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Abstract: In recent years, due to the rise in the population and aging, the prevalence of neurological
diseases is also increasing year by year. Among these patients with Parkinson’s disease, stroke,
cerebral palsy, and other neurological symptoms, dysarthria often appears. If these dysarthria patients
are not quickly detected and treated, it is easy to cause difficulties in disease course management.
When the symptoms worsen, they can also affect the patient’s psychology and physiology. Most of the
past studies on dysarthria detection used machine learning or deep learning models as classification
models. This study proposes an integrated CNN-GRU model with convolutional neural networks
and gated recurrent units to detect dysarthria. The experimental results show that the CNN-GRU
model proposed in this study has the highest accuracy of 98.38%, which is superior to other research
models.
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1. Introduction

Speech is an essential medium of communication between people. Once the medium
of communication is abnormal, it increases the difficulty of communication. Further-
more, many people with neurological diseases often have this condition, which is called
dysarthria. Dysarthria is mainly a symptom caused by neuromuscular control disorders
that affect breathing, vocalization, resonance, articulation, and prosody [1]. Sounds can
be too loud or too low due to damage to the central and peripheral nervous system, such
as stroke, Parkinson’s disease, brain trauma, brain tumors, cerebral palsy, amyotrophic
lateral sclerosis, multiple sclerosis, muscular dystrophy, and other neurological diseases.
The voice will also appear hoarse and lack tone changes. Hence, dysarthria patients are
more likely to have abnormal speech characteristics [2].

Dysarthria may lead to social difficulties, a sense of isolation, and even world-
weariness, depression, and other psychological problems [3]. Therefore, if there is no
timely intervention and early rehabilitation training, it is easy to cause difficulties in disease
course management, and the disease will continue to worsen. Doctors can subjectively diag-
nose dysarthria, but it is generally considered an expensive, laborious, and time-consuming
test [4]. Therefore, having an objective and immediate automatic backing test is extremely
important.

Deep learning has recently been popular and widely used in medical treatment. In
order to objectively and accurately diagnose patients with dysarthria, more and more
researchers are using deep learning to develop automatic detection of dysarthria. Many
researchers use words for speech detection and different feature extraction methods to
extract features from speech signals. For example, Vashkevich et al. [5] use pitch period
entropy (PPE) based on acoustic features. Muhammad et al. [6] use glottal to noise excitation
(GNE) and formant frequency or use spectrum and cepstrum for feature extraction. Other
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examples are mel-frequency cepstral coefficients (MFCC) [7], perception linear predictive
coefficients (PLP), etc. [8]. After that, deep learning methods are used to detect dysarthria,
such as convolutional neural network (CNN), CNN-LSTM (long short-term memory), and
other models [9,10].

In the previous studies on the detection of dysarthria using the UA-Speech database,
Narendra [10] selected the CNN-LSTM hybrid model as the classification model, but
the accuracy of this model was only 77.57%. In order to improve the accuracy of the
dysarthria detection model, this study used speech signals recorded by dysarthria patients
and healthy people to undergo a short-time Fourier transform (STFT) and then convert the
signals into spectrograms. After that, the signals were transformed into a spectral map, and
mel-frequency cepstral coefficients (MFCC) were used to select the features. Finally, the
accuracy in detecting dysarthria of the proposed CNN-GRU (gated recurrent unit) deep
learning model was compared with three other models (CNN, LSTM, and CNN-LSTM).

2. Materials and Methods
2.1. Data Collection

Schlauch et al. [11] pointed out in their study that patients with dysarthria use words
to make judgments with high recognition and low error rates. Therefore, this study chose
words as the input audio samples for the subsequent studies. Our dataset was collected
from the UA research database [12] (http://www.isle.illinois.edu/sst/data/UASpeech/,
accessed on 18 February 2022). This database mainly contains the voice recordings of
15 dysarthria patients (4 women and 11 men) and 13 healthy subjects (4 women and 9 men),
all of which were recorded by microphone and processed by noise removal. The subjects
ranged in age from 18 to 58. A total of 455 words were recorded for each subject in the
database, consisting of the numbers 1 to 10, the 26 letters, 19 computer command words,
the 100 most common words from the Brown Corpus, and 300 words selected from the
Project Gutenberg novel.

