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Abstract: A healthcare resource allocation generally plays a vital role in the number of patients treated
(pnt) and the patient waiting time (wt) in healthcare institutions. This study aimed to estimate pnt

and wt as output variables by considering the number of healthcare resources employed and analyze
the cost of health resources to the hospital depending on the cost coefficient (δi) in an emergency
department (ED). The integration of the discrete-event simulation (DES) model and machine learning
(ML) algorithms, namely random forest (RF), gradient boosting (GB), and AdaBoost (AB), was used
to calculate the estimation of the output variables depending on the δi of resources cost. The AB
algorithm performed best in almost all scenarios based on the results of the analysis. According to
the AB algorithm based on the δ0.0, δ0.1, δ0.2, and δ0.3, the accuracy data were calculated as 0.9838,
0.9843, 0.9838, and 0.9846 for pnt; 0.9514, 0.9517, 0.9514, and 0.9514 for wt, respectively in the training
stage. The GB algorithm had the best performance value, except for the results of the δ0.2 (AB had
a better accuracy at 0.8709 based on the value of δ0.2 for pnt) in the test stage. According to the AB
algorithm based on the δ0.0, δ0.1, δ0.2, and δ0.3, the accuracy data were calculated as 0.7956, 0.9298,
0.8288, and 0.7394 for pnt; 0.8820, 0.8821, 0.8819, and 0.8818 for wt in the training phase, respectively.
All scenarios created by the δi coefficient should be preferred for ED since the income provided by
the pnt value to the hospital was more than the cost of healthcare resources. On the contrary, the wt

estimation results of ML algorithms based on the δi coefficient differed. Although wt values in all ML
algorithms with δ0.0 and δ0.1 coefficients reduced the cost of the hospital, wt values based on δ0.2 and
δ0.3 increased the cost of the hospital.

Keywords: healthcare resources; pnt and wt; discrete-event simulation; machine learning; cost analysis

1. Introduction

Resource allocation in healthcare services is a problematic issue in health institutions
with a dynamic and complex structure. Hospital administrations have difficulties in terms
of health management to carry out healthcare resource planning, especially in emergency
departments (EDs) where there is no fixed number of patients or a certain patient arrival
probability (in units that work without appointment) [1]. Due to the inability to correctly
plan the healthcare resource allocation, many problems arise, such as patient waiting time
(wt), the number of patients treated (pnt), and the cost of healthcare resources. In this study,
a two-pronged solution was sought for the variation in the number of healthcare resources
and the cost of the number of resources to the hospital to measure its effect on the (pnt), and
(wt). In this study, this solution is provided by using the discrete-event simulation (DES)
model and machine learning (ML) algorithms. A new method has emerged for estimation
by using random forest (RF), gradient boosting (GB), and AdaBoost (AB) algorithms from
ML algorithms, which extracts a wide variety of data attributes of parameters from the
DES model.

By definition, DES is used to follow the activities by modeling the icons operating in a
physical structure in the computer environment [2]. DES applications have a wide range of
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applications such as healthcare, energy, transportation, education, logistics, etc. Generally,
the literature includes investigations of DES models for EDs. In this study, DES is modeled
for the ED in a hospital, one of the most problematic units of the healthcare system because
the events occurring in ED units are independent of one, and the next event is uncertain [3].
In addition, the fact that there are changes in the number of healthcare resources in EDs
operating under the 24/7 working principle shows that it has a fluctuating structure.

The optimization of output parameters such as wt, length of stay (LOS), performance,
and pnt was carried out by considering all combinations with the experimental design of
the number of healthcare resources employed in the ED using the DES model in research [3].
In another study wt by 40% and pnt by 28% were increased by creating the DES model
in ED [4]. Cimellaro et al. succeeded in reducing the wt by 96% for patients with yellow
codes and 75% for patients with green codes who applied to the ED unit by developing
a Monte Carlo simulation model [5]. Researchers have run with simulation models not
only to improve pnt or wt data, but also to improve healthcare resource performance. A
study aimed to increase the efficiency of ED by developing a DES model and enabled the
productivity of physicians and nurses to exceed 90% and 78%, respectively [6].

The DES model allows the results to be obtained quickly and inexpensively by making
the changes that are thought to be made in the real system in the computer environment.
The fact that the changes made in the healthcare system are not easy, and the results of
the changes are obtained in the long-term have led to the use of DES. In a study, a new
nurse-focused DES modeling technique was applied to predict nurse workload and quality
of care. This study concluded that as NPR (the number of patients assigned to a nurse)
increased, the quality of care deteriorated, and the nursing workload increased [7]. Another
study was conducted with DES models to monitor the changes made in the behavior and
performance of a set of operational policies for the efficient use and management of a scarce
resource such as the intensive care unit (ICU) for the smooth operation of a hospital [8].
A cost–benefit analysis was carried out to measure the cost to the hospital of changes in
the number of healthcare resources utilizing the DES model [9]. Baril et al. concluded
that giving nurses more responsibility (bulk prescriptions, reviewing patients) significantly
reduced the average time of LOS with less financial effort than adding extra doctors using
the DES model for validating how nurses can contribute to reducing overcrowding in
EDs [10].

ML algorithms are mostly used in medical subjects, although DES models are often
preferred by researchers in solving healthcare resource problems, which are a significant
problem in healthcare management. Ali et al. mentioned the importance of integrating DES
into ML concepts and tools to improve the design and use of ML frameworks, arguing that
this integration is an essential method of overcoming the difficulties of dynamic systems
structures [11]. DES and ML integration methods should be used for EDs, which are the
dynamic and complex units of the healthcare system. The integration of DES and ML
algorithms in terms of healthcare management was provided and pnt, wt and cost–benefit
analyses were realized in this study.

ML, a subset of artificial intelligence (AI), has the ability to increase the accuracy of
decisions through self-learning [12]. Today, ML algorithms are at the forefront of the meth-
ods used to draw conclusions and have the ability to predict data sets [13]. ML algorithms
allow predictions for emerging situations using existing data, because ML algorithms are
expressed as the science that gives the ability to learn automatically without programming
exactly how to behave for each problem or system in the computer environment [14]. ML
algorithms are also preferred in many areas such as business, healthcare, economy, produc-
tion, and transportation. ML algorithms contain many algorithms that work according to
different features.

