multiple sources to make accurate predictions [70].
Using data fusion methods has the primary goal of reducing detection inaccuracy probabil-
ity and increasing reliability by combining data from various sources [69].

Furthermore, data from other sources can be used to observe the same features across
multiple modalities, allowing for robust prediction [69,70]. It has been applied to various
applications, including audio-visual speech recognition, emotion analysis, and medical
image analysis [70,71]. Currently, multimodal applications have limitations in observing or
learning the correlations among highly heterogeneous modalities [68,70]. At the final stage,
the decision scores for each modality were combined without considering the inherent
correlations between the modalities, such as image vs. non-image. Due to these limitations,
multimodels suffer from low sensitivity and high specificity. In addition, integrating useful
features across other modalities, such as hand-crafted features in the medical domain,
requires robust domain knowledge, another limitation [67]. DL has recently been utilized
to address these limitations by learning data representations and discovering correlations
among features from multimodal datasets [68,72]. There is evidence from several studies
that multimodal for DL achieves better results than unimodal, with the fusion of data from
different modalities [68,69,73–75]. Based on their findings, DL models with fusion methods
are promising in improving classification and prediction accuracy by combining different
data sets with tight correlations and complementary information. However, the fusion
methods vary between early, intermediate, and late fusion [67], indicating that it is still in
its infancy in the medical domain. A lack of deep learning and multimodal methods for
predicting therapeutic responses in CRCLM is shown in the following Table 4.

Table 4. Comparison among studies based on using deep learning and multimodal for predicting
therapeutic response in CRCLM.

Study
Reference

Radiomics
Features

Machine
Learning

Deep
Learning Multimodal

[29] 7 7 7 7

[16] 3 7 7 7

[11] 3 7 7 7

[12] 3 7 7 7

[30] 3 7 7 7

[31] 3 7 7 7

[32] 3 7 7 7

[19] 3 3 7 7

[26] 3 3 7 7

[47] 3 3 7 7

[48] 3 7 7 7

[49] 3 7 3 3

In the discussion, it became apparent that more studies are required to examine the use
of advanced deep learning technologies combined with radiomics to evaluate therapeutic
responses in patients with CRCLM.
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As a result, this study suggests investigating the use of the fusion method for pre-
dicting therapeutic response in patients with CRCLM by combining data from different
sources (radiomics, clinical, and image).

4. Conclusions

Patients can avoid toxicity and adverse effects by predicting the response to chemother-
apy early. Although radiomics plays an essential role in assessing the therapeutic response
to chemotherapy, it still faces significant challenges in standardizing the CT acquisition
parameters as well as automating the segmentation of liver metastases. A radiomics texture
feature’s stability is crucial to assessing the therapeutic response to chemotherapy in CRC
liver metastases. Therefore, further studies are required to evaluate texture features among
different CT parameters and demonstrate a reasonable interpretation of the quantified
features that can be applied as a standard approach in future studies. In addition, automatic
lesion segmentation would facilitate radiomics analysis in clinical settings. According to the
current review, deep learning can be used with radiomics to predict therapeutic responses
to chemotherapy. Additionally, it suggests combining different data sources (CT, clinical
data, and others) to improve prediction accuracy.

Author Contributions: Writing—original draft preparation, F.A.; review and editing, A.A.-H., R.H.,
A.A., A.A.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by The Research Council (TRC) Oman under the Graduate
Research Grant program, grant number BFP/GRG/ICT/21/010 under (project code RC/GRG-
SCI/COMP/21/02).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Español, Basic Information about Colorectal Cancer|CDC. 2022. Available online: https://www.cdc.gov/cancer/colorectal/

basic_info/index.htm (accessed on 22 September 2022).
2. WCRF International, Colorectal Cancer Statistics|WCRF International. 2022. Available online: https://www.wcrf.org/cancer-

trends/colorectal-cancer-statistics/ (accessed on 22 September 2022).
3. Kilic, N.; Osman, O.; Ucan, O.N.; Demirel, K. Automatic colon segmentation using cellular neural network for the detection of

colorectal polyps. IU-J. Electr. Electron. Eng. 2007, 7, 419–422.
4. Azer, S.A. Challenges Facing the Detection of Colonic Polyps: What Can Deep Learning Do? Medicina 2019, 55, 473. [CrossRef]

