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Abstract: Novel coronavirus (COVID-19) has been endangering human health and life since 2019.
The timely quarantine, diagnosis, and treatment of infected people are the most necessary and
important work. The most widely used method of detecting COVID-19 is real-time polymerase chain
reaction (RT-PCR). Along with RT-PCR, computed tomography (CT) has become a vital technique in
diagnosing and managing COVID-19 patients. COVID-19 reveals a number of radiological signatures
that can be easily recognized through chest CT. These signatures must be analyzed by radiologists. It
is, however, an error-prone and time-consuming process. Deep Learning-based methods can be used
to perform automatic chest CT analysis, which may shorten the analysis time. The aim of this study is
to design a robust and rapid medical recognition system to identify positive cases in chest CT images
using three Ensemble Learning-based models. There are several techniques in Deep Learning for
developing a detection system. In this paper, we employed Transfer Learning. With this technique,
we can apply the knowledge obtained from a pre-trained Convolutional Neural Network (CNN) to a
different but related task. In order to ensure the robustness of the proposed system for identifying
positive cases in chest CT images, we used two Ensemble Learning methods namely Stacking and
Weighted Average Ensemble (WAE) to combine the performances of three fine-tuned Base-Learners
(VGG19, ResNet50, and DenseNet201). For Stacking, we explored 2-Levels and 3-Levels Stacking. The
three generated Ensemble Learning-based models were trained on two chest CT datasets. A variety
of common evaluation measures (accuracy, recall, precision, and F1-score) are used to perform a
comparative analysis of each method. The experimental results show that the WAE method provides
the most reliable performance, achieving a high recall value which is a desirable outcome in medical
applications as it poses a greater risk if a true infected patient is not identified.

Keywords: coronavirus detection; deep learning; convolutional neural network; transfer learning;
stacking; weighted average ensemble

1. Introduction

Since December 2019, COVID-19 has been featured in the media as a severe health
problem. This Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) is part of the
coronavirus family that gets transmitted through direct contact or by fomites. Symptoms
of coronavirus infection include fever, cough, fatigue, and a loss of taste. Coronavirus
can cause severe respiratory problems such as pneumonia, lung disorders, and kidney
malfunction in some cases. A serial interval of five to seven days and a reproduction rate of
two to three people make the virus very dangerous [1]. Several people are healthy carriers
of a virus, which causes between 5% and 10% of acute respiratory infections [2]. To stop
the spread of the COVID-19 infection, the timely quarantine, diagnosis, and treatment of
infected people are the most necessary and important work.

RT-PCR [3] and Enzyme-linked Immunosorbent Assay (ELISA) [4] are the most widely
used methods for identifying the novel coronavirus. RT-PCR is the primary screening pro-
cedure for identifying COVID-19 cases as it can detect the virus’ RNA in lower respiratory
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tract samples. The samples are collected in various ways, including nasopharyngeal and
oropharyngeal swabs. Most countries are experiencing a shortage of testing kits due to the
rapid increase in the number of infected people. Therefore, it would be prudent to consider
other methods of identifying COVID-19-contaminated patients so that they can be isolated
and the impact of the pandemic on many people can be mitigated.

The use of Computed Tomography (CT) for the diagnosis of infected people is a
complement to RT-PCR. As every hospital has CT imaging machines, COVID-19 detection
based on CT imaging can be applied efficiently as a way to test infected patients, but it does
require expert diagnosis and additional time. Therefore, Computer-aided Diagnosis (CAD)
systems can be used to classify COVID-19 patients based on their chest CT images [5]. CT
images can be employed for COVID-19 screening for the following reasons:

• Ability to detect the disease quickly and enable rapid diagnosis.
• Utilization of readily available and accessible radiological images.
• Utilization of these systems in isolation rooms, which eliminates the risk of transmission.

The use of Deep Learning-based techniques has made significant progress in recent
years in terms of efficiency and prediction accuracy. They have proven their generalization
ability in solving complex computer-vision problems, especially within the medical and
biological fields, such as organs recognition [6], bacterial colony classification [7,8], and
disease identification [9]. CNNs have demonstrated exceptional performance in the medical
imaging field compared to other networks [10].

The following study presents an efficient Deep Learning-based CAD system for de-
tecting COVID-19. We combined three well-known Deep Learning models (the Visual
Geometry Group (VGG)-19 [11], the Residual Network (ResNet)-50 [12], and the Densely
Connected Convolutional Network (DenseNet)-201 [13]) using Stacking and Weighted
Average Ensemble (WAE), following the basic philosophy that the performance is better
with a combination of various classifiers than with individual classifiers. Further, the
insufficient training data issue was resolved by using Data Augmentation technique [14],
which enhance the training dataset by adding the transformed original instances. The
performance of the system we proposed makes it clear that CT images can be employed in
a real-world scenario for the detection of COVID-19. The contributions of this paper are
as follows:

• A set of Ensemble Learning-based models was proposed to detect COVID-19 infected
patients, extending the standard by modifying the topology of three well-recognized
CNNs and picking the optimal set of hyper-parameters for network training.

• The proposed Ensemble Learning-based models were tested using two different chest
CT-scan datasets.

• Various strategies were used to deal with the small datasets, including fine-tuning,
regularization, checkpoint callback, and data augmentation.

• For the first time, the concept of WAE is applied to the specific COVID-19 detection
problem, achieving a high level of performance compared to the existing methods.

The paper is organized in the following manner. Section 2 discusses the related work.
Section 3 describes the proposed three Ensemble Learning-based models for the detection
of COVID-19 from chest CT images. Section 4 presents the experimental results. Section 5
provides discussions of the results. Finally, Section 6 includes the conclusion.

2. Related Work

Due to the evolution of medical image processing techniques, the development of
intelligent diagnosis and prediction tools began to emerge at a rapid pace [15]. The use of
Machine Learning methods is widely accepted as a useful tool for improving the diagnosis
and prediction of many diseases [16,17]. Feature extraction techniques are, however,
necessary to obtain better Machine Learning models. Therefore, Deep Learning models
have been broadly accepted in medical imaging systems due to their ability of extracting
features automatically or by using pre-trained models such as ResNet [18].
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When COVID-19 first emerged, the main challenge was the lack of datasets for testing
and building Deep Learning models [19,20]. A private dataset was used by Xu et al. [21] to
demonstrate how chest X-rays and chest CT scans can be used to detect COVID-19. They
collected a total of 618 CT samples, achieving an overall accuracy of 86.7%. Yang et al. [22]
published a public dataset that included 349 COVID-19 (+) scans from 216 patients and
463 COVID-19 (−) scans from 55 patients. A prominent radiologist who has been treating
and diagnosing infected patients since the beginning of this epidemic confirms the value of
their dataset. Their diagnosis techniques relied on self-supervised learning and multi-task
learning, and they reported an accuracy of 89% and an F1-score of 90%. Wang et al. [23]
introduced an open-access benchmark dataset (COVID-x), consisting of 13,975 Chest X-ray
(CXR) images across 13,870 patient cases from five open-access data repositories. Their
model obtained an accuracy of 93% which was later enhanced by Farooq et al. [24], with
an accuracy of 96%. He et al. [25] provided another publicly-available dataset comprising
of 349 COVID-19-positive CT images. In order to avoid overfitting, they proposed a
self-supervised Transfer Learning technique that learns unbiased and powerful feature
representations. Their methods achieved an Area Under Curve (AUC) of 94% and an
F1-score of 85%.