2.2. Method

The method proposed in this study consists of three stages, as shown in Figure 1.
In the first stage, the original speech signal is transformed from the time domain to the
frequency domain by a short-time Fourier transform. Second, the frequency domain data
are extracted by mel-frequency cepstral coefficients. In the third stage, the features extracted
from the mel spectrogram are used to detect and classify dysarthria patients and healthy
people using the CNN-GRU model used in this study. In order to verify the excellence of
the CNN-GRU deep learning model, this study also used the CNN model, LSTM model,
and CNN-LSTM model to detect dysarthria and compare their results.
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Figure 1. Flowchart of dysarthria detection.

2.3. Data Preprocessing

The audio could identify the amplitude waveform differences from the audio images of
patients with dysarthria and healthy people through waveform images because people with
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dysarthria pronounce words more slowly and with a less steady pitch than healthy people.
In general, the waveforms of the dysarthria patient (ID: dysarthria01) in Figure 2a are
more irregular than the healthy subject (ID: healthy01) in Figure 2b. Audio waveforms can
only show the relationship between amplitude and time. This study used Python Librosa
to perform a short-time Fourier transform (STFT) of the audio. The short-time Fourier
spectrograms of a dysarthria patient and a healthy subject are shown in Figure 3. From
the spectrograms in Figure 3, it can be observed that the spectrum of subject dysarthria0l
(Figure 3a) has more irregular frequencies and sudden higher decibels than the spectrum
of subject healthy01 (Figure 3b).

Amplitude

Amplitude
4

O O
s

Time Time

(@) (b)
Figure 2. Amplitude waveforms of (a) dysarthria0l and (b) healthy01 subjects.

STFT transform processing audio signal STFT transform processing audio signal

1
&

(b)
Figure 3. Short-time Fourier spectra of (a) dysarthria0l and (b) healthy01 subjects.

Short-time Fourier transform (STFT) was used to transform speech signals from the
time domain to the frequency domain. The frame length of the speech in this study was

between 10 and 30 ms, the sampling frequency was set to 8 KHz, and the window length
was set to 128 to improve the resolution. The transformation of the STFT voice signal x(T)

to the frequency domain is shown in Equation (1).

X(t,f) = /oo w(t —T)x(T)e 2T dT 1)

—00

2.4. Feature Selection

Mel-frequency cepstral coefficients (MFCC) are widely used in speech recognition.
Mel is the scale of tone frequencies picked up by the human ear. The relationship between
the mel spectrum (M) and frequency (Hz) is shown in Equations (2) and (3).

M(f) = 2595 x log;,(1 + £/700) )
f— 700(10% — 1) 3)

The power of spectrum, P(k), can be obtained from Equation (4).

P(k) = & [X(K)[? 4)
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The power of the spectrum, P(k), is passed through a series of mel-scale triangular
filter windows to obtain the mel spectrum. The frequency, Hy, (k), of the triangular filter is
calculated as shown in Equation (5).

k—f(m—1)
Hy(k) = SGn Am Y 5)
Pl 1))

f(m) is the central frequency of the mel triangle filter. The logarithmic energy spec-
trum of each frame is S(m), which is obtained using a logarithmic process, as shown in
Equation (6).

N-1

S(m) =In[Y_x _ g

P(k)Hy(k)],0 <m <M (6)
P(k) is the power spectrum, H, (k) is the filter window, and M is the number of filter
windows.
This study used Librosa in Python software to extract the feature of the inverse
coefficient of the mel frequency. Figure 4a is the voice signal. After extracting the speech
signal samples and features, the mel spectrum is shown in Figure 4b.
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Figure 4. Feature extraction: (a) voice signal and (b) mel spectrum.

2.5. Deep Learning Algorithms
2.5.1. CNN Model

The CNN model can be used to detect the critical features of the audio in the audio
message [13]. The CNN model’s output and input architecture is shown in Figure 5, and
the core CNN model is explained as follows.

Figure 5. Architecture of CNN model.
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The CNN model uses the convolution layer to retain the original feature arrangement
of the image and obtain some essential features from the image. Then, the max pooling
layer is used to select the more intense feature values from the essential features and shave
the weak ones. This study adopted a rectified linear unit (Relu) to shave off the eigenvalues
less than 0 at the site to speed up model training between the convolution layer and the max
pooling layer. Then, the feature values are converted into one-dimensional data through
the flatten layer to facilitate the subsequent use of the fully connected layer. Finally, the
activation function of softmax is connected to the classification output. Table 1 shows the
parameter settings of the CNN model in this study.