[PubMed]
5. Godkhindi, A.M.; Gowda, R.M. Automated detection of polyps in CT colonography images using deep learning algorithms in

colon cancer diagnosis. In Proceedings of the 2017 International Conference on Energy, Communication, Data Analytics and Soft
Computing (ICECDS), Chennai, India, 1–2 August 2017; pp. 1722–1728. [CrossRef]

6. Chen, Y.; Ren, Y.; Fu, L.; Xiong, J.; Larsson, R.; Xu, X.; Sun, J.; Zhao, J. A 3D Convolutional Neural Network Framework for
Polyp Candidates Detection on the Limited Dataset of CT Colonography. In Proceedings of the 2018 40th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; pp. 678–681.
[CrossRef]

7. Maaref, A.; Romero, F.P.; Montagnon, E.; Cerny, M.; Nguyen, B.; Vandenbroucke, F.; Soucy, G.; Turcotte, S.; Tang, A.; Kadoury, S.
Predicting the Response to FOLFOX-Based Chemotherapy Regimen from Untreated Liver Metastases on Baseline CT: A Deep
Neural Network Approach. J. Digit. Imaging 2020, 33, 937–945. [CrossRef] [PubMed]

8. Lubner, M.G.; Stabo, N.; Lubner, S.J.; Del Rio, A.M.; Song, C.; Halberg, R.B.; Pickhardt, P.J. CT textural analysis of hepatic
metastatic colorectal cancer: Pre-treatment tumor heterogeneity correlates with pathology and clinical outcomes. Gastrointest.
Radiol. 2015, 40, 2331–2337. [CrossRef]

9. Kumar, S.; Burney, I.A.; Zahid, K.F.; Souza, P.C.D.; AL Belushi, M.; Mufti, T.D.; AL Meki, W.; Furrukh, M.; AL Moundhri, M.S.
Colorectal Cancer Patient Characteristics, Treatment and Survival in Oman—A Single Center Study. Asian Pac. J. Cancer Prev.
2015, 16, 4853–4858. [CrossRef]

10. Punt, C.J.A.; Koopman, M.; Vermeulen, L. From tumour heterogeneity to advances in precision treatment of colorectal cancer.
Nat. Rev. Clin. Oncol. 2016, 14, 235–246. [CrossRef]

https://www.cdc.gov/cancer/colorectal/basic_info/index.htm
https://www.cdc.gov/cancer/colorectal/basic_info/index.htm
https://www.wcrf.org/cancer-trends/colorectal-cancer-statistics/
https://www.wcrf.org/cancer-trends/colorectal-cancer-statistics/
http://doi.org/10.3390/medicina55080473
http://www.ncbi.nlm.nih.gov/pubmed/31409050
http://doi.org/10.1109/icecds.2017.8389744
http://doi.org/10.1109/EMBC.2018.8512305
http://doi.org/10.1007/s10278-020-00332-2
http://www.ncbi.nlm.nih.gov/pubmed/32193665
http://doi.org/10.1007/s00261-015-0438-4
http://doi.org/10.7314/APJCP.2015.16.12.4853
http://doi.org/10.1038/nrclinonc.2016.171


Healthcare 2022, 10, 2075 12 of 14

11. Ahn, S.J.; Kim, J.H.; Park, S.J.; Han, J.K. Prediction of the therapeutic response after FOLFOX and FOLFIRI treatment for patients
with liver metastasis from colorectal cancer using computerized CT texture analysis. Eur. J. Radiol. 2016, 85, 1867–1874. [CrossRef]

12. Beckers, R.C.J.; Trebeschi, S.; Maas, M.; Schnerr, R.S.; Sijmons, J.M.L.; Beets, G.L.; Houwers, J.B.; Beets-Tan, R.G.H.; Lambregts,
D.M.J. CT texture analysis in colorectal liver metastases and the surrounding liver parenchyma and its potential as an imaging
biomarker of disease aggressiveness, response and survival. Eur. J. Radiol. 2018, 102, 15–21. [CrossRef]