In the wake of the dissemination of public chest X-rays and CT scans, researchers
focused their efforts on developing Deep Learning models with a low average classifi-
cation time and high accuracy [26,27]. Loey et al. [28] presented Conditional Generative
Adversarial Nets (CGAN) along with classic Data Augmentation techniques based on a
deep Transfer Learning approach. The use of classical Data Augmentation and CGAN
assisted in increasing the CT dataset and solving the overfitting issue. Moreover, they
selected five deep Transfer Learning models (VGGNet16, VGGNet19, ResNet50, AlexNet,
and GoogleNet) for investigation. Their experimental results demonstrated that ResNet50
outperformed the other four deep models in detecting COVID-19 from a chest CT dataset.
Polsinelli et al. [29] presented a light CNN design based on the SqueezeNet architecture
to discriminate between COVID-19 and other CT scans (community-acquired pneumonia
and healthy images). Their proposed model outperformed the original SqueezeNet on
both dataset arrangements, obtaining an accuracy of 83%, a precision of 81%, an F1-score
of 83%, and a recall of 85%. Lokwani et al. [30] identified the site of infection using a two-
dimensional segmentation model based on U-Net architecture. Their model was trained
using full CT scans from a private Indian Hospital and a set of open-source images, avail-
able as individual CT slices. They reported a specificity of 0.88 (95% Confidence Interval:
0.82–0.94) and a sensitivity of 0.96 (95% Confidence Interval: 0.88–1).

Another challenge is extracting features from chest CT images for the detection of
COVID-19 [31]. Wang et al. [32] presented a joint learning strategy for COVID-19 CT
identification that learns efficiently with heterogeneous datasets from various data sources.
They created a strong backbone by rebuilding the recently suggested COVID-Net from the
architecture and learning approach. On top of their improved backbone, they performed
separate feature normalization in latent space to reduce the cross-site data heterogeneity.
Their method outperformed the original COVID-Net on two large-scale public datasets. A
new hybrid feature selection method was proposed by Shaban et al. [33], which combined
both wrapper and filter feature selection methods. Almost all of the models used Deep
Learning to extract the features [34–36].

The researchers employed the Transfer Learning technique to reach high accuracy and
low computation time in COVID-19 detection [37], and among VGG16, VGG19, ResNet50,
GoogleNet, and AlexNet, ResNet50 achieved the highest level of accuracy. Taresh et al. [38]
evaluated the ability of different state-of-the-art pre-trained CNNs in predicting COVID-19-
positive cases accurately from chest X-ray scans. The dataset employed in their experiments
includes 1200 CXR scans from COVID-19 patients, 1345 CXR scans from viral pneumonia
patients, and 1341 CXR scans from healthy people. Their experimental findings demon-
strated the superiority of VGG16, MobileNet, InceptionV3, and DenseNet169 in detecting
COVID-19 CXR images with excellent accuracy and sensitivity. Rahimzadeh et al. [39] came
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up with a robust method for increasing the accuracy of CNNs by adopting the ResNet50V2
network with a modified feature selection pyramid network. They presented a new dataset
of 48,260 CT scans from 282 healthy people and 15,589 images from 95 COVID-19 patients.
Their technique was tested in two ways: one on over 7796 scans and the other on about
245 patients and 41,892 scans of varying thicknesses. They were capable of recognizing 234
of the 245 patients, achieving an accuracy of 98%. Azemin et al. [40] used a Deep Learning
approach based on the ResNet101 model. They employed thousands of readily available
chest radiograph scans for training, validation, and testing and achieved an accuracy of
71%, an AUC of 82%, a specificity of 71%, and a recall of 77%.

As can be observed, the majority of the recent studies on COVID19 detection have
relied on individual Deep Learning models e.g., AlexNet, VGG16, VGG19, ResNet50, and
ResNet101 [28,38,40]. None of the studies attempted to combine the models in order to
increase their detection capabilities except for one investigation by Ebenezer et al. [41]
which has proposed a stacked ensemble that includes four pre-trained CNN networks
(VGG19, ResNet101, DenseNet169, and WideResNet50-2) to detect COVID-19. Their
stacked ensemble system was generated using a similarity measure and a systematic
approach. On three different chest CT datasets, their system reached high recall and
accuracy, outperforming the baseline models.

Another point to note is that most of the mentioned literature employed a single
dataset to evaluate the performance, which is not sufficient when dealing with a medical
scenario such as this [21–25,28,33–35,38–40]. Table 1 summarizes the aforementioned
state-of-the-art methods.

Table 1. A summary of the most recent COVID-19 detection methods.

Technique Modality Database Data
Augmentation

Transfer
Learning

Ensemble
Learning

Performance
Evaluation

3D segmentation
model + location-

attention
classification
model [21]

CT

618 images divided
into three classes:
COVID-19, viral
pneumonia, and
healthy people

× × × The overall accuracy
obtained is 86.7%

Multi-task learning +
Self-supervised

learning [22]
CT COVID-CT dataset � � ×

An accuracy, AUC, and
F1-score of 89%, 98%,
and 90%, respectively,

is achieved

COVID-Net
network [23] X-Ray

COVIDx dataset:
13,975 CXR images
divided into four
classes: Normal,

bacterial
pneumonia, viral
pneumonia, and

COVID-19

× × × An accuracy of 93%
is gained

ResNet50 [24] X-Ray COVIDx dataset � � × Attained an accuracy
of 96%

Self-supervised
Transfer

Learning [25]
CT COVID-CT dataset � � ×

An AUC and F1-score
of 94% and 85%,

respectively, is reported

Conditional
Generative

Adversarial Nets
(CGAN) [28]

CT COVID-CT dataset � � ×

An accuracy of 76.38%
is obtained with
AlexNet, 78.89%

accuracy with VGG16,
VGG19 reaches 73.87%,

GoogleNet obtains
77.39%, and ResNet50

gives 82.91%% accuracy
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Table 1. Cont.