Generally, ML models have been chosen to develop efficient decision support for
health applications and to create an efficient decision support system [15]. In particular,
these estimation approaches offer advantages in that they take into account nonlinear
interactions of decision variables at a high rate among algorithms and obtain more stable



Healthcare 2022, 10, 1920 3 of 22

estimation results [16]. We compared three different ML algorithms, including RF, GB, and
AB, to find the most accurate model for the pnt and wt prediction data. The importance
of the preferred prediction algorithms was also determined through the performance
criteria of the ML models. In addition, these algorithms are preferred for accessing forecast
data and providing forecasts, especially in structures with an uncertain (or stochastic)
environment [17]. In the selected hospital unit in this study, these models were preferred
in terms of fitting and evaluation since the characteristics of the time of arrival of the
patients and the disease types were uncertain. We selected these models to represent a
broad approach to the ML method along with the DES approach.

ML algorithms are the most important and trending method for innovation and pre-
dictive analytics in healthcare today to lead the digital healthcare transformation [18]. The
authors of a study argued that ML is essential for making informed clinical decisions
through insights from past data and for the core of evidence-based medicine [19]. Even
if ML algorithms are used in many areas, positive results have been obtained by using
ML algorithms in the field of healthcare, generally in medical subjects such as diagnosis,
drug development, and treatment [20]. A study aimed to investigate using a support
vector machine (SVM) from ML algorithms in predicting dementia and to validate its
performance through statistical analysis [21]. Another study aimed to evaluate the com-
pleteness of reports of prognostic prediction models developed using ML methods in the
field of oncology [22]. Ali and Aittokallio mentioned state-of-the-art ML methods for
anticancer drug response modeling and prediction and better use of ML algorithms in
high-dimensional multi-omics profiles with knowledge of targeted cancer pathways [23].
In another study, ML algorithms were developed to predict the response of cancer cell
lines to drug therapy, quantified by IC50 (half maximal inhibitory concentration) values
based on both the genomic characteristics of the cell lines and the chemical properties of the
drugs under consideration [24]. ML algorithms have also been used on patients, healthcare
resources, health life, patient safety, technologic innovation, health policies, etc., in the field
of healthcare, apart from medical issues.

A study aimed to examine the usability of ML techniques to understand teamwork
and behaviors related to healthcare management and patient safety and to contribute to the
literature and research on collaboration in healthcare [25]. Another study discussed how
developing an intelligent big data analytics platform based on ML and data integration
principles is a new way to improve population healthcare management, value-based care,
and upcoming challenges in healthcare [26]. Islam and Shamsuddin utilized the ML
algorithms to develop a diagnostic system for patients with hypertension so that people
can change their daily lifestyles to manage their condition [18]. Another study mentioned
the application of ML to examine important issues such as fairness and transparency in
healthcare modeling that directly impact operations and/or financial results in a hospital
setting [27]. Gan reported on the overall value of prognostic reliability and principles of
electronic healthcare management using ML techniques [28]. Another study described a
population healthcare management tool based on ML algorithms, using administrative and
socio-economic data for the early detection of high-risk patients [29].

Information on the objectives of some studies using the integration method of DES
into ML algorithms in the healthcare field and the types of ML algorithms are given
in Table 1.

ML algorithms should be used to measure the direct impact of healthcare resources
on health service quality. One study used ML algorithms to understand the wt estimation
behavior in two ED units by relating factors associated with wt estimation behavior and
how it relates to patient flow modeling. At the same time, this study correlated the ML
model with the DES technique, revealing that changing staffing patterns significantly
reduced the overestimation of wt [30]. A researcher developed a ML-guided DES model
to improve the processing of healthcare referrals. In this study, an estimation module for
the application processing system was included to plan and prioritize referrals, reducing
the average application generation latency by approximately 50% [31]. Another study
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used DES and ML algorithms to minimize wt in the emergency room and maximize the
percentage of units’ participation to improve ED efficiency in a public hospital in Iran [32].
In one study, ML and DES models were integrated to analyze critical team capacity in
the emergency coordination center (ECC) [34]. Different research aimed at a study that
included DES and ML management to design health pathways and evaluate the return on
investment of implementation [35]. Another study tried to solve the simulations of agile
software processes for healthcare information systems development using ML methods [36].
Kim et al. used DES and ML algorithms to explore optimal thresholds to effectively triage
COVID-19 patients in situations with limited data availability and minimize mortality
while preserving healthcare system capacity [33]. The approaches proposed in the present
article, the pnt and wt estimation data, the cost of a certain coefficient of healthcare resource
personnel, and the cost to the hospital were examined in detail by attaching DES and
ML algorithms.

Table 1. Studies related to the field of health management used by the DES model–ML algorithm.

Reference Unit ML Algorithms The Purpose(s) of the Problem

[30] ED Naïve Bayes, Bayesian Networks,
classification Trees

Examining patient satisfaction, waiting
time estimation,

[31] Hospitals, RCU KNN, neural network, Decision Tree,
Random Forest, Support Vector Machine Improving health referrals processing

[32] ED Artificial Neural Network algorithm,
Genetic Algorithm

Minimizing patients’ waiting time, the
percentage of units’ engagement to

enhance the ED efficiency

[33] General * XGBoost, Logistic Regression

Discovering optimal thresholds to
effectively triage COVID-19 patients,

minimizing death rates while
preserving health system capacity.

[34] ECC

Generalized Linear Model, Multivariate
Adaptive Regression Splines, Random

Forest, Support Vector Machine,
Decision Tree

Analyzing critical crew capacity

[35] HCU K-Means Algorithm
To design health pathways and

evaluate the return on investment
of implementation

[36] General * Neural Network, Development of healthcare
information systems

This
research ED Random Forest, Gradient

Boosting, AdaBoost
Estimation of pnt and wt,

analysis of healthcare resources cost

Abbreviations: ECC, emergency coordination center; HCU, Hip fracture care unit; KNN, K-Nearest neighbor
algorithm; RCU, the referral creation unit, * General issues related to the health system.

The rest of the paper is as follows: Section 2 explains the data used, the integration of
DES and ML algorithms, and how data can be integrated into the concepts and tools of this
integration. Section 3 of the research comprises the results of the method applied in the
study. Section 4 includes the necessity of the developed method in terms of applications
and the discussion about the numerical results. The last part consists of some thoughts
about the conclusion of the study.

2. Methodology

The methodology of this study consisted of two main stages. First, the data of the
input/output parameters considered for the study were derived from the DES model.
Data preprocessing was performed to avoid missing or erroneous data in the data set,
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and descriptive statistics results were calculated, because attention was paid to the reg-
ular and completeness of the data for the high performance of ML algorithms and the
accuracy of the prediction data. Then, ML algorithms were used to obtain the estimated
values of the output parameters by making changes to the input parameters. A total of
14,812 patients regarding to wt and 216 days for the data of pnt were used for each input
and output parameter. The flow chart of the proposed methodology for health performance
measurement modeling and mapping in the study is shown in Figure 1.
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Figure 1 is a conceptual diagram of the workflow for an ED system that derives patient
data for ML algorithms with the DES method. After preprocessing and filtering the patient
data in the DES model, the data were used for prediction data in ML algorithms. It is
crucial to run the DES model accurately to increase the accuracy of the results of the ML
algorithms and to minimize the error rates. In the patient data used in both DES and ML
algorithms, specific data such as gender, age, patient ID, address, and ethical committee
approval were not used.