13. Alfonso, P.G.; Podesta, M.C.; Martín, A.M.; Codeisido, M.B.; Calvo, A.; Peligros, I.; Corcuera, A.; Blanco, A.B.R.;
Custodio-Cabello, S.; Trabada, D.L.; et al. Chemotherapy Plus Bevacizumab as Neoadjuvant or Conversion Treatment
in Patients with Colorectal Liver Metastases. Anticancer Res. 2018, 38, 3069–3077. [CrossRef]

14. Fiz, F.; Viganò, L.; Gennaro, N.; Costa, G.; La Bella, L.; Boichuk, A.; Cavinato, L.; Sollini, M.; Politi, L.S.; Chiti, A.; et al. Radiomics
of Liver Metastases: A Systematic Review. Cancers 2020, 12, 2881. [CrossRef]

15. Beckers, R.C.; Lambregts, D.M.; Lahaye, M.J.; Rao, S.-X.; Kleinen, K.; Grootscholten, C.; Beets, G.L.; Beets-Tan, R.G.; Maas, M.
Advanced imaging to predict response to chemotherapy in colorectal liver metastases—A systematic review. HPB 2018, 20,
120–127. [CrossRef] [PubMed]

16. Rao, S.-X.; Lambregts, D.; Schnerr, R.S.; Beckers, R.C.; Maas, M.; Albarello, F.; Riedl, R.G.; DeJong, C.H.; Martens, M.H.;
Heijnen, L.A.; et al. CT texture analysis in colorectal liver metastases: A better way than size and volume measurements to assess
response to chemotherapy? United Eur. Gastroenterol. J. 2016, 4, 257–263. [CrossRef] [PubMed]

17. Simpson, A.L.; Doussot, A.; Creasy, J.M.; Adams, L.B.; Allen, P.J.; DeMatteo, R.P.; Gönen, M.; Kemeny, N.E.; Kingham, T.P.;
Shia, J.; et al. Computed Tomography Image Texture: A Noninvasive Prognostic Marker of Hepatic Recurrence After Hepatectomy
for Metastatic Colorectal Cancer. Ann. Surg. Oncol. 2017, 24, 2482–2490. [CrossRef] [PubMed]

18. Zhang, H.; Li, W.; Hu, F.; Sun, Y.; Hu, T.; Tong, T. MR texture analysis: Potential imaging biomarker for predicting the
chemotherapeutic response of patients with colorectal liver metastases. Abdom. Radiol. 2018, 44, 65–71. [CrossRef]

19. Dercle, L.; Lu, L.; Schwartz, L.H.; Qian, M.; Tejpar, S.; Eggleton, P.; Zhao, B.; Piessevaux, H. Radiomics Response Signature for
Identification of Metastatic Colorectal Cancer Sensitive to Therapies Targeting EGFR Pathway. JNCI J. Natl. Cancer Inst. 2020, 112,
902–912. [CrossRef]

20. Ribeiro, E.; Uhl, A.; Hafner, M. Colonic polyp classification with convolutional neural networks. In Proceedings of the 2016
IEEE 29th International Symposium on Computer-Based Medical Systems (CBMS), Belfast and Dublin, Ireland, 20–24 June 201;
pp. 253–258. [CrossRef]

21. Tan, J.; Gao, Y.; Liang, Z.; Cao, W.; Pomeroy, M.J.; Huo, Y.; Li, L.; Barish, M.A.; Abbasi, A.F.; Pickhardt, P.J. 3D-GLCM CNN: A
3-Dimensional Gray-Level Co-Occurrence Matrix-Based CNN Model for Polyp Classification via CT Colonography. IEEE Trans.
Med. Imaging 2019, 39, 2013–2024. [CrossRef]

22. Wang, Y.; Ma, L.-Y.; Yin, X.-P.; Gao, B.-L. Radiomics and Radiogenomics in Evaluation of Colorectal Cancer Liver Metastasis.
Front. Oncol. 2022, 11, 5451. [CrossRef]

23. Board, C.N.E. Colorectal Cancer: Diagnosis. 2019. Available online: https://www.cancer.net/cancer-types/colorectal-cancer/
diagnosis (accessed on 13 November 2020).