Technique Modality Database Data
Augmentation

Transfer
Learning

Ensemble
Learning

Performance
Evaluation

Light CNN based on
SqueezeNet [29] CT

COVID-CT dataset
and the

Italian dataset
� � ×

83.00% of accuracy,
81.73% of precision,
85.00% of sensitivity,
83% of F1-score, and
81.00% of specificity

2D segmentation
model based on

U-Net
architecture [30]

CT

5212 CT images
divided into two

classes: COVID-19
and normal

× � ×
Obtained a specificity of

88% and a sensitivity
of 96%

Joint learning
strategy [32] CT

SARS-CoV-2
CT-scan dataset and
COVID-CT dataset

� × ×
Achieved 91% accuracy

on [42] and 79%
accuracy on [22]

Hybrid feature
selection [33] CT COVID-CT dataset × × ×

An accuracy, recall,
precision, and F1-score
of 96%, 74%, 75%, and

75%, respectively,
is gained

Different
state-of-the-art

pre-trained
CNNs [38]

X-Ray

3886 CXR scans
divided into three
classes: COVID-19,
viral pneumonia,

and normal

× � ×
The most accurate

pretrained CNN was
VGG16 with

98.29% accuracy

ResNet50V2 network
+ Modified feature
selection pyramid

network [39]

CT
63,849 CT scans
divided into two

classes: COVID-19
and normal

� � × Showed 98.49%
overall accuracy

ResNet101 [40] X-Ray Chest X-ray14
dataset × � ×

Attained an accuracy of
71%, an AUC of 82%, a
specificity of 71%, and a

recall of 77%

Stacked
ensemble [41] CT

COVID-CTset,
SARS-CoV-2

CT-scan dataset, and
COVID-CT dataset

� � �

Achieved 99% accuracy
on [41], 94% accuracy

on [42], and 85%
accuracy on [22]

CT: Computed Tomography; AUC: Area Under Curve; X-Ray: X-radiation; CGAN: Conditional Generative
Adversarial Nets; VGG: Visual Geometry Group; CNN: Convolutional Neural Network; SARS-CoV-2: Severe
Acute Respiratory Syndrome Coronavirus; ResNet50: Residual Network-50; AlexNet: Alex Network; GoogleNet:
Google Network.

In this study, we analyzed and discussed the benefits of employing ensemble tech-
niques. By exploring the differences in performance levels between Stacking and WAE,
we demonstrated the superior performance provided by WAE. Additionally, valuable
findings were obtained while modifying pre-trained VGG19, ResNet50, and DenseNet201
models and fine-tuning our own dense classifier. Moreover, we conducted experiments
on two different chest CT-scan datasets and compared the performances of the individual
models, ensemble models, and existing models using the most used evaluation metrics in
Machine Learning.

We built on the usage of Transfer Learning and ensemble techniques to complete three
major goals.

• Develop a medical recognition system by employing Transfer Learning approach on
state-of-the-art CNN models and combining them to form an ensemble using two
Ensemble Learning techniques that may be readily duplicated by Deep Learning
practitioners and researchers who may benefit from the present work to combat
COVID-19.

• Achieve competitive performance by attaining high levels of accuracy, precision, recall,
and F1-score on both datasets.
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• Present and elaborate on the limitations of dealing with small datasets in important
and sensitive tasks such as diagnosing COVID-19, as well as how fine-tuning, reg-
ularization, checkpoint callback, and data augmentation techniques can be used to
overcome them.

3. Materials and Methods

In this section, we describe the proposed method for detecting COVID-19 using CT
images. First, we explain the data preparation process, which includes Data Augmentation,
Data Splitting, Image Resizing, and Image Normalization. Then, we present the process of
fine-tuning the pre-trained VGG19, ResNet50, and DenseNet201 models. Lastly, we discuss
the Ensemble Learning methods that were used to combine the modified networks. The
overall workflow of the proposed methodology is depicted in Figure 1.

Figure 1. Flowchart of the Ensemble Learning framework.

3.1. Data Preparation

The proposed approach was tested using two chest CT scan datasets. The repositories
from which our CT images were collected are as follows:

• SARS-CoV-2 CT-scan dataset by [42] from Kaggle (https://www.kaggle.com/pla
meneduardo/sarscov2-ctscan-dataset) (accessed on 2 December 2021): This dataset
contains 2482 CT scan images, which are obtained from 120 patients and divided
into 1252 COVID-19 (+) CT images and 1230 COVID-19 (−) CT images. The dataset
was collected in 2020 from hospitals in Sao Paulo, Brazil. Figure 2 illustrates the
detailed number of patients. The hospitals have not provided detailed characteristics
of each patient due to ethical considerations. This dataset is constructed from digital
scans of printed CT exams and has no standard image size (the dimensions of the
largest images are 416 × 512 while the smallest images are 104 × 119). A comparison
of COVID-19 (+) and COVID-19 (−) patients is shown in Figure 3. In Figure 3A, a
ground-glass opacity is visible in the lower lobes. In Figure 3B, the chest CT scan
shows no abnormalities. The patches that were sampled from infected areas and
non-infected areas are shown in Figure 3C,D, respectively.

https://www.kaggle.com/plameneduardo/sarscov2-ctscan-dataset
https://www.kaggle.com/plameneduardo/sarscov2-ctscan-dataset
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• COVID-CT dataset by [22] from GitHub (https://github.com/UCSD-AI4H/COVID-CT)
(accessed on 2 December 2021): To assemble this dataset, COVID-19 (+) CT images
were obtained from biRxiv and medRxiv repositories, posted from the 19 January 2020,
to the 25 March 2020. The images were extracted using PyMuPDF software in order
to maintain a high level of quality. The spatial sizes of the CT images range from 124
× 153 to 1485 × 1853. The meta data of each CT image (patient gender, age, medical
history, scan time, location, severity of COVID-19, and radiology report) were manually
collected. A total of 349 COVID-19 (+) CT images were obtained, from 216 patients.
There are 169 patients whose age and 137 whose gender have been determined. The
age distribution and the gender ratio of patients labeled with positive are shown in
Figures 4 and 5, respectively. It can be noted that the majority of COVID-19 patients are
above the age of 30. In addition, the number of male patients is higher than the number
of female patients, with 86 and 51, respectively. These patients are at varying stages of
the disease on the 1st day through the 30th, with a majority as early as the 5th day and
as late as the 10th day. The COVID-19 (−) CT images were collected from Radiopaedia
website, from two other datasets (LUNA and MedPix), and from other articles and
texts accessible through PubMed Central. A total of 463 COVID-19 (−) CT images
were obtained from 55 patients. A comparison of COVID-19 (+) and COVID-19 (−)
patients is shown in Figure 6. In Figure 6A, we can observe multiple patchy ground-
glass opacities in bilateral subpleural areas. In Figure 6B, the chest CT scan shows the
lungs with normal controls. In Figure 6C,D, we compare the patches from infected
areas with those from non-infected areas, respectively. Our proposed system should
subsequently be able to detect COVID-19 (+) patients by distinguishing between CT
scans of patients infected with COVID-19 and those that are not.