Table 1. Parameters of CNN model.

Network Layer No. of Activations No. of Parameters
Covl (27,27,32) 160
Maxpooling1 (13,13,32) 0
Cov2 (12,12,64) 8256
CNN Maxpooling2 (6,6,64) 0
Flatten (2304) 0
Dense 3) 387

2.5.2. LSTM Model

Speech is a typical temporal signal because the LSTM (long short-term memory) model
has a solid temporal ability [14]. The output and input architecture of the LSTM model
is shown in Figure 6. In this study, a four-layer LSTM was used as the input layer, and
a four-layer dropout was added to prevent the over-fitting problem of the model in the
training process. A dense layer was used for dimensional transformation, and softmax was
used for the classification output. Table 2 shows the parameter settings of the LSTM model
in this study.

Audio Sample

Input Classification
converted
Mel Feature

Dropout Softmax Activated
Output Layer :> Dysarthria
& :> Health
. = Dense Layers

Figure 6. Architecture of LSTM model.

Table 2. Parameters of LSTM model.

Network Layer No. of Activations No. of Parameters
LSTM (26,10) 480
Dropout (26,10) 0
LSTM (26,10) 840
Dropout (26,10) 0
LSTM LSTM (26,10) 840
Dropout (26,10) 0
LSTM (26,10) 840
Dropout (26,10) 0

Dense (26,2) 22
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2.5.3. CNN-LSTM Model

CNN combined with LSTM for speech detection is an efficient and accurate hybrid
model [15]. The CNN-LSTM model uses a CNN convolution layer to retain the original
feature arrangement of an image and obtain some essential features from the image. Then,
the max pooling layer is used to select the more intense feature values from the essential
features and shave the weak ones. Between the convolution layer and the max pooling
layer, the rectified linear unit (Relu) is provided to shave off feature values less than 0 to
speed up model training. Then, the LSTM is connected to capture the temporal dynamics
of the sequence, and the flatten layer is connected to convert the feature values into one-
dimensional data. Finally, the activation function of softmax is connected for classification
output. The output and input architecture of the CNN-LSTM model is shown in Figure 7.
Table 3 shows the parameter settings of the CNN-LSTM model in this study.

Input Classification
.................... CNNlayers oo
| Convolutional Convolutional
‘ L Layer gy E Relu
y | Layer Layer LSTM Layers Softmax Activated
| - = Output Layer l:> ;
Audio Sample | ] | . Dysarthria
converted :> » SN ) = | - | - - (. —
Mel Feature i v et

N = - 3 Dense Layers
. 3 Max pooling Max pooling Flatten Layers
- - i Layer Layer

Figure 7. Architecture of CNN-LSTM model.

Table 3. Parameters of CNN-LSTM model.

Network Layer No. of Activations No. of Parameters
Covl (23,32) 320
Maxpooling1 (11,32) 0
Cov2 (11,64) 14,400
CNN-LSTM Maxpooling?2 (5,64) 0
LSTM (2,128) 20,608
Flatten (64) 0
Dense (44) 2860

2.5.4. CNN-GRU Model

CNN combined with GRU was used as a classifier in the study of speech enhance-
ment [16] and android botnet detection [17]. In GRU architecture, fewer parameters need
to be set, and it is simpler than LSTM architecture [18]. Therefore, it becomes natural to
use GRU to optimize the CNN model. However, the combination of CNN and GRU is
not always the same. This study combines the studies by Hasannezhad et al. [16] and
Yerima et al. [17] into a different CNN-GRU model and writes programs through Python’s
Keras package for experiments. The output and input architecture of the CNN-GRU model
proposed in this study is shown in Figure 8.
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Figure 8. Architecture of CNN-GRU model.