2.1. Data Collection and Its Characteristics

In this study, the treatment/examination flow of the patients was investigated by
measuring the values of seven parameters. The primary output variables of the ML and
DES models were the number of patients treated (pnt) and the patient waiting time (wt),
which are continuous variables. pnt and wt are generally two important parameters for the
management of hospitals. These parameters can be added to many parameters such as
patient satisfaction, utilization rate of resource, length of stay so on. However, these two
output variables are the basis of all indicators of healthcare quality. The first five variables
of the seven parameters were used as the inputs to predict the wt and pnt, the number
of physicians (pn), the number of nurses (nn), the number of clerks (cn), the number of
exam rooms or beds (bn), and the number of triage areas (tn). Since the minimum and
maximum values of cn, and tn utilized in the ED were 1 and 2, two different integer values
used for these input variables were binary. The computer-aided DES technique was used
to calculate pnt and wt as output variables according to the values received by the sources
of the ED unit of a hospital. There was no data property restriction for wt while actual and
forecast data of pnt had integer properties. Table 2 shows the characteristics of the input
and output variables in this study.
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Table 2. The statistical characteristics of the input and output variables.

Features pn nn cn bn tn pnt wt

Status Input Input Input Input Input Output Output
Data Type Numeric * Numeric * Binary ** Numeric * Binary ** Numeric * Numeric
Mean 2.000 2.000 1.500 2.000 1.500 68.570 0.579
SE Mean 0.056 0.056 0.034 0.056 0.034 2.5500 0.024
StDev 0.818 0.818 0.501 0.818 0.501 37.550 0.358
Variance 0.670 0.670 0.251 0.670 0.251 1409.9 0.128
CoefVar 40.92 40.92 33.41 40.92 33.41 54.760 61.78
Minimum 1.000 1.000 1.000 1.000 1.000 9.0000 0.098
Median 2.000 2.000 1.500 2.000 1.500 68.000 0.539
Maximum 3.000 3.000 2.000 3.000 2.000 149.00 1.530
Skewness 0.000 0.000 0.000 0.000 0.000 0.2100 0.510
Kurtosis −1.510 −1.510 −2.020 −1.510 −2.020 −0.950 −0.720

* Integer, ** binary: [1,2], and integer.

2.2. Discrete-Event Simulation

The DES method is the most important tool for tracking objects in the system since
mathematical models contribute to a limited extent in dynamic and complex systems. DES
models are frequently preferred in many areas such as healthcare, energy, transportation
and logistics, and production. Before the DES model is created, workflow diagrams that
reveal the movements of objects in the system according to a certain rule should be created.
In the DES model developed for the ED unit of a hospital, a workflow (patient flow: the
processes that a patient has from the time of admission to the hospital until the time of
leaving the hospital) diagram was created for the objects to move in a certain order. Figure 2
shows the patient flowchart considered for this study.

In this study, Flexsim HCE software, which works with 3D and pick-and-drop logic,
was used to monitor the health resources employed in the ED unit. The main reason the
DES technique was preferred in this study is that it is easy and cheap to observe the effects
of changes made in a health unit on the health institution and to calculate the results such
as cost, time, and efficiency. In this study, the values of pnt and wt were calculated as a
result of the changes in the number of healthcare resources in the DES model. Information
about the healthcare resource type and number used for the DES model is given in Table 3.
Healthcare resources are defined in the literature as two types: human and location-based.
In the DES model, physicians, nurses, and clerks were described as human-based; waiting
areas, exam rooms or beds, and triage areas were expressed as location-based. In this
research, a human-based resource was used for a unit in other locations except for the
waiting room in the DES model.

Table 3. Healthcare resources employed in the ED unit and their characteristics.

Staff Gender Quantity Type Responsible Process Process Distribution

Physicians Female/Male 3 Human-based diagnosis/examination/
treatment Uniform (10.0, 30.0, 0.0)

Nurses Female/Male 3 Human-based

assisting the doctor, to follow the
patient, provide control, triage

process, perform additional
operations *

Triangular (3.0, 15.0, 5.0)

Clerks Female/Male 2 Human-based check-in/check-out Uniform (3.0, 5.0, 0.0)

Beds or
Exam Rooms - 5 Location-based

the area reserved for the patient
during the treatment or

examination process

Triangular (3.0, 15.0, 5.0) **
Uniform (10.0, 30.0, 0.0)

Triage areas
and equipment - 2 Location-based

the area where the patient’s first
health check is provided, and the

values are measured
Triangular (3.0, 15.0, 5.0)

Waiting Room - 1 (Limit: 50 seats) Location-based
the area where patients wait until

health resources
become available

Triangular (0.0, 0.18, 1.68) ***

* Injection, serum, medicine support, providing extra information, etc. ** the duration of the procedures performed
by the nurses. *** hr.
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In the DES model, the durations of the processes are calculated with the distribution.
Since the arrival time and disease type of the patient arriving at the ED unit are unknown,
it is inevitable to use the data as a distribution. The expert fit module processed the data
collected for the DES model in the simulation program, and the distribution of the data
sets was calculated.

The DES model was converted into basic three-dimensional animation using Flexsim
HC simulation software for accuracy assurance in this study. The validation process of
model-compatible operations was observed by running the developed model animation,
monitoring the existence of all ED sources and strategies, and verifying the working system
of the real ED system. The data in the real system were obtained by keeping the health
resources in the ED unit constant. In contrast, the data in the DES model were obtained
according to the scenarios depending on the number of healthcare resources. The results
of the validation of the DES model (comparison with the actual wt and pnt) are given in
Figure 3. The difference between the actual and DES data of pnt was computed as 3.63%.
The actual and DES data include the wt of the patients in the hospital’s ED until the end of
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the treatment/examination procedures and the end of the check-out process. The difference
between both data sets was calculated as approximately 5.304%.
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2.3. Machine Learning Models

For this study, three ML algorithms, including RF, GB, and AB algorithms were utilized
to predict the pnt and wt in different circumstances. Additionally, pnt and wt were estimated
depending on the costs of healthcare resources using the classification features of the ML
algorithms used in this study. The training and test data ratio was defined as 85%/15%
for ML algorithms used to predict the data of the response variables. The cross-validation
number of the ML algorithms was set as 10-fold layered for the prediction data. ML
algorithms were utilized using orange software environment, open access, and phyton
infrastructure, and prediction results were obtained. The algorithm created on the orange
software of ML algorithms is shown in Figure 4. A detailed explanation of each algorithm
is given in the following sections.