Figure 2. The detailed number of patients considered to compose SARS-CoV-2 CT-scan dataset [42].

Figure 3. (A) Shows a CT of the lungs of COVID-19 (+) patient, in which a ground-glass opacity is
visible in the lower lobes (red arrows). (B) Represents a CT of the lungs of COVID-19 (−) patient, in
which there are no abnormalities. (C) Depicts infected patch samples. (D) Reflects non-infected patch
samples. SARS-CoV-2 CT-scan dataset [42] is the source for these images.

https://github.com/UCSD-AI4H/COVID-CT
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Figure 4. Age distribution of COVID-19 (+) patients.

Figure 5. The gender ratio of COVID-19 (+) patients.

Figure 6. (A) Shows a CT of the lungs of COVID-19 (+) patient, in which there are multiple patchy
ground-glass opacities in bilateral subpleural areas indicated by red arrows. (B) Represents a CT
of the lungs of a COVID-19 (−) patient with normal controls. (C) Depicts infected patch samples.
(D) Reflects non-infected patch samples. COVID-CT dataset [22] is the source for these images.
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Data Augmentation is applied to COVID-CT dataset [22] since it has fewer images
than SARS-CoV-2 CT-scan dataset [42]. In Data Augmentation, multiple copies of the
original image are produced with varying scales, orientations, locations, and brightness
levels to enhance the volume of data and avoid overfitting [43]. Our image augmentation
parameters were a rotation range of 10, width shift range of 0.1, height shift range of 0.1,
shear range of 0.1, brightness range (from 0.3 to 1), and horizontal and vertical flipping.
Besides Data Augmentation, we resized the CT images to (224 × 224 × 3) pixels since
that is the size requirement of the three pre-trained CNN models employed in this work.
Further, Image Normalization is used to establish a uniform data distribution by dividing
the images by the number of channels, resulting in normalized data in the range of [0, 1].
This will ensure that the training of the deep models is more consistent. Data Splitting for
training and validation is the last step. In both datasets, we used 80% for training and the
remaining 20% for validation. Table 2 lists the CT scan images distribution for each dataset.

Table 2. Distribution of COVID-19 (+) and COVID-19 (−) CT images with respect to their collected
sources.

Dataset Split COVID-19 (+) COVID-19 (−) Total

SARS-CoV-2 CT-scan
dataset [42]

Train 1002 984 1986

Validation 250 246 496

COVID-CT dataset [22]
Train 280 318 598

Validation 69 79 148

3.2. Transfer Learning

Transfer Learning is the process of using the weights of a model that has been pre-
trained on a different dataset to improve classification results on the current dataset.
Figure 7 illustrates the basic concept of Transfer Learning. There are two types of Trans-
fer Learning:

• Feature Extraction: This method uses a model that has been pre-trained on a standard
dataset, such as ImageNet. The model’s classification part is then dropped. The
remaining network is then used as a feature extractor, on which any classification
algorithm can be performed [44].

• Fine-tuning: This method entails unfreezing the entire pre-trained model or part of it
and retraining it on the new dataset [45].

Figure 7. Transfer Learning approach.

For this study, pre-trained VGG19, ResNet50, and DenseNet201 are selected and
fine-tuned according to our target datasets.
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3.2.1. Fine-Tuning of VGG19

VGG19 is a pre-trained network for classification. It consists of 19 layers (16 convolu-
tional layers, 5 dense layers, 5 max-pooling layers, and a Softmax layer). From training on
ImageNet, the parameters were used to solve a variety of problems such as classification
of flowers [46], computer graphics [47], and fault diagnosis [48]. The network reached an
accuracy of 90% with this dataset.

We highlight the following operations that compose VGG19: Convolution, Pooling,
Flatten, Dense, Dropout, and Softmax.

The convolutional layer is the main component of CNN. It performs what is known
as a “convolution operation” which is a process that involves applying a filter to an input
that produces an activation. Different features of an image can be extracted through
convolutional layers, including textures, edges, objects, and scenes. The filter weights are
updated during the training process, resulting in feature maps [49]. Figure 8 describes how
the convolution operation works.

Figure 8. Representation of the convolution operation.

The pooling layer is used to reduce the dimension of the last layer and comes in two
types: max-pooling and average-pooling. It can be regarded as a feature extractor when
the convolution and pooling layers are combined [50].

The flatten layer combines the output of the preceding layers into a single vector [51].
Figure 9 shows a simple flattening operation example.

Figure 9. Representation of the flattening operation.

The dense layer is used to link each neuron in a layer to each neuron in a previous or
next one. Moreover, it can be considered as a classifier [52].

Drop-out is a regularization operation that avoids overfitting by ignoring random neu-
rons during training [53]. An example of a drop-out layer with a 50% drop-out probability
is depicted in Figure 10.
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Figure 10. An example of a drop-out layer with a 50% drop-out probability.

Softmax is the most popular activation function employed in the output layer [54]. It
calculates the probability score for each class. The mathematical representation of Softmax
activation is shown in Equation (1). For i = 1, 2 . . . , K and z = (z1, z2 . . . , zK) ∈ RK.

σ(z)i =
ezi

∑K
j=1 ezj

(1)

For fine-tuning the VGG19 network on CT images, we removed the top layers (dense
layer and Softmax layer). Then, we used the last block for the training and froze the
remaining four blocks. Lastly, we added new layers such as two dense layers, a drop-out
layer, and a Softmax layer, at the top of the VGG19 network. The training hyper-parameters
opted for this model are: (a) the cross-entropy loss function is used along with the Adaptive
Moment Estimation (ADAM) optimizer [55], (b) mini-batch size is 32, (c) the training
is performed up to 50 epochs, (d) the drop-out probability is 0.5, and (e) the specified
learning rate for the training is 5 × 10−5. These hyper-parameters were found to be the
best fit for network training through experiment. Figure 11 shows the proposed fine-
tuned architecture based on VGG19 model. The architecture consisted of 23,174,210 total
parameters, with 12,589,058 trainable parameters and 10,585,152 nontrainable parameters.

Figure 11. Architecture of modified VGG19. Conv: Convolutional Layer.

3.2.2. Fine-Tuning of ResNet50

ResNet50 is a short name for Residual Network. The 50-layer network captures
essential features and information about images that can be reused with smaller or similar
dataset [23]. ResNet50 has other variants, including ResNet101, ResNet152, ResNet50V2,
ResNet101V2, and ResNet152V2. For the classification of medical images, the use of ResNet
has shown promising results [56]. ResNet50 was formed on the ImageNet dataset. In
addition, it achieved an accuracy of 92.1%. The network comprises the identity and conv
blocks. Moreover, 3 × 3 filters are used in the network’s convolutional layers and direct
down sampling is achieved by the convolutional layers having a stride of 2. The final
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layer of the model is a dense layer with 256 and two channels, using ReLU and Softmax
activation, respectively.