24. Sheikh, Y.; Gaillard, F. Colorectal Carcinoma|Radiology Reference Article. 2019. Available online: https://radiopaedia.org/
articles/colorectal-carcinoma (accessed on 13 November 2020).

25. Betge, J.; Barat, A.; Murphy, V.; Hielscher, T.; van Grieken, N.C.; Belle, S.; Zhan, T.; Härtel, N.; Kripp, M.; Bacon, O.; et al.
Outcome of Colorectal Cancer Patients Treated with Combination Bevacizumab Therapy: A Pooled Retrospective Analysis of
Three European Cohorts from the Angiopredict Initiative. Digestion 2016, 94, 129–137. [CrossRef]

26. Giannini, V.; Defeudis, A.; Rosati, S.; Cappello, G.; Mazzetti, S.; Panic, J.; Regge, D.; Balestra, G. An innovative radiomics
approach to predict response to chemotherapy of liver metastases based on CT images. In Proceedings of the 2020 42nd Annual
International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020;
pp. 1339–1342. [CrossRef]

27. Vera, R.; Gómez, M.L.; Ayuso, J.R.; Figueras, J.; García-Alfonso, P.; Martínez, V.; Adelaida Lacasta, A.; Ana Ruiz-Casado, A.;
Safont, M.J.; Aparicio, J.; et al. Regression in Hepatic Metastasis Secondary to Colorectal Cancer: The AVAMET Study. Cancers
2020, 12, 2259. [CrossRef]

28. Viganò, L.; Arachchige, V.S.J.; Fiz, F. Is precision medicine for colorectal liver metastases still a utopia? New perspectives by
modern biomarkers, radiomics, and artificial intelligence. World J. Gastroenterol. 2022, 28, 608–623. [CrossRef]

29. Chun, Y.S. Association of Computed Tomography Morphologic Criteria with Pathologic Response and Survival in Patients
Treated with Bevacizumab for Colorectal Liver Metastases. JAMA 2009, 302, 2338–2344. [CrossRef] [PubMed]

30. Andersen, I.R.; Thorup, K.; Andersen, M.B.; Olesen, R.; Mortensen, F.V.; Nielsen, D.T.; Rasmussen, F. Texture in the monitoring of
regorafenib therapy in patients with colorectal liver metastases. Acta Radiol. 2019, 60, 1084–1093. [CrossRef] [PubMed]

31. Ravanelli, M.; Agazzi, G.M.; Tononcelli, E.; Roca, E.; Cabassa, P.; Baiocchi, G.; Berruti, A.; Maroldi, R.; Farina, D. Texture features
of colorectal liver metastases on pretreatment contrast-enhanced CT may predict response and prognosis in patients treated with
bevacizumab-containing chemotherapy: A pilot study including comparison with standard chemotherapy. Radiol. Med. 2019, 124,
877–886. [CrossRef]

32. Dohan, A.; Gallix, B.; Guiu, B.; Le Malicot, K.; Reinhold, C.; Soyer, P.; Bennouna, J.; Ghiringhelli, F.; Barbier, E.; Boige, V.; et al.
Early evaluation using a radiomic signature of unresectable hepatic metastases to predict outcome in patients with colorectal
cancer treated with FOLFIRI and bevacizumab. Gut 2020, 69, 531–539. [CrossRef] [PubMed]

http://doi.org/10.1016/j.ejrad.2016.08.014
http://doi.org/10.1016/j.ejrad.2018.02.031
http://doi.org/10.21873/anticanres.12564
http://doi.org/10.3390/cancers12102881
http://doi.org/10.1016/j.hpb.2017.10.013
http://www.ncbi.nlm.nih.gov/pubmed/29196021
http://doi.org/10.1177/2050640615601603
http://www.ncbi.nlm.nih.gov/pubmed/27087955
http://doi.org/10.1245/s10434-017-5896-1
http://www.ncbi.nlm.nih.gov/pubmed/28560599
http://doi.org/10.1007/s00261-018-1682-1
http://doi.org/10.1093/jnci/djaa017
http://doi.org/10.1109/CBMS.2016.39
http://doi.org/10.1109/TMI.2019.2963177
http://doi.org/10.3389/fonc.2021.689509
https://www.cancer.net/cancer-types/colorectal-cancer/diagnosis
https://www.cancer.net/cancer-types/colorectal-cancer/diagnosis
https://radiopaedia.org/articles/colorectal-carcinoma
https://radiopaedia.org/articles/colorectal-carcinoma
http://doi.org/10.1159/000449412
http://doi.org/10.1109/EMBC44109.2020.9176627
http://doi.org/10.3390/cancers12082259
http://doi.org/10.3748/wjg.v28.i6.608
http://doi.org/10.1001/jama.2009.1755
http://www.ncbi.nlm.nih.gov/pubmed/19952320
http://doi.org/10.1177/0284185118817940
http://www.ncbi.nlm.nih.gov/pubmed/30612433
http://doi.org/10.1007/s11547-019-01046-4
http://doi.org/10.1136/gutjnl-2018-316407
http://www.ncbi.nlm.nih.gov/pubmed/31101691