2.3.1. Random Forest (RF)

The RF model is a regression tree model that uses bootstrapping aggregation and
randomization of predictors to provide a highly accurate prediction result [37]. RF needs to
use a set of decision trees to reduce the output variances of the trees [38]. The RF model
shows high performance in models with a few random decision trees combined. The
approximation values that add up by averaging the estimates and the number of input
parameters are much higher [39]. An RF model was constructed by setting the randomly
selected features and the number of trees to 5 and 10–2000, respectively.
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2.3.2. Gradient Boosting (GB)

GB model is a robust ML algorithm that shows high-performance success in practical
applications in different fields such as energy, healthcare, economy, etc. This model can
be highly customized according to some demands of the application, as well as being
learned according to loss functions. For this reason, both loss function and basic learning
models can be determined optionally in this model [40]. A single decision tree method
may not be optimal for approximating smooth functions such as a linear trend since a
single decision tree usually predicts the dependent/independent variable relationship with
a constant value. For this reason, the GB model was preferred in this study to remove this
limitation, increase the effect of the inputs on the output variable, and ultimately ensure
the accuracy of the forecast data [41]. A GB model was created by hyper-features setting
the randomly selected number of features: 100, the number of trees: 3, learning rates: 0.100,
depth of individual trees: 3, not split subsets smaller than: 2, and the fraction of training
instances: 1.00.

2.3.3. AdaBoost (AB)

The AB algorithm was the first practical augmentation algorithm introduced by Fre-
und and Schapire in 1996 [42]. The AB model is one of the most important and influen-
tial ML classification algorithms in reinforcement, computer vision, and pattern recog-
nition because of its high generalization ability, fast performance, and low application
complexity [43]. AB provides better accuracy than the decision tree when the number of
class labels in the study dataset is considered to be two [44]. A GB model was created
by hyper-features setting the number of estimators: 50, base estimator: tree, learning
rates: 1.000, regression loss function: linear, and classification algorithm: SAMME.R (type
of algorithm that uses probability estimates to update the additive model). Hastie et al.
mathematically created SAMME and Algorithm 1, SAMME.R algorithms structures as
follows [45]:
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Algorithm 1. SAMME Algorithm

Step 1. Initialize the observation weights wi =
1
n , i = 1, 2, . . . , n.

Step 2. For m = 1 to M:
Step 2.1. fit a classifier T(m)(x) to the training data using weights wi .
Step 2.2. compute:

err(m) = ∑n
i=1 wi ‖

(
ci 6= T(m)(xi)

)
/

n
∑

i=1
wi .

Step 2.3. compute:

α(m) = log 1−err(m)

err(m) + log(K− 1).
Step 2.4. set:

wi ← wi .exp(α(m) ‖
(

ci 6= T(m)(xi)
)

, i = 1, 2, . . . , n .
Step 2.5. re-normalize wi .
Step 3. Output

C(x) = argmax
k ∑M

m=1(α
(m) ‖

(
T(m)(x) = k

)
.

SAMME.R algorithm:
Step 1. Initialize the observation weights wi =

1
n , i = 1, 2, . . . , n.

Step 2. For m = 1 to M:
Step 2.1. fit a classifier T(m)(x)
to the training data using weights wi .
Step 2.2. obtain the weighted class probability estimates:
P(m)

k (x) = Probw(c = k r x), k = 1, 2, . . . , K
Step 2.3. set:

h(m)
k (x)← (K− 1)

(
log pm

k (x)− 1/K ∑
k′

log p(m)
k′ (x)

)
, k = 1, 2, . . . , K.

Step 2.4. set:
wi ← wi .exp (− K−1

K yT
i logp(m)(xi), i = 1, 2, . . . , n .

Step 2.5. re-normalize wi .
Step 3. Output

C(x) = argmax
k ∑M

m=1 h(m)
k (x).

where the input (predictor) variable is denoted as xi and the response (output) variable
value is symbolized as ci in a finite set. These two variables are defined for the training
dataset. C(x) is defined as the misclassification error rate. The best performance in this
model is achieved with the lowest misclassification error rate. A weak multi-class classifier
is represented as T(x). The α(m) symbol ensures that the weights of the training samples
are updated in the direction of the signs. The y denotes the two-class classification setting
in y = (‖ (c = 1)− ‖ (c = 2)) ∈ {−1, 1 }. y was considered two-class since Friedman et al.
established a relationship between the two-class AB algorithm and the exponential loss
function [46]. An h(m)

k (x) is expressed as an improved estimate by minimizing the loss at
each x.

2.4. Healthcare Resources Cost

Naturally, the resources employed in a business or institution have a cost to the
business. Likewise, the resources utilized in health institutions should have a cost to the
healthcare unit. The initial cost (cost0.0) of healthcare resources to a healthcare unit is given
in the following Equation (1):

cost0.0 =

[
nr ∑

r
r
]

s

r = {(pn, nn, cn, bn, tn, . . .},

nr = {1, 2, 3, . . . , n}

s = {1, 2, . . . s},

(1)

where the healthcare resource type is represented by r. The nr the symbol indicates the
number of the same resource type working in a unit. The scenarios that occur as a result of
the changes in the number of healthcare resources in a unit are expressed with s. In case of
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a one-unit increase in healthcare resource expenses, there must be a constant coefficient (δi)
in addition to Equation (1). So, Equation (2) is formed as follows:

costk = δi ∗
[

nr ∑
r

r
]

s

k = {0.1, 0.2, 0.3, 0.4, . . . , k}

δi = {R > 0 = {i ∈ R|i >0}

(2)

Equation (3) has been considered since the changes in healthcare resource costs will be
based on previous costs,

costk = δi ∗
[

nr ∑
r

r

]
s

+ costk−1 (3)

As a result of these developed equations, the effect on the estimated values of pnt and
wt in an ED unit were determined. Although the constant coefficient is the most influential
parameter on the output variables, different coefficients were applied for each healthcare
resource. After the initial coefficient (δ0) values were determined for each healthcare
resource, a certain percentage increase was achieved for each costk. The coefficient values
that were effective in the cost of healthcare resources to the ED unit are given in Table 4.

Table 4. αi values that affect the cost of the unit healthcare resource to the ED unit.