The CNN-GRU model proposed in this study uses a CNN convolutional layer to
retain the original feature arrangement of an image and obtains some essential features
from the image. In addition, the max pooling layer is used to select more intense feature
values from important features and shave the weak feature values, which can prevent the
problem of over-fitting the model. Between the convolutional layer and the max pooling
layer, this study also used a rectified linear unit to shave off the eigenvalues less than 0 to
accelerate model training. Then, the eigenvalues are passed through the update gate and
reset gate of the gated recurrent unit (GRU) to increase the calculation speed of the model
so that the model can be more accurate. Then, the flattened layer is connected to convert
the feature value into one-dimensional data, which is convenient for the subsequent use of
the fully connected layer. Finally, softmax’s activation function is connected as the output
to determine whether the speech audio is dysarthria. Table 4 shows the parameter settings
of the CNN-GRU model in this study.

Table 4. Parameters of CNN-GRU model.

Network Layer No. of Activations No. of Parameters
Covl (23,32) 320
Maxpooling1 (11,32) 0
Cov2 (11,64) 14,400
CNN-GRU Maxpooling?2 (5,64) 0
GRU (2,32) 15,552
Flatten (64) 0
Dense (44) 2860

2.6. Experimental Design

In this study, the word audio of dysarthria patients and healthy subjects was converted
into the frequency domain by short-time Fourier transformation, and the mel spectrum
image was extracted by the mel-frequency cepstral coefficient as the input of the four
models, including CNN, LSTM, CNN-LSTM, and CNN-GRU, proposed in this study. The
pros and cons of each model of dysarthria detection were compared by the training and
validation sets and the test results. The dataset was divided into the training set, validation
set, and test set, which were used for the training and testing of the four deep learning
models. The distribution of data was based on the ratio of 0.7:0.15:0.15. In this study, after
comprehensive area testing, these parameters had different batch sizes and learning rates
to obtain the ideal solution. In the case of batch sizes of 32, 64, and 128, learning rates of
0.01, 0.001 and 0.0001, and Epoch = 10, the experimental results are described in detail in
Section 3.

2.7. Model Evaluation

In this study, the effectiveness of the deep learning models was evaluated by the
following evaluation indicators, which are generally divided into four types: (1) true
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positive (TP); (2) true negative (TN); (3) false positive (FP); and false negative (FN). The
following evaluation metrics of the models can be calculated and learned based on those
four results: accuracy, precision, recall, f1-score, and ROC curve [19,20].

3. Experimental Results
3.1. Experimental Results of CNN Model

The CNN model in this study adopted Keras in Python software for model train-
ing [21], and the classification results of the CNN model are shown in Table 5. If the CNN
model parameter value of the batch size was set as 128 and the learning rate was set as
0.01, the highest accuracy of 94.36% of the CNN model could be obtained. In this study,
Scikit-Learn [20] in Python software was used to draw the ROC curve of the CNN model
in Figure 9, from which it can be seen that the AUC of the CNN model was 0.871 and the
classification result of the model was good.

Table 5. Classification results of CNN model.

Model Batch Size Learning Rate Accuracy% Precision%  Recall F1-Score
0.1 70.00 70.01 0.7002 0.7010
32 0.01 88.89 69.44 0.8334 0.7575
0.001 75.00 75.50 0.7500 0.7506
0.1 88.88 86.66 0.8333 0.8148
CNN 64 0.01 89.89 87.50 0.8333 0.8285
0.001 86.67 79.99 0.666 0.6249
0.1 93.33 87.50 0.8333 0.8285
128 0.01 94.36 90.39 0.8913 0.8896
0.001 94.35 86.66 0.8333 0.8148
ROC curve
10 -
08 ,,f”
g e
& .
y 06 L
g /,,/
S 04 -
L Pl
= I
0.2 el
0.0 L’ CNN(AUC = 0.871)
0'0 0'2 0I4 0'6 0'8 1 '0

False Positive Rate

Figure 9. ROC curve of CNN model.

In this study, the epoch parameter value of the CNN model was set as 10, and the
execution time, loss function, and accuracy of the CNN model can be observed from the
training process in Table 6. The accuracy of the test set was 94.36%. It only took about
3 ms/epoch to train the CNN model. The accuracy of the final training set was 97.88%, and
the loss function was 0.0638.
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Table 6. Execution time, loss function, and accuracy of CNN model.
Epoch Execution Accuracy Loss Accuracy Accuracy
Time (ms) (Training) (%) Function (Validation) (%)  (Testing) (%)
1 3 82.23 0.4972 45.40 79.20
2 3 91.26 0.2129 83.41 90.27
3 3 93.42 0.1674 90.35 91.27
4 3 94.18 0.1444 92.64 92.30
5 3 94.86 0.1314 93.90 93.24
6 3 95.77 0.1134 94.87 93.50
7 3 96.60 0.0931 95.48 93.52
8 3 96.52 0.0894 96.37 94.27
9 3 97.21 0.0757 97.13 94.20
10 3 97.88 0.0638 97.53 94.36