We describe the following concepts that compose ResNet50: ReLU activation function,
stride, and identity function.

By using ReLU (Rectified Linear Unit) activation function, complicated functional
mappings of inputs and response variables can be learned. In ReLU, a positive input will
be directly generated, otherwise, it will result in zero. The mathematical formula of ReLU
is shown in Equation (2).

y = max(0, x) (2)

Stride determines how the filter shifts around the input matrix. The mathematical
formula for computing the output size for a convolutional layer is depicted in Equation (3).
where o denotes the output height/length, k represents the filter size, w is said to be the
input height/length, s is the stride, and p denotes the padding.

o =
(w− k + 2p)

s
+ 1 (3)

ResNet has overcome the issues associated with deep architectures by introducing a
new neural network layer known as the Residual Block. Equation (4) illustrates the identity
function, which is thought to be crucial in addressing the deep networks problem.

F(x) = x (4)

It is anticipated that by delivering the first layer’s input of the architecture as the last
layer’s output, the model would continue to predict and learn whatever it had learned
before the addition of input. The concepts of identity mapping and skip connection are
defined by Equations (4) and (5). Identity mapping is a basic notion with no parameters. The
addition of the output from descending layers to the previous layers is its main function.

F(x) + x = H(x) (5)

For fine-tuning the ResNet50 network on CT images, we removed the top layers. Then,
we used the last ten layers for the training, and we froze the remaining layers. In the same
way as VGG19, we added two dense layers, a drop-out layer and a Softmax layer, at the
top of the network. The hyper-parameters for fine-tuning ResNet50 are the same as VGG19.
Figure 12 describes the proposed fine-tuned architecture based on ResNet50 model. The
architecture consisted of 43,514,754 total parameters, with 24,392,706 trainable parameters
and 19,122,048 nontrainable parameters.

3.2.3. Fine-Tuning of DenseNet201

DenseNet201 was developed by Huang et al. [13] in 2017. The network has demon-
strated extraordinary performance on datasets such as CIFAR-100 [57] and ImageNet [58].
Trained on the ImageNet database, the model reaches 93.6% accuracy. Using DenseNet,
the vanishing gradient problem can be alleviated, the propagation of feature maps can be
enhanced, and parameters can be reduced. As compared to VGG [11] and ResNet [59],
DenseNet has dense connectivity. The 201-layer network has other variants, including
DenseNet121 and DenseNet169.

We explain the following notions that compose DenseNet201: Dense Block and Transi-
tion Layer.

DenseNet is made up of various Transition Blocks and Dense Blocks that overlap to
construct a multilayer neural network. The internal Dense Block structure of the network
employs the shortcut connection structure of the residual neural network. The residual
neural network is typically made up of numerous residual block structures that overlay
one other. A residual block is formed by connecting neighboring convolutional layers
through a shortcut. The mathematical formula of the residual block mapping is represented



Healthcare 2022, 10, 166 13 of 26

in Equation (6). Where Hi+1 denotes the output, Hi means the input, F is the identity
mapping, and Wi represents the weight.

Hi+1 = Re lu(Hi + F(Hi,Wi)) (6)

Transition Layer primarily links two Dense Blocks. Each Transition Block has a
convolution layer and average pooling layer to minimize the feature map size.

Figure 12. Architecture of modified ResNet50.

For fine-tuning DenseNet-201, the top layers were removed, the last ten layers were
kept trainable, and all other layers were untrainable. At the top of the network, we
added two dense layers, a drop-out layer, and a Softmax layer, as we did with VGG19
and ResNet50. Similarly, the hyper-parameters for fine-tuning this network are the same
as those for the aforementioned models. Figure 13 displays the proposed fine-tuned
architecture based on DenseNet201 model. The architecture consisted of 27,238,978 total
parameters, with 9,203,394 trainable parameters and 18,035,584 nontrainable parameters.

Figure 13. Architecture of modified DenseNet201.

3.3. Ensemble Learning

Ensemble Learning is described in Machine Learning as the training of many models,
called Base-Learners, and the combining of their prediction outputs to produce greater
performance. The core idea is that by appropriately combining Base-Learners, robust
models with higher accuracy can be created. Therefore, base models are employed in
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Ensemble Learning to construct generalized strong and more complicated models. In
this study, we presented three Ensemble Learning-based systems, which are discussed in
further detail in the following subsections.

3.3.1. 2-Levels Stacking

In Machine Learning, Stacking is the process of combining more than one model to
produce the best result. In order to reduce the errors in COVID-19 detection, we propose
a 2-Levels Stacking approach by combining the outputs of three fine-tuned models. In
this approach, we extend the standard 2-Levels Stacking method by choosing three strong
modified models as Base-Learners. Our approach consists of two levels: level 1 is about
training Base-Learners, while level 2 involves training a Meta-Learner. Each of the selected
Base-Learners is trained separately. They are often complementary in that if one fails, the
other succeeds. Taking advantage of this heterogeneity will allow the ensemble model to
be constructed to improve the performance by combining all possible outputs. In level 1
learning, the stack of Base-Learners was trained concurrently on the original data and then
the results were combined to give the new data for level 2. In level 2, the Meta-Learner
takes as inputs the outputs (p1, p2, p3) of our three Base-Learners and learns to return final
predictions. The fine-tuned VGG19, ResNet50, and DenseNet201 are the Base-Learners for
level 1 while the Random Forest Regressor represents the Meta-Learner model for level 2.
Figure 14 illustrates the 2-Levels Stacking approach.

Figure 14. Representation of the 2-Levels Stacking approach.

Random Forest is made up of a number of classifiers, each of which contributes one
vote to the assignment of the most repeated class to the input vector. The mathematical
formula of Random Forest is introduced in Equation (7). Where Cb(x) means the bth
random forest tree’s class prediction.

CB
r f = majorityvote {Cb(x)}B

1 (7)

In this paper, we used a Random Forest Regressor. The regression task here involves
predicting the output probability of our two classes (COVID-19 (+) and COVID-19 (−))
depending on the output probability of the three fine-tuned Base-Learners. The classifier
probabilities would also definitely work here using the Random Forest Classifier, but we
opted to apply it for the 3-Levels Stacking method described in the following sub-section.
The parameters selected for Random Forest Regressor are: (a) the number of trees in the
forest (n_estimators) is 200, (b) the maximum depth of the tree (max_depth) is 15, (c) the
number of jobs to run in parallel (n_jobs) is 20, and (d) the bare minimum of samples
necessary for splitting an internal node (min_samples_split) is 20.