Parameters pn nn cn bn tn % Cumulative %

δ0.0 1.00 0.80 0.60 0.50 0.40 0.00 1.00

δ0.1 1.20 0.96 0.72 0.60 0.48 0.20 1.20

δ0.2 1.56 1.25 0.94 0.78 0.62 0.30 1.30

δ0.3 2.34 1.87 1.40 1.17 0.94 0.50 1.50

Sum 6.10 4.88 3.66 3.05 2.44 1.00 5.00

The results obtained in these equations (closed form), which belong to a dynamic
and complex structure, can only be accepted as estimates. The main reason for this sit-
uation is that the values of the processes and patient admission rates of the ED unit
contain statistical and stochastic expressions. As a result of these equations, the esti-
mated values of pnt and wt were obtained by running scenarios with multipliers in ML
algorithms. Equations (4) and (5) were constructed as follows to show the relationship be-
tween the cost of the current situation (costc

pnt) to the hospital and the cost with a coefficient
affecting the healthcare resource cost (costs

pnt) for pnt:

costs
pnt =

∑ pnt

(pn + nn + cn + bn + tn)
(4)

costs
pnt =

∑ pnt

δi(pn + nn + cn + bn + tn)
, i = {0.0, 0.1, 0.2, 0.3} (5)

Equations (6) and (7) were created as follows to express the cost of wt to the hospital
according to the current situation (costc

wt ) and the ML algorithms of the cost depending on
the δi coefficient of healthcare resources (costs

wt ):

costc
wt =

∑ wt
pnt

(pn + nn + cn + bn + tn)
(6)
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costs
wt =

∑ wt
pnt

δi(pn + nn + cn + bn + tn)
, i = {0.0, 0.1, 0.2, 0.3} (7)

2.5. Model Metrics

The performance metrics are needed to measure the consistency and validity of the
numerical results of ML algorithms. At the same time, these criteria are defined as statistical
test criteria used to measure the effectiveness of ML algorithms during the testing and
training phase [47]. The estimation data of ML algorithms are considered according to
performance measures. The four performance measures are given below:

Root mean square error (RMSE):

RMSE =

√
∑N

i=1(xa − x̃e)
2

N
(8)

Mean squared error (MSE):

MSE =
1
N

N

∑
i=1

(xa − x̃e)
2 (9)

Mean Absolute Error (MAE):

MAE =
1
N

N

∑
i=1
|xa − x̃e| (10)

Correlations Coefficient (R):

R2 − 1 =
N

∑
i=1

[
xa − x̃e

xa − xe

]2
(11)

where the data size of the data set (observations) used for the testing and training phases is
represented by N. The actual values are denoted by xa. The symbols of x̃e and xe represent
the value of estimated and the average of actual values, respectively.

3. Results and Discussion

The RF, AB, and GB algorithms were utilized to predict the pnt and wt using the dataset
of hospitalized patients in ED. A coefficient value affecting healthcare resource costs was
used to derive the forecast data in ML algorithms. A total of 85% of the output data were
used for training the models, and the remaining 15% of the data set was used to evaluate
the estimation performance of the developed models. The comparison was performed
between the initial data and the data obtained depending on the coefficient value.

3.1. Statistical Results

According to the ML model with the best output value performance, correlation results
were evaluated with input variables. Table 5 shows the correlation values between the
input and output variables as a result of the changes made in the coefficient affecting the
healthcare resource cost. The correlation values have positive or negative values, indicating
that the input variables have a positive or negative effect on the output variables. As a result
of the changes in the amount of coefficient, it was observed that there was a fluctuating
relationship between the output parameters and the input variables.
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Table 5. Correlation values between variables according to the δi values.

δi Values Feature 1 Feature 2 Feature 3 Rpnt
Rwt

δ0.0

pn pnt wt 0.844 −0.726
nn pnt wt 0.372 −0.540
bn pnt wt 0.328 −0.293
cn pnt wt −0.015 −0.246
tn pnt wt −0.211 0.232

δ0.1

pn pnt wt 0.777 −0.682
nn pnt wt 0.456 −0.538
bn pnt wt 0.381 −0.397
cn pnt wt −0.218 −0.247
tn pnt wt −0.210 0.227

δ0.2

pn pnt wt 0.722 −0.622
nn pnt wt 0.559 −0.584
bn pnt wt 0.299 −0.381
cn pnt wt −0.261 −0.225
tn wt −0.201 0.201

δ0.3

pn pnt wt 0.774 −0.627
nn pnt wt 0.424 −0.351
bn pnt wt 0.367 −0.506
cn pnt wt −0.275 −0.281
tn pnt wt −0.201 0.218

3.2. The Results of the Performance Evaluation

Each estimation algorithm tested had different values for each statistical measure dur-
ing the evaluation phase. These values were interpreted for each ML algorithm. Accuracy
(R2), MSE, RMSE, and MAE are the most emphasized statistical measures for comparison
purposes in ML algorithms. The predictive models, RF, GB, and AB were evaluated using
10-fold layered cross-validation. The performance results of the preferred ML algorithms
are shown in Table 6. Performance results of ML algorithms are handled differently accord-
ing to two output variables. In addition, the performance values of each ML model were
calculated for the training and testing sections.

Table 6. Values of measurement performances of ML algorithms for pnt and wt.

Outputs Algorithm
Training Dataset Testing Dataset

MSE RMSE MAE R2 MSE RMSE MAE R2

pnt

RF 0.4022 * 0.0634 * 0.0463 * 0.9703 0.7830 * 0.0885 * 0.0699 * 0.9539
GB 0.4433 * 0.0666 * 0.0511 * 0.9672 0.8457 * 0.0920 * 0.0721 * 0.9502
AB 0.2185 * 0.0467 * 0.0307 * 0.9838 0.3107 * 0.0557 * 0.0385 * 0.9817

wt

RF 0.0089 0.0943 0.0704 0.9275 0.0096 0.0981 0.0732 0.9216
GB 0.0098 0.0988 0.0746 0.9205 0.0098 0.0988 0.0746 0.9205
AB 0.0062 0.0789 0.0566 0.9492 0.0062 0.0789 0.0566 0.9492

Consider MSE, RMSE, and ME as %, * per 100 patients.