3.2. Experimental Results of LSTM Model

The LSTM model in this study adopted Keras in Python software for model train-
ing [21]. The classification results of the LSTM model are shown in Table 7. In the LSTM
model, if the parameter value of the batch size was set as 64 and the learning rate was
set as 0.001, the LSTM model could achieve the highest accuracy of 56.61%. In this study,
Scikit-Learn [22] in Python software was used to draw the ROC curve of the LSTM model
in Figure 10, from which it can be seen that the AUC of the LSTM model was 0.670 and the
classification result of the model was, in general, poor. According to the area under an ROC
curve (https://darwin.unmc.edu/dxtests /roc3.htm, accessed on 27 September 2022), AUC
is divided into five grades: 0.9-1 = excellent (A), 0.80-0.90 = good (B), 0.70-0.80 = fair (C),
0.60-0.70 = poor (D), and 0.50-0.60 = fail (F). Since the AUC result of LSTM was 0.67, the
effect of LSTM was considered poor in this study.

Table 7. Classification results of LSTM model.

Model Batch Size Learning Rate Accuracy% Precision% Recall F1-Score
0.1 50.32 50.10 0.5001 0.5002
32 0.01 54.29 53.21 0.5321 0.5321
0.001 54.67 54.60 0.5460 0.5430
0.1 55.60 4421 0.4421 0.4421
LSTM 64 0.01 54.30 54.12 0.5420 0.5411
0.001 56.61 53.43 0.5435 0.5324
0.1 55.21 44.25 0.6550 0.5220
128 0.01 56.60 43.21 0.5521 0.4201
0.001 55.37 50.20 0.5020 0.5020
ROC curve
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LSTM(AUC = 0.670)
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0.6
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038

Figure 10. ROC curve of LSTM model.
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In this study, the epoch parameter values of the LSTM model were set as 10, and the
execution time, loss function, and accuracy of the LSTM model can be observed from the
training process data in Table 8. The training time of the LSTM model was only about
2 ms/epoch. The accuracy of the final training set was 56.60%, and the loss function was
0.7562. The accuracy of the test set was 56.61%.

Table 8. Execution time, loss function, and accuracy of LSTM model.

Epoch Execution Accuracy Loss Accuracy Accuracy
Time (ms) (Training) (%) Function (Validation) (%)  (Testing) (%)
1 2 53.32 0.7346 54.89 53.20
2 2 53.63 0.7360 55.32 53.39
3 2 54.29 0.7375 55.36 53.65
4 2 54.42 0.7394 54.22 54.30
5 2 54.68 0.7153 55.89 54.39
6 2 54.56 0.7163 55.90 54.37
7 2 54.04 0.7309 55.91 54.49
8 2 55.60 0.7316 56.01 55.60
9 2 56.01 0.7557 56.43 55.97
10 2 56.60 0.7562 56.42 56.61

3.3. Experimental Results of CNN-LSTM

The CNN-LSTM model in this study adopted Keras in Python software for model
training [21]. The classification results of the CNN-LSTM model are shown in Table 9. In
the CNN-LSTM model, if the parameter value of the batch size was set as 128 and the
learning rate was set as 0.01, the CNN-LSTM model could obtain the highest accuracy of
78.57%. In this study, Scikit-Learn [22] in Python software was used to draw the ROC curve
of the CNN-LSTM model in Figure 11. It can be seen from Figure 11 that the AUC of the
CNN-LSTM model was 0.758 and the classification result of the model was above medium.

Table 9. Classification results of CNN-LSTM model.