3.3.2. 3-Levels Stacking

3-Levels Stacking is an extension of Stacking, which involves Stacking with three
layers. In level 1, we fit the same three Base-Learners that were used in the first approach.
In level 2, instead of fitting a single Meta-Learner on the Base-Learners’ predictions, we
fit two Meta-Learners. In level 3, we fit a last Meta-Learner that takes as inputs the
predictions returned by the two Meta-Learners of the previous level. Figure 15 shows
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the architecture of our 3-Levels Stacking proposed mechanism. We limit the number of
layers to three based on our observation that if the layer count was increased, we did not
achieve significant improvements in model performance. The Random Forest Classifier
and the Extra Trees Classifier represent the two chosen strong Meta-Learners for level 2
while Logistic Regression represents the selected Meta-Learner for level 3.

Figure 15. Representation of the 3-Levels Stacking approach.

We highlight the following concepts that compose our 3-Levels Stacking approach:
Extra Trees Classifier and Logistic Regression.

As an Ensemble Learning method, Extra Trees Classifier aggregates the outputs of var-
ious decorrelated decision trees obtained in a “forest” in order to produce its classification
result. In principle, it is very equivalent to a Random Forest Classifier and differentiates
only in the way the Decision Trees in the forest are constructed. The decorrelation of trees
results from the random selection of trees. As a measure of the purity of node in Extra Tree
Classifier, the Gini Index is used. It can be represented as shown in Equation (8) for a given
dataset T. Where

(
f (Ci ,T)
|T|

)
denotes the probability that a given case belongs to class Ci.

∑ ∑
j 6=i

(
f (Ci, T)
|T|

)( f
(
Cj, T

)
|T|

)
(8)

Based on Logistic Regression, we can predict an outcome’s probability that only has
two possible values. It generates a logistic curve with values ranging from 0 to 1. Figure 16
shows an illustration of the Logistic Function f(z) (also known as inverse logit function or
sigmoid function). Equation (9) depicts the mathematical formula on which the Logistic
Regression model is based.
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In our case, Logistic Regression takes as inputs the predictions returned by Random
Forest Classifier and the Extra Trees Classifier.
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The parameters selected for Random Forest Classifier and Extra Trees Classifier are
listed in Table 3.

f(z) =
1

1 + e−z . (9)

Table 3. The parameters selected for Random Forest Classifier and Extra Trees Classifier.

Parameters Random Forest Classifier Extra Trees Classifier

n_estimators 200 200
max_depth 15 10

n_jobs 20 20
min_samples_split 30 20

3.3.3. WAE

Model averaging is an Ensemble Learning strategy that involves all Base-Learners
contributing a similar amount to the final prediction. In a Weighted Ensemble, the contri-
bution of each Base-Learner to the last prediction is weighted according to its performance.
A higher weight is given to Base-Learners that contribute more. In this approach, the
calculated class probabilities for each Base-Learner (p1, p2, p3) were multiplied with the
corresponding weights (w1, w2, w3) and the average obtained. In order to compare this ap-
proach with the 2-Levels and 3-Levels Stacking, we fitted the same three Base-Learners. An
illustration of the structure of the WAE approach is shown in Figure 17. The mathematical
formula of WAE is expressed in Equation (10). Where wi denotes the weight applied on the
output of ith model which can be determined based on the model performance as shown
in Equation (11). Where DCi represents ith single model’s performance effectiveness.

P(t) =
N

∑
i=1

wi pi(t) (10)

wi =
DCi

∑N
i=1 DCi

(11)

Figure 17. Representation of the Weighted Average Ensemble approach.

4. Results

This section investigates the performance of the proposed ensemble methods on
two different datasets of chest CT scans: the SARS-CoV-2 CT-scan dataset [42] and the
COVID-CT dataset [22].

4.1. Experiment Setup

All models of this study were implemented using the TensorFlow [60] library along
with Keras [61]. DeepStack [62] was adopted to build the three Ensemble Learning-based
models. All experiments were run using Google Colaboratory platform [63] with a virtual
GPU powered by NVIDIA Tesla K80 and 12 GB RAM.
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4.2. Performance Metrics

In this paper, four different metrics (accuracy, precision, recall, and F1-score) were used
to evaluate the performances of the compared methods for COVID-19 detection. These
are amongst the most used metrics in Machine Learning [64–66]. The following are the
mathematical definitions for the evaluation metrics (in Equations (12)–(15), respectively):

Accuracy =
TruePositives + TrueNegatives

TruePositives + FalsePositives + FalseNegatives + TrueNegatives
(12)

Precision =
TruePositives

TruePositives + FalsePositives
(13)

Recall =
TruePositives

TruePositives + FalseNegatives
(14)

F1− score = 2× Precision× Recall
Precision + Recall

(15)

We define TruePositives, FalsePositives, TrueNegatives, and FalseNegatives as follows:

• TruePositives informs the number of COVID-19 (+) images predicted correctly as
COVID-19 (+).

• FalsePositives informs the number of COVID-19 (−) images incorrectly predicted as
COVID-19 (+).

• TrueNegatives informs the number of COVID-19 (−) images predicted correctly as
COVID-19 (−).

• FalseNegatives informs the number of COVID-19 (+) images incorrectly predicted as
COVID-19 (−).

4.3. Performance Analysis of the Base-Learners and the Ensemble Methods

In order to ensure comparable results, we trained all Base-Learners over 50 epochs
using the same configuration. Keras checkpoint callback was executed at the end of each
epoch to save when the validation accuracy improves. The hyper-parameters used for all
Base-Learners are listed in Table 4. The runtime is a critical parameter for enhancing the
efficiency of the proposed models. Tables 5 and 6 compare the required time during the
training process of the Base-Learners for the SARS-CoV-2 CT-scan dataset [42] and COVID-
CT dataset [22], respectively. It is clear that the runtime varies from one model to another,
which is primarily due to the total number of parameters for each model. The runtime
became longer when the number of model parameters increased. With regard to COVID-CT
dataset [22], the runtime and the time required for each epoch for the Base-Learners are
longer than with respect to SARS-CoV-2 CT-scan dataset [42]. This is due to the use of Data
Augmentation for COVID-CT dataset [22], which, as previously stated, has a low number
of images. Another observation is that VGG19 had the shortest runtime and required the
fewest epochs to converge on both datasets when compared to ResNet50 and DenseNet201.
This is because VGG19 has fewer parameters (23,174,210) than the other models.

Table 4. The hyper-parameters that were used for all Base-Learners.