For pnt, the AB algorithm represented the best accuracy with 98.38% and 98.17%
in the training and testing phases. RF and GB exposed 97.03% and 96.72% accuracy in
the training phase and 95.39% and 95.02% in the testing phase, respectively. For wt, the
GB and RF algorithms had the lowest accuracy values of 92.05% and 92.75%. The AB
algorithm reported a better accuracy of 94.92% in the training phase. While the AB and
GB performance values were the same as in the training stage in the testing phase, it was
observed that there was a slight change in the RF performance value. For two output
variables, the AB algorithm had the lowest error values as well as having the best accuracy
value in both phases.
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The measurement performance values of the ML algorithms for pnt and wt based
on δi are given in Table 7. The AB algorithm provided the best accuracy performance
value for both output variables in the testing and training phases. According to the
AB algorithm based on the coefficients δ0.0, δ0.1, δ0.2, and δ0.3, the accuracy data were
calculated as 0.9838, 0.9843, 0.9838, and 0.9846 for pnt; 0.9514, 0.9517, 0.9514, and 0.9514
for wt in the training phase, respectively. In the test phase, the GB algorithm had the best
performance value, except for the results of the δ0.2 coefficient (the AB algorithm had the
better accuracy at 0.8709 based on the value of δ0.2 for pnt). According to the AB algorithm
based on the coefficients δ0.0, δ0.1, δ0.2, and δ0.3, the accuracy data were calculated as 0.7956,
0.9298, 0.8288, and 0.7394 for pnt; 0.8820, 0.8821, 0.8819, and 0.8818 for wt in the training
phase, respectively.

Table 7. Values of measurement performances of ML algorithms for pnt and wt based on δi.

Outputs δi Values Algorithm
Training Dataset Testing Dataset

MSE RMSE MAE R2 MSE RMSE MAE R2

pnt

δ0.0

RF 0.4194 0.0648 0.0466 0.9690 3.3397 0.1827 0.1395 0.7620
GB 0.4433 0.0666 0.0511 0.9672 2.8690 0.1694 0.1315 0.7956
AB 0.2185 0.0467 0.0307 0.9838 3.7999 0.1949 0.1491 0.7292

δ0.1

RF 0.4086 0.0639 0.0446 0.9709 1.4427 0.1201 0.0891 0.8972
GB 0.4390 0.0663 0.0498 0.9687 0.9857 0.0993 0.0759 0.9298
AB 0.2207 0.0470 0.0306 0.9843 1.6923 0.1301 0.0915 0.8794

δ0.2

RF 0.4273 0.0654 0.0466 0.9684 2.9333 0.1713 0.1387 0.7910
GB 0.4433 0.0666 0.0511 0.9672 2.4027 0.1550 0.1285 0.8288
AB 0.2185 0.0467 0.0307 0.9838 1.8117 0.1346 0.0945 0.8709

δ0.3

RF 0.4127 0.0642 0.0460 0.9706 6.2546 0.2501 0.2116 0.5543
GB 0.4390 0.0663 0.0498 0.9687 5.7007 0.2388 0.2068 0.5938
AB 0.2160 0.0465 0.0307 0.9846 3.6574 0.1912 0.1506 0.7394

wt

RF 0.0089 0.0944 0.0690 0.9300 0.0150 0.1226 0.0917 0.8818
GB 0.0094 0.0972 0.0738 0.9258 0.0150 0.1225 0.0929 0.8820
AB 0.0062 0.0787 0.0571 0.9514 0.0193 0.1390 0.0996 0.8482

δ0.1

RF 0.0086 0.0930 0.0692 0.9320 0.0163 0.1276 0.0948 0.8720
GB 0.0094 0.0972 0.0738 0.9258 0.0150 0.1225 0.0929 0.8821
AB 0.0061 0.0784 0.0578 0.9517 0.0197 0.1403 0.1004 0.8454

δ0.2

RF 0.0085 0.0923 0.0666 0.9331 0.0162 0.1272 0.0939 0.8728
GB 0.0094 0.0972 0.0738 0.9258 0.0150 0.1225 0.0929 0.8819
AB 0.0062 0.0787 0.0571 0.9514 0.0193 0.1390 0.0996 0.8482

δ0.3

RF 0.0083 0.0914 0.0677 0.9344 0.0151 0.1231 0.0928 0.8810
GB 0.0094 0.0972 0.0738 0.9258 0.0150 0.1225 0.0929 0.8818
AB 0.0062 0.0787 0.0571 0.9514 0.0193 0.1390 0.0996 0.8482

Considering the statistical measurements with high percentages of accuracy and
minimized margins of error in forecasting models, it emerged that the AB algorithm was
more suitable than other algorithms. However, the estimation data of all three models for
the two output variables are discussed in the follow-up of this section.

3.3. The Estimated Number of Patients Treated (pnt)

Balanced class weights were used for the prediction data of the RF, GB, and AB
algorithms. The estimated data values obtained from these models were very close to
each other. In addition to the health resource numbers of each algorithm, the estimated
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values were calculated according to the four scenarios created for health resource cost
performance evaluations.

The number of patients treated is generally defined as an output parameter in health-
care systems. In this study, pnt was considered an output parameter. Figure 5 shows the pnt
based on the current situation and the estimation data obtained from the ML algorithms.
There were fluctuations in the data obtained by running the DES model in the present
case and the data obtained from the ML algorithms. Changes in the number of healthcare
resources employed and the cost values of healthcare resources caused this situation to
arise in the ED unit.
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Figure 5. The estimated pnt based on the (a) RF algorithm (δ0.0 for RF−0, δ0.1 for RF−1, δ0.2 for
RF−2 for RF−3), (b) GB algorithm (δ0.0 for GB−0, δ0.1 for GB−1, δ0.2 for GB−2, δ0.3 for GB−3) (c) AB
algorithm (δ0.0 for AB−0, δ0.1 for AB−1, δ0.2 for AB−2, δ0.3 for AB−3).
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Among the prediction data of three different algorithms, the values of the AB al-
gorithm contained values closer to the real data. It was observed that approximately
83 patients were treated, with a 0.218 MSE, 0.047 RMSE, 0.031 MAE in the training phase,
and 2.740 MSE, 0.163 RMSE, 0.121MAE in the testing phase deviation of the average esti-
mation data of the AB algorithm compared to the actual data. The prediction data of the RF
and GB algorithms had an increase of 12% and 13%, respectively, compared to the actual
data. The RF and GB algorithms had the highest pnt based on the δ0.3 coefficient. The AB
algorithm is preferred over RF and GB algorithms since the statistical performance values
of the AB algorithm are better than other algorithms. In general, it was observed that the
average pnt increased as the cost coefficients of healthcare resources of all three algorithms
increased. However, since the cost increase in the employment of healthcare resources was
less than the income provided by the pnt, it was understood that the cost of healthcare
resources does not impose a burden on the hospital. Figure 6 shows the cost of a patient to
the hospital according to the coefficient scenarios of the ML algorithms.
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Despite the increase in the cost of healthcare resources according to the δ0.2 coefficient
of the EU algorithm, the increase in the pnt was evaluated as the breakeven point of the
cost of this scenario to the hospital. The cost of healthcare resources remained below the
cost of the hospital with the increase in the number of patients treated according to the δ0.3
coefficient of all three ML algorithms. The δ0.3 coefficient of the AB algorithm provided the
best cost performance of other algorithms.