Model Batch Size  Learning Rate  Accuracy% Precision%  Recall F1-Score
0.1 62.49 65.99 0.6666 0.6549
32 0.01 66.66 64.44 0.6656 0.6333
0.001 73.20 68.54 0.6756 0.6723
CNN 0.1 70.21 69.45 0.6230 0.7165
LSTI\/[_ 64 0.01 69.20 69.44 0.7333 0.7175
0.001 73.21 67.54 0.6740 0.6740
0.1 75.30 70.15 0.6563 0.7490
128 0.01 78.57 70.33 0.6660 0.7500
0.001 77.33 69.44 0.7475 0.7375
ROC curve
10 I
08 e
3 .
& -~
y 06 -
€ 04 ) o
bE /,,/
02 ol
00 e CNN-LSTM(AUC = 0.7580)
00 02 04 06 08 10

False Positive Rate

Figure 11. ROC curve of CNN-LSTM model.
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In this study, the epoch parameter value of the CNN-LSTM model was set as 10, and
the execution time, loss function, and accuracy of the CNN-LSTM model can be observed
from the training process data in Table 10. The training time of the CNN-LSTM model was
only about 4 to 8 ms/epoch, and the accuracy of the final training set was 84.21%. The loss

function was 0.2745, and the test set accuracy was 78.57%.

Table 10. Execution time, loss function, and accuracy of CNN-LSTM model.

Epoch Execution Accuracy Loss Accuracy Accuracy
Time (ms) (Training) (%) Function (Validation) (%)  (Testing) (%)
1 5 4211 0.9493 50.00 43.50
2 5 57.89 0.8010 66.67 50.65
3 5 63.16 0.6720 66.67 51.27
4 8 73.68 0.5617 66.67 65.90
5 4 84.21 0.3367 83.33 66.37
6 8 84.21 0.3256 83.33 67.47
7 5 84.21 0.3102 83.33 70.30
8 6 84.21 0.3060 83.33 75.98
9 5 84.21 0.2665 83.33 76.35
10 5 84.21 0.2745 83.33 78.57

3.4. Experimental Results

of CNN-GRU Model

The CNN-GRU model in this study adopted Keras in Python software for model
training [21]. The classification results of the CNN-GRU model are shown in Table 11.
In the CNN-GRU model, if the parameter value of the batch size was set as 128 and the
learning rate was set as 0.001, the highest accuracy of 98.88% of the CNN-GRU model
could be obtained. In this study, Scikit-Learn [22] in Python software was used to draw
the research results of the ROC curve of the CNN-GRU model in Figure 12. It can be seen
that the AUC of the CNN-GRU model was 0.916 and the model classification results were

excellent.

Table 11. Classification results of CNN-GRU model.

Model Batch Size  Learning Rate  Accuracy% Precision%  Recall F1-Score
0.1 92.27 93.21 0.9121 0.9220
32 0.01 94.52 94.23 0.9422 0.9420
0.001 95.21 93.20 0.9220 0.9231
0.1 96.41 95.51 0.9421 0.9412
CNN-GRU 64 0.01 96.70 90.24 0.9026 0.9633
0.001 96.38 96.31 0.9427 0.9532
0.1 97.71 96.21 0.9621 0.9621
128 0.01 98.02 90.47 0.9030 0.9021
0.001 98.88 91.47 0.9147 0.9147
ROC curve
10 —-
08 ,,//
% 06 /,/’/
3 L
02 L
00 /’/ CNN-GRU(AUC = 0.916)
00 02 04 06 08 10

False Positive Rate

Figure 12. ROC curve of CNN-GRU model.
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In this study, the epoch parameter value of the CNN-GRU model was set as 10, and the
execution time, loss function, and accuracy of the CNN-GRU model can be observed from
the training process data in Table 12. It only took about 2 ms/epoch to train the CNN-GRU
model, and the accuracy of the final training set was 98.14%. The loss function was 0.1621,
and its test set accuracy was 98.38%.

Table 12. Execution time, loss function, and accuracy of CNN-GRU model.

Epoch Execution Accuracy Loss Accuracy Accuracy
Time (ms) (Training) (%) Function (Validation) (%)  (Testing) (%)
1 2 79.20 0.157 90.77 89.21
2 2 92.27 0.1267 91.08 90.20
3 2 94.52 0.3353 90.97 93.45
4 2 95.21 0.2937 91.16 94.60
5 2 96.41 0.1553 90.77 95.88
6 2 96.70 0.1274 91.36 97.56
7 2 96.83 0.1029 91.20 96.30
8 2 97.71 0.2396 91.40 97.13
9 2 98.02 0.2084 91.63 97.79
10 2 98.14 0.1621 91.52 98.38