Network All Base-Learners Used in This Paper

The number of nodes used in dense layers. 1024
Drop-out rate 0.5
Learning rate 5 × 10−5

Mini-batch size 32
Optimizer Adam

Epochs 50



Healthcare 2022, 10, 166 18 of 26

Table 5. Description of the Runtime, Time by epoch, Total parameters, and Best-epoch of the Base-
Learners for SARS-CoV-2 CT-scan dataset [42].

Base-Learners Runtime Time/Epoch Total Parameters Best Epoch

VGG19 1 min 6 s 23,174,210 10/50

ResNet50 3 min 35 s 6 s 43,514,754 31/50

DenseNet201 3 min 7 s 27,238,978 26/50

Table 6. Description of the Runtime, Time by epoch, Total parameters, and Best-epoch of the Base-
Learners for the COVID-CT dataset [22].

Base-Learners Runtime Time/Epoch Total Parameters Best-Epoch

VGG19 7 min 16 s 14 s 23,174,210 29/50

ResNet50 11 min 46 s 13 s 43,514,754 50/50

DenseNet201 13 min 14 s 16 s 27,238,978 47/50

Tables 7 and 8 show the performance evaluation metrics for the Base-Learners and
Ensemble methods on the SARS-CoV-2 CT-scan dataset [42] and the COVID-CT dataset [22],
respectively. For classification problems, accuracy is the primary measure. It refers to the
degree of closeness between an estimated value and its original value in the classification
process. Based on accuracy results, we observed a permutation in the rank order within the
Base-Learners. However, this metric supported the superiority of all Ensemble methods
compared to the average accuracy of the Base-Learners. As a result of using Ensemble
Learning methods (2-Levels Stacking, 3-Levels Stacking, and WAE), the average accuracy of
the Base-Learners has increased by 2.29%, 3.29%, and 3.29%, respectively, on the SARS-CoV-
2 CT-scan dataset [42]. Regarding COVID-CT dataset [22], we noticed a remarkable increase
in the average accuracy of the Base-Learners by 5.64%, 5.73%, and 6.73%, respectively.
On both datasets, it was clear that the WAE method effectively improved the accuracy
of the Base-Learners when compared to the other two Stacking methods. Furthermore,
both Stacking methods produced the same level of accuracy on the SARS-CoV-2 CT-scan
dataset [42], whereas the 3-Levels Stacking method yielded a slight accuracy increase of
0.09% over the 2-Levels Stacking method on the COVID-CT dataset [22].

Recall allows us to comprehend and measure the ability of the model to accurately
recognize COVID-19 (+) patients. This metric is critical because false negatives can lead
to the patients being misclassified as COVID-19 (−) when they are actually COVID-19 (+).
Based on recall results, it is observed that the recall score of DzenseNet201 on the SARS-CoV-
2 CT-scan dataset [42] is better than the other Base-Learners, highlighting the importance
of combining the three Base-Learners, particularly using the WAE method, which gives a
larger weight to Base-Learners that contribute the most, taking into account the results of
each metric separately. Using DeepStack [64], weight optimization was carried out with a
greedy randomized search relying on the Dirichlet distributions on the validation dataset.
Figure 18 clearly shows that DenseNet201 has a higher weight when it comes to the recall
score. Returning to the recall results of our proposed methods, the WAE method achieved
the highest level of recall on both datasets with 99.22% and 95.28%, respectively, reducing
the occurrences of false negatives. Considering the recall score of Stacking methods, it
is clear that the average recall of the Base-Learners has increased by a significant margin
on both datasets. It is encouraging that all Ensemble methods provide a recall of greater
than 94.0%, indicating a low number of COVID-19 (+) patients incorrectly predicted as
COVID-19 (−).
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Table 7. Comparison among the proposed ensemble methods and the Base-Learners on the SARS-
CoV-2 CT-scan dataset [42].

Models Accuracy Recall Precision F1-Score

Base-Learners

VGG19 97.38 96.9 98.04 97.47

ResNet50 92.96 93.8 92.72 93.26

DenseNet201 95.57 98.45 93.38 95.85

Average 95.3 96.38 94.71 95.52

Ensemble methods

2-Levels Stacking 97.59 97.67 97.65 97.08

3-Levels Stacking 97.59 97.29 98.82 97.67

WAE 98.59 99.22 98.82 98.65

Table 8. Comparison among the proposed ensemble methods and the Base-Learners on the COVID-
CT dataset [22].

Models Accuracy Recall Precision F1-Score

Base-Learners

VGG19 94.13 94.95 93.73 94.34

ResNet50 79.38 88.32 86.75 78.68

DenseNet201 91.45 91.37 91.97 91.67

Average 88.32 86.75 89.92 88.23

Ensemble methods

2-Levels Stacking 93.96 94.79 93.44 94.17

3-Levels Stacking 94.05 95.6 93.46 94.45

WAE 95.05 95.28 95.37 94.93

Figure 18. The optimal weights received for the Base-Learners based on the performance of the recall
score function on the SARS-CoV-2 CT-scan dataset [42] (note that the weights range between 0 and 1).

Precision is defined as the Positive Predictive Rate (PPR) and it is useful in limiting
the spread of COVID-19 infection. Based on precision results, it can be noted that VGG19
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outperformed the other Base-Learners on both datasets. A further observation is that WAE
and 3-Levels Stacking methods produced the same level of precision on the SARS-CoV-2
CT-scan dataset [42], whereas the WAE method attained a considerable precision increase
of 1.91% over the 3-Levels Stacking method on the COVID-CT dataset [22]. Regarding
the Stacking methods, the 3-Levels Stacking achieved higher precision than the 2-Levels
Stacking, demonstrating the significance of Stacking with more than two layers. Over-
all, all Ensemble methods provided over 93.0% precision, which means a lower burden
on radiologists.

F1-score represents how well the classification has done in terms of recall and precision.
Based on F1-score results, it is observed that the Ensemble methods achieved significantly
more F1-score as compared with the average F1-score of the Base-Learners. The best
F1-score was obtained using the WAE method, which achieved 98.65% and 94.93% on
both datasets, respectively. 3-Levels Stacking was found to be the second-best Ensemble
method. These high F1-scores indicate that we have a low number of false positives and
false negatives. In this case, the model identifies the COVID-19 (+) patients and is not
disturbed by the COVID-19 (+) cases incorrectly predicted as COVID-19 (−).

Our study results now provide evidence to prove the excellent findings obtained by
the proposed Ensemble methods. By analyzing the performance metrics for each model,
we can clearly see that the WAE method outperforms the modified CNN models and both
Stacking models. As a result, it is deemed the chosen method to be compared with the
existing methods. It is worth noting that the key difference is that the proposed WAE
method assigns weights to each Base-Learner according to their own efficiency. In spite
of the fact that the 2-Levels Stacking method failed to outperform fine-tuned VGG19 in
terms of precision and F1-score on the SARS-CoV-2 CT-scan dataset [42] and across all
metrics on the COVID-CT dataset [22], it showed a marked improvement after including
the third level.