3.4. The Estimated Waiting Times (wt)

Patient waiting times (wt) resulting from overcrowding in an ED unit were consid-
ered one of the output parameters of this study. Although there are many reasons for wt,
the performance of healthcare resources or the number of employments had a significant
impact. The estimation values of the ML algorithms are shown in Figure 7 to calculate
the estimated data of the patient wt and the pnt by measuring the cost–performance rela-
tionship in the ED unit. According to the ML algorithms based on the δ0.2 coefficient, a
significant decrease was observed in the wt. The lowest value of wt was provided by the
GB algorithm based on the δ0.3 coefficient. The maximum wt value was realized by the RF
algorithm based on the δ0.0 coefficient. Fluctuations in the value of wt also affect the cost to
the hospital.
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Changes in wt according to healthcare resource cost coefficients are shown in Figure 8.
There was a positive trend in the prediction wt data of ML algorithms based on the coef-
ficients of δ0.0 and δ0.1. The same situation was observed in the estimation data of the RF
algorithm based on the δ0.2 coefficient. wt are generally considered as costs. In this case,
the cost of algorithms with high wt at the hospital should be evaluated. However, there
was a decrease in wt based on the δ0.2 and δ0.3 coefficients, meaning the cost of the waiting
period at the hospital increased.
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It turns out that there was an inverse relationship between wt, unlike the cost of
patient treatment to the hospital, depending on the coefficient scenarios. In other words,
the increase in the cost of the employed healthcare resources to the hospital and the decrease
in the wt made it more costly to the hospital in total.

4. Discussions

This study presents that DES and ML algorithms can be used under a certain scenario
to determine the pnt and wt from the dataset of hospitalized patients in ED. It has been
demonstrated by this study that DES and ML algorithms can be very useful for calculating
the estimated data of the generated scenarios and output variables. The DES model
was created for the ED model of a hospital and the effects of the number and types of
healthcare resources employed in the ED on pnt and wt, as well as the pnt and wt values
with the DES model were calculated. In the DES model, the data of patient arrival rates,
the time of check-in and check-out, triage, examination by the nurses, and examination
by the physicians were entered as distribution. Since the patients’ arrival to the ED unit
of a hospital has different patient types and the duration of their appearance, the values
of these parameters should be considered according to a distribution, not an integer or
a certain ratio/time (such as a patient arrives every 10 min, treatment times 15 min, etc.).
The DES model and ML algorithms were integrated since it is impossible to obtain pnt and
wt estimation data in the DES model due to changes in healthcare resource costs.

Based on the results, it was observed that ML algorithms, RF, GB, and AB, with
different properties, gave satisfactory results for the cost calculations of healthcare resources
proposed in estimating, pnt and wt. The results of the AB model, which offers the highest
accuracy and the least margin of error, and other models were shared. Knowing that ML
algorithms play an essential role in training data and memory footprints in obtaining
statistical results, test and training datasets were run on models with 85–15%.

The results of this research on the pnt and wt prediction outputs of classification
accuracy have proven that the AB algorithm is the best choice for a classification accuracy
above 98%. The classification accuracy of other algorithms was calculated as over 96% (RF
with 97.03%, and GB with 96.72). Although RF and GB achieved slightly lower classification
accuracies than the AB algorithm, the accuracy rates of the prediction data of both were
high. Average accuracy rates of RF, GB, and AB algorithms were calculated as 88.25%,
89.07%, and 89.70%, respectively. After all, what is common to all used classifiers is their
high accuracy and low error rate. For increased accuracy and low error rates, the data used
in the DES model must be correct, and the DES model needs to run correctly.

The cost analysis relationship between the output values of healthcare resource costs
and the data obtained from the DES model and ML algorithms was also examined. Accord-
ing to the cost analysis of the results of ML algorithms based on the δi coefficient, it was
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determined that pnt increased with the increase in the healthcare resource cost coefficient
for pnt. Since the income provided by the pnt value was more than the healthcare resource
cost, all scenarios created by the δi coefficient can be preferred. However, this does not
apply to wt. The wt estimation results of ML algorithms based on the δi coefficient differed.
While the costs of wt values to the hospital were low in all ML algorithms with δ0.0 and δ0.1
coefficients, the cost of the hospital was increased by the wt values provided by ML algo-
rithms based on δ0.2 and δ0.3 coefficients. However, the level of wt values of ML algorithms
based on this coefficient was lower than the current wt level. As a result, fluctuations in the
number of healthcare resources and cost coefficient in the cost analysis had a positive effect
on the pnt value, while the oscillations had a negative effect on the wt value. The estimated
data of pnt and wt were expressed as % of the results of the scenarios derived from the
change in the cost coefficients of the healthcare resources. The developed method aimed to
maximize the pnt number and minimize the wt amount among the findings of this study.
Maximizing the pnt value and based on the data in the current system, the RF_3 algorithm
provided 29.64% improvement. The GB_2 algorithm provided 26.89% improvement for
wt, and the minimum value of wt was obtained with this algorithm. Figure 9 expresses the
percentage differences of fluctuation in the estimation data of ML algorithms based on the
δi of healthcare resources.

Healthcare 2022, 10, x FOR PEER REVIEW 19 of 22 
 

 