4. Discussion of Results

According to the experimental results in Section 3, the accuracy values of the CNN
model training set and test set were 97.88% and 94.36%, respectively (Table 6). The accuracy
of the LSTM model training set and test set was 56.61% (Table 8). The accuracy of the
CNN-LSTM model training set was 84.21%, and the accuracy of the test set was 78.57%
(Table 10). Finally, the accuracy values of the proposed CNN-GRU model training set and
test set were 98.14% and 98.38%, respectively (Table 12). Regardless of the perspective of the
training set and test set, the CNN-GRU model had the highest accuracy. In the judgment
of the AUC value, the AUC = 0.916 of the CNN-GRU model was also the highest, which
was better than the other three models. Various evaluation metrics show that the proposed
CNN-GRU model can obtain more accurate judgment results in dysarthria detection.

The results of this study are compared with other methods used in previous studies
and summarized in Table 13. Hernandez et al. [23] used a method based on fricative
sounds in audio messages and machine learning to detect dysarthria. The average spectral
peak in the spectral moment was used to extract the fricatives in the audio as the input
features of the SVM model, and the final SVM accuracy was 72%. Narendra et al. [24]
trained an SVM with acoustic and glottic features extracted from coded speech utterances
and their corresponding dysarthria/health labels and finally achieved an accuracy of
96.38% from the SVM. Narendra et al. [25] developed an end-to-end system that mainly
used raw speech signals and raw glottal flow waveforms to detect dysarthria in two deep
learning architectures: CNN-MLP and CNN-LSTM. The results showed that the original
glottal flow waveform is more suitable for model training than the original speech signal,
and the accuracy of CNN-MLP and CNN-LSTM were 87.93% and 77.57%, respectively.
Rajeswari et al. [26] enhanced the speech by variational mode decomposition and fed
the reconstructed signal to CNN for model training, and the final result achieved 95.95%
accuracy. The accuracy of the CNN-GRU model proposed in this study was 98.38%, which
is the highest in all studies. However, our approach may take a longer time to execute.
After a survey, previous studies have not reported the execution times in their articles.
Therefore, an execution time of 2 ms for our approach is appended in Table 13 for further
investigation or comparison in the future.
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Table 13. Performance comparison.
Classification o Execution

Author Method Dataset Accuracy (%) Time
Hernandez et al. (2019) [23] SVM UA-Speech 72% -
Narendra et al. (2019) [24] SVM UA-Speech 96.38% -
CNN-MLP 87.93% -
Narendra et al. (2020) [10] CNN-LSTM UA-Speech 77 57% ]
Rajeswari et al. (2022) [25] CNN UA-Speech 95.95% -

Our Approach CNN-GRU UA-Speech 98.38% 2 ms

References

(-: indicates unknown or uncertainty).

5. Conclusions

Although dysarthria testing can be based on the subjective judgment of doctors, it is
also regarded as a costly and time-consuming test, which can easily cause a medical burden.
Therefore, if dysarthria testing can be conducted objectively, it can assist doctors in making
an immediate judgment. This study used a CNN-GRU classification model for dysarthria
detection. The results showed that the proposed CNN-GRU model can achieve the highest
accuracy of 98.38%, which is better than the CNN, LSTM, CNN-LSTM models and those of
other scholars.

The results can be used as an auxiliary diagnostic procedure for detecting dysarthria
in the future. In future studies, it may be possible to take more eigenvalues from audio
to analyze the severity level of dysarthria symptoms so that dysarthria detection can be
further studied. In addition, others can also use the CNN-GRU model to detect other
speech pathologies, such as Parkinson’s disease, amyotrophic lateral sclerosis (ALS), and
other symptoms of speech detection. The proposed architecture can also be used for image
identification, just as Priyanka and Ganesan [26] used different data preprocessing methods
combined with machine learning to classify the severity of dementia. Better prediction
results may be achieved if the research is conducted through deep learning architecture.

In addition, most of the existing freely available dysarthric speech databases, includ-
ing [12], contain speech data recorded from a small number of patients [24]. The volume
of speech samples recorded in the dataset used in this study is quite large. However, the
number of samples included is not immense, and there has been no continuous addition
of samples, which makes it challenging to ensure that the results of this study can be
adequately transferred to other clinical trials of dysarthria.
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