4.4. Comparison with State-of-the-Art Methods

We compared the performance of the proposed WAE method to the existing meth-
ods [25,28,29,32,33,41] on the respective datasets that were used to evaluate the existing
methods. Our choice of these methods [25,28,29,32,33,41] for comparison was based on
the dataset composition and the similarity of the experiments conducted. Accuracy, recall,
precision, and F1-score were the evaluation metrics considered for the comparison. Tables 9
and 10 compare the proposed method to existing methods on the datasets SARS-CoV-2
CT-scan dataset [42] and COVID-CT [22], respectively. It can be noted from Table 9 that the
proposed method performed well on all four metrics compared to the existing methods.
Table 10 show that the proposed method outperformed the existing methods in terms
of recall, precision, and F1-score, making it the most efficient method for this COVID-19
binary-classification task.

4.5. Grad-CAM Visualizations

Grad-CAM algorithm [67] was used to examine the behavior of the WAE network by
visualizing the areas of infection in our chest CT images. This provides insight into what
the network has learned and what part of its input contributed to detecting COVID-19.
Grad-CAM visualizations for WAE are shown in Figure 19. Note that the WAE’s area of
interest at the time of prediction is represented by the red and green visuals. It is noticed
that the activations maps are focused on the lungs. Interestingly, in the majority of cases,
WAE was able to localize the disease region based on relevant features from the chest CT
images for both datasets.
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Table 9. Comparing the proposed WAE method with methods proposed in previous studies on the
SARS-CoV-2 CT-scan dataset [42].

SARS-CoV-2 Ct-Scan Dataset Accuracy Recall Precision f1-Score

Wang et al. [32] 91 86 96 91

Ebenezer et al. [41] 94 98 90 94

Proposed WAE Method 98.59 99.22 98.82 98.65

Table 10. Comparing the proposed WAE method with methods proposed in previous studies on the
COVID-CT dataset [22].

COVID-CT Dataset Accuracy Recall Precision f1-Score

He et al. [25] 86 – – 85

Loey et al. [28] 83 78 85 81

Polisinelli et al. [29] 83 85 82 83

Wang et al. [32] 79 80 78 79

Shaban et al. [33] 96 74 75 75

Ebenezer et al. [41] 85 95 78 86

Proposed WAE Method 95.05 95.28 95.37 94.93

Figure 19. Grad-CAM visualizations. (A) Sample CT images from the SARS-CoV-2 CT-scan
dataset [42]. (B) Sample CT images from the COVID-CT dataset [22].

5. Discussion

In this paper, we investigated two Ensemble Learning methods (Stacking and WAE)
for detecting Covid-19 positive cases in chest CT images. We experimented Stacking with
two and three levels. Each Ensemble Learning-based model was derived from a fusion
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of three fine-tuned CNNs: VGG19, ResNet50, and Densenet201. Two chest datasets were
used to train and validate these networks. The Random Forest regressor algorithm was
employed at the Meta-Learner level for 2-Levels Stacking to generate a final model. We
picked Random Forest and Extra Trees classifiers as Meta-Learners for the second level of 3-
Levels Stacking, and Logistic Regression for the third level. For all three methods, the same
Base-Learners were used. The main difference between Stacking and WAE is that Stacking
learns to combine the Base-Learners using a Meta-Learner. The WAE approach, on the
other hand, does not include a Meta-Learner. The goal is to optimize the weights that are
utilized for weighting the outputs of all Base-Learners and calculate the Weighted Average.

The small size of the datasets available was one of the major limitations of the cur-
rent study. Despite this limitation, our proposed Ensemble Learning-based models were
able to weed out false positives and false negatives and detect true positives and true
negatives with a high level of performance on both datasets by employing strategies such
as fine-tuning, drop-out, checkpoint callback, and data augmentation. To the best of our
knowledge, this is the first paper to use WAE to detect COVID-19 from Chest CT scans.
This method was found to be the most effective in this experiment, with > 98.5% accuracy
on the SARS-CoV-2 CT-scan dataset [42] and >95% accuracy on the COVID-CT dataset [22].
These values are regarded as “extremely good” in the field of medical diagnosis and can be
improved with a larger data set.

Fine-tuning was adopted on all three pre-trained CNN architectures using chest CT
scans to enable networks to converge quickly and obtain features that are relevant to our
study’s domain. It aided in the enhancement of the performance of these networks. VGG19,
in particular, achieved a high level of performance on both datasets. Figure 20 summarizes
all experimental results described in this paper.

Figure 20. The performance evaluation metrics on both chest CT datasets for all studied models.
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The Ensemble Learning strategies used in this work have the considerable advantage
of automating the randomization process, allowing the researcher to investigate multiple
databases and capture useful insights. Rather than being restricted to a single classifier,
they create many classifiers iteratively while randomly varying the inputs. By combining
several single classifiers into one, we can obtain a more adaptive prediction scheme. In
addition, these strategies can tackle the topic of RT-PCR kit lack of supply by requiring only
a CT scan machine, which is already present in the majority of hospitals around the world.
As a result, countries will no longer be forced to wait for RT-PCR kits’ large shipments.

The missing part of this work is that the models are yet to be validated during real
clinical routines, so we are still in theoretical research mode. Therefore, we intend to
evaluate our proposed models in the clinical routine and consult with doctors about how
such a medical recognition system might fit into the clinical routine.

6. Conclusions

The focus of this paper is to demonstrate how Ensemble Learning can be used to
perform important and sensitive tasks such as diagnosing COVID-19. We proposed three
Ensemble Learning-Based models for COVID-19 detection from chest CT images. Each
Ensemble Learning-based model was a combination of pre-trained VGG19, ResNet50, and
DenseNet201 networks. We began by preparing the two datasets to be used. We fine-tuned
the pre-trained networks by unfreezing a part of each model. We combined the modified
models through Stacking and WAE techniques. We used accuracy, precision, recall, and
F1-score to compare performance results. We found very encouraging results, especially
with the WAE method, which performed the best on the two publicly available chest CT-
scan datasets. Consequently, Ensemble Learning, especially the WAE method, is strongly
recommended for developing reliable models for diagnosing COVID-19, as well as for a
variety of further applications in medicine.

A number of future works are highlighted by the authors. Firstly, the use of chest
X-rays datasets to determine whether the ensemble models can be more successful with
chest X-ray datasets than with chest CT datasets. Secondly, the use of other Ensemble
methods to uncover new findings. Thirdly, the use of some pre-processing techniques to
improve the visibility of chest CT images such as gain gradient filter, integrated means filter,
etc. Lastly, testing the proposed models in clinical practice and consulting with doctors
about their thoughts on these models.
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