was determined that 𝑝𝑝𝑛𝑛𝑛𝑛 increased with the increase in the healthcare resource cost coef-
ficient for 𝑝𝑝𝑛𝑛𝑛𝑛. Since the income provided by the 𝑝𝑝𝑛𝑛𝑛𝑛 value was more than the healthcare 
resource cost, all scenarios created by the 𝛿𝛿𝑖𝑖 coefficient can be preferred. However, this 
does not apply to 𝑤𝑤𝑛𝑛 . The 𝑤𝑤𝑛𝑛  estimation results of ML algorithms based on the 𝛿𝛿𝑖𝑖 coeffi-
cient differed. While the costs of 𝑤𝑤𝑛𝑛  values to the hospital were low in all ML algorithms 
with 𝛿𝛿0.0 and 𝛿𝛿0.1 coefficients, the cost of the hospital was increased by the 𝑤𝑤𝑛𝑛  values 
provided by ML algorithms based on 𝛿𝛿0.2 and 𝛿𝛿0.3 coefficients. However, the level of 𝑤𝑤𝑛𝑛  
values of ML algorithms based on this coefficient was lower than the current 𝑤𝑤𝑛𝑛  level. As 
a result, fluctuations in the number of healthcare resources and cost coefficient in the cost 
analysis had a positive effect on the 𝑝𝑝𝑛𝑛𝑛𝑛 value, while the oscillations had a negative effect 
on the 𝑤𝑤𝑛𝑛  value. The estimated data of 𝑝𝑝𝑛𝑛𝑛𝑛 and 𝑤𝑤𝑛𝑛  were expressed as % of the results of 
the scenarios derived from the change in the cost coefficients of the healthcare resources. 
The developed method aimed to maximize the 𝑝𝑝𝑛𝑛𝑛𝑛 number and minimize the 𝑤𝑤𝑛𝑛  amount 
among the findings of this study. Maximizing the 𝑝𝑝𝑛𝑛𝑛𝑛 value and based on the data in the 
current system, the RF_3 algorithm provided 29.64% improvement. The GB_2 algorithm 
provided 26.89% improvement for 𝑤𝑤𝑛𝑛 , and the minimum value of 𝑤𝑤𝑛𝑛  was obtained with 
this algorithm. Figure 9 expresses the percentage differences of fluctuation in the estima-
tion data of ML algorithms based on the 𝛿𝛿i of healthcare resources. 

 
Figure 9. The fluctuation in the forecast data of ML algorithms based on the cost coefficient. 

In the present research, the average 𝑤𝑤𝑛𝑛  of a patient until the completion of all pro-
cesses related to treatment/examination was calculated as 26.89% based on the GB algo-
rithm. One study showed that with the integration of the DES and ML algorithms (Artifi-
cial Neural Network and Genetic Algorithm), the 𝑤𝑤𝑛𝑛  for the triage process approached 
the minimum, and the 𝑤𝑤𝑛𝑛  for a patient’s screening process was reduced from 158 min to 
97 min (improvement of 62%). However, 𝑤𝑤𝑛𝑛  for other processes, such as doctor or nurse 
exams and check-in and check-out procedures, were not included in this study [32]. An-
other study used ML methods to estimate 𝑤𝑤𝑛𝑛  for patients in two emergency departments 
using data from more than 250 patients, resulting in a 24.85% improvement in 𝑤𝑤𝑛𝑛  based 
on the first scenario [30]. Lin et al. reduced the 𝑤𝑤𝑛𝑛  from 75.01 min to 68.39 min in patients 
with pupillary dilation and from 47.26 min to 44.54 min in patients without pupil dilation 
using RF and gradient boosting machine (GBM) algorithms [48]. Pak et al. reduced the 
number of patients with 𝑤𝑤𝑛𝑛  greater than 30 min by more than 42% with the predictive 
data using the quantile regression ML model [49]. A study using Logistic Regression, Ex-
treme Gradient Boosting, Natural Gradient Boosting, SVM, and Decision Tree ML models 
reduced LOS by 12.3 min (𝑤𝑤𝑛𝑛  reduction was achieved indirectly) from a general hospital’s 
emergency department in South Korea [50]. In terms of estimating 𝑝𝑝𝑛𝑛𝑛𝑛, ML models are 
often used to estimate the number of patients for a disease type. Researchers mostly use 
DES models for 𝑝𝑝𝑛𝑛𝑛𝑛 estimation. Alkhamis et al. developed the DES model and provided 

Figure 9. The fluctuation in the forecast data of ML algorithms based on the cost coefficient.

In the present research, the average wt of a patient until the completion of all processes
related to treatment/examination was calculated as 26.89% based on the GB algorithm.
One study showed that with the integration of the DES and ML algorithms (Artificial
Neural Network and Genetic Algorithm), the wt for the triage process approached the
minimum, and the wt for a patient’s screening process was reduced from 158 min to 97 min
(improvement of 62%). However, wt for other processes, such as doctor or nurse exams
and check-in and check-out procedures, were not included in this study [32]. Another
study used ML methods to estimate wt for patients in two emergency departments using
data from more than 250 patients, resulting in a 24.85% improvement in wt based on
the first scenario [30]. Lin et al. reduced the wt from 75.01 min to 68.39 min in patients
with pupillary dilation and from 47.26 min to 44.54 min in patients without pupil dilation
using RF and gradient boosting machine (GBM) algorithms [48]. Pak et al. reduced the
number of patients with wt greater than 30 min by more than 42% with the predictive
data using the quantile regression ML model [49]. A study using Logistic Regression,
Extreme Gradient Boosting, Natural Gradient Boosting, SVM, and Decision Tree ML models
reduced LOS by 12.3 min (wt reduction was achieved indirectly) from a general hospital’s
emergency department in South Korea [50]. In terms of estimating pnt, ML models are
often used to estimate the number of patients for a disease type. Researchers mostly use
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DES models for pnt estimation. Alkhamis et al. developed the DES model and provided
a 28% increase in the pnt [4]. Another study showed a 12% increase in pnt for high-volume
colonoscopy screening using the DES technique under different scenarios [51]. Our study
resulted in a 29.64% increase in pnt with the number of available healthcare resources and
minimum cost.

On the whole, a method has been developed by applying the resource–cost–performance
relationship, which is widely discussed in the healthcare system. In this study, the compati-
bility of ML algorithms with the DES model has been demonstrated by a numerical case
study. In the proposed method, the cost-efficiency analysis process will inevitably provide
detailed and tangible results in healthcare management, and this study will present cost
recommendations for future periods.

5. Conclusions

Estimating unpredictable situations such as wt, disease type, and patient arrival times
in healthcare is closely related to ML algorithms. In ML algorithms, a certain output param-
eter estimation can be obtained when a data set is trained and tested with an appropriate
ML algorithm. This kind of method makes a vital contribution to preventing the cases
created by uncertain situations, especially by the healthcare experts. A second method that
helps to predict uncertain situations is DES models designed in computer environment. In
the healthcare system, which has a complex and dynamic structure, DES models provide
great convenience to its users. This study delivered the integration of ML and DES models,
and with these two models, accurate and sharp prediction data were obtained in advance
of uncertain situations in the healthcare system in a fast and inexpensive way.

The main contribution of this study is the presentation of an important approach
using ML and DES models to predict pnt and wt alongside traditional methods. This
study represents the development of prediction models that use RF, GB, and AB machine
learning algorithms to predict pnt and wt in light of the results obtained in the DES model
using the dataset of patients arriving at the ED and compares the model performances. In
addition, the effect of healthcare resource costs on pnt and wt and the cost to the hospital
was analyzed with this compatible integration. This proposed approach provides an early
estimation of the results obtained in determining the number of healthcare resources and
the changes to be made in resource cost policies.
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