Healthcare 2022, 10, 2075 13 of 14

33. Giannini, V.; Mazzetti, S.; Marmo, A.; Montemurro, F.; Regge, D.; Martincich, L. A computer-aided diagnosis (CAD) scheme for
pretreatment prediction of pathological response to neoadjuvant therapy using dynamic contrast-enhanced MRI texture features.
Br. J. Radiol. 2017, 90, 20170269. [CrossRef]

34. Giannini, V.; Mazzetti, S.; Bertotto, I.; Chiarenza, C.; Cauda, S.; Delmastro, E.; Bracco, C.; Di Dia, A.; Leone, F.; Medico, E.; et al.
Predicting locally advanced rectal cancer response to neoadjuvant therapy with 18F-FDG PET and MRI radiomics features. Eur. J.
Pediatr. 2019, 46, 878–888. [CrossRef]

35. Rosati, S.; Gianfreda, C.M.; Balestra, G.; Giannini, V.; Mazzetti, S.; Regge, D. Radiomics to predict response to neoadjuvant
chemotherapy in rectal cancer: Influence of simultaneous feature selection and classifier optimization. In Proceedings of the 2018
IEEE Life Sciences Conference (LSC), Montreal, QC, Canada, 28–30 October 2018; pp. 65–68. [CrossRef]

36. Maclean, D.; Tsakok, M.; Gleeson, F.; Breen, D.J.; Goldin, R.; Primrose, J.; Harris, A.; Franklin, J. Comprehensive Imaging
Characterization of Colorectal Liver Metastases. Front. Oncol. 2021, 11, 730854. [CrossRef]

37. Lambin, P.; Leijenaar, R.T.H.; Deist, T.M.; Peerlings, J.; de Jong, E.E.C.; van Timmeren, J.; Sanduleanu, S.; Larue, R.T.H.M.;
Even, A.J.G.; Jochems, A.; et al. Radiomics: The bridge between medical imaging and personalized medicine. Nat. Rev. Clin.
Oncol. 2017, 14, 749–762. [CrossRef]

38. Bera, K.; Velche, V.; Madabhushi, A. Novel quantitative imaging for predicting response to therapy: Techniques and clinical
applications. Am. Soc. Clin. Oncol. Educ. Book 2018, 38, 1008–1018. [CrossRef]

39. Grossmann, P.; Stringfield, O.; El-Hachem, N.; Bui, M.M.; Velazquez, E.R.; Parmar, C.; Leijenaar, R.T.; Haibe-Kains, B.; Lambin, P.;
Gillies, R.J.; et al. Defining the biological basis of radiomic phenotypes in lung cancer. eLife 2017, 6, e23421. [CrossRef]

40. Haga, A.; Takahashi, W.; Aoki, S.; Nawa, K.; Yamashita, H.; Abe, O.; Nakagawa, K. Standardization of imaging features for
radiomics analysis. J. Med. Investig. 2019, 66, 35–37. [CrossRef] [PubMed]

41. Wesdorp, N.; van Goor, V.; Kemna, R.; Jansma, E.; van Waesberghe, J.; Swijnenburg, R.; Punt, C.; Huiskens, J.; Kazemier, G.
Advanced image analytics predicting clinical outcomes in patients with colorectal liver metastases: A systematic review of the
literature. Surg. Oncol. 2021, 38, 101578. [CrossRef] [PubMed]
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