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Abstract: In this work, we introduce Pontryagin Neural Networks (PoNNs) and employ them to learn
the optimal control actions for unconstrained and constrained optimal intercept problems. PoNNs
represent a particular family of Physics-Informed Neural Networks (PINNs) specifically designed
for tackling optimal control problems via the Pontryagin Minimum Principle (PMP) application (e.g.,
indirect method). The PMP provides first-order necessary optimality conditions, which result in a
Two-Point Boundary Value Problem (TPBVP). More precisely, PoNNs learn the optimal control actions
from the unknown solutions of the arising TPBVP, modeling them with Neural Networks (NNs).
The characteristic feature of PoNNs is the use of PINNs combined with a functional interpolation
technique, named the Theory of Functional Connections (TFC), which forms the so-called PINN-TFC
based frameworks. According to these frameworks, the unknown solutions are modeled via the
TFC’s constrained expressions using NNs as free functions. The results show that PoNNs can be
successfully applied to learn optimal controls for the class of optimal intercept problems considered
in this paper.

Keywords: Pontryagin Neural Networks; Physics-Informed Neural Networks; functional interpola-
tion; Theory of Functional Connections; Extreme Learning Machine; optimal control

1. Introduction

Over the last century, optimal control theory has garnered interest in many fields of
study. Understanding the dynamics of systems and optimization methods is a difficult
challenge for researchers in various scientific fields, from space guidance to epidemiol-
ogy. Many numerical methods have been developed for optimizing the cost function of
the optimal control problems, which usually depends on the state and control variables
governing the problem. In general, solution methods for optimal control problems fall
into two categories: direct methods and indirect methods [1]. In the direct method, the
system’s state and control are discretized and, thus, the problem is transcribed into a Non-
Linear Optimization Problem or Non-Linear Programming Problem (NLP). These NLPs
can be solved using well-known optimization techniques, such as Trust Region Method,
Nelder–Mead Method, or Interior Point Methods [2]. The optimal solution is found by
transcribing an optimization problem from infinite-dimensional to finite-dimensional, ac-
cording to these techniques. Conversely, indirect methods are based on the first-order
necessary conditions retrieved by direct application of Pontryagin Minimum Principle (PMP).
The necessary conditions result in a Two-Point Boundary Value Problem (TPBVP) in the
state-costate pair that, if an analytical solution does not exist, must be solved via numerical
techniques (e.g., single and multiple shooting methods [3,4], orthogonal collocation [5],
or pseudo-spectral methods [6]). Generally, the indirect method provides a solution that
is guaranteed to be optimal by definition. This is the reason why it should be preferred
with respect to the direct method. However, the numerical solution of the TPBVP is often
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complicated to obtain because of how sensitive it is to initial guesses, which is required for
a numerical solution. Moreover, it is also challenging to provide good initial guesses for
the costates, since they do not represent any physical quantity. On the contrary, although
the direct method usually calculates solutions that are not exactly optimal, they are close
enough and more straightforward to obtain. Thus, the direct method is more prevalently
applied in the aerospace community. Furthermore, path and control constraints can be
more easily included within the direct method formulation. Luckily, the two methods can
also be combined. Indeed, the solution obtained with the direct method can be exploited
as an initial guess for the indirect method, which can better refine the solution and, at the
same time, guarantee optimality.

In this work, we will tackle optimal intercept problems applying the PMP and model-
ing a Neural Network (NN) representation of the state-costate pair, for which the residuals
of the TPBVP are as close to zero as possible. This will be done by employing Physics-
Informed Neural Networks (PINN). We will use a particular PINN framework, as developed
by the authors, called Extreme Theory of Functional Connections (X-TFC). Here, PINNs are
specifically trained to learn optimal control actions that satisfy the PMP and, therefore, the
optimality is guaranteed by learning the solutions of the associated TPBVP. For this reason,
we name these PINNs Pontryagin Neural Networks (PoNNs). More specifically, this paper
aims to show the effectiveness of PoNNs in learning optimal control actions for intercept
problems, achieving results that were comparable with the other state-of-the-art methods.
Additionally, we will show how PoNNs can represent an alternative to these methods and
be used in synergy with them.

PINNs are machine learning methods that insert physics into data-driven functional
representations of input–output paring collections. The term PINN has been coined to
indicate those NNs for which the loss function includes the physics as a regularization term,
as defined by Raissi et al. [7]. For instance, suppose facing a regression problem using a NN
and having some experimental data representing a physical phenomenon modeled via DEs.
The common machine learning approach would be to approximate the data with a NN
trained via minimizing the Mean Squared Error (MSE) as the loss function. However, in
this case, there are no guarantees that the physics of the problem is not violated. Therefore,
PINNs are introduced to take the DEs describing the physics behind the collected data
into account. Indeed, the implicit forms of the DEs considered are embedded within
the loss function as additional terms, which penalize the training when the DEs and its
constraints (e.g., the Initial Conditions or ICs and/or Boundary Conditions or BCs) are
violated. This approach is also referred to as data-driven solution of DEs. In the limit
when only the residual of the DEs is considered (e.g., data are not available), PINNs learn
the solutions of problems involving Ordinary (ODEs) and Partial (PDEs) DEs in a solely
physics-driven fashion. In this regard, PoNNs represent a particular case of PINNs, where
the DEs modeling the physics constraints are obtained via the application of the PMP. On
the other hand, the data-driven parameters discovery of DEs (e.g., inverse problems) [7,8]
refers to the estimation of parameters appearing within DEs (e.g., in the orbit determination
framework). The major drawback of the standard PINN framework, as introduced by
Raissi et al. [7], is that the DE constraints are not analytically satisfied and, therefore,
they need to be simultaneously learned with the DE solution within the domain. Thus,
we deal with competing objectives during the network’s training: learning the DE latent
solution within the domain and learning the DE latent solution on the boundaries. This
leads to unbalanced gradients during the network training via gradient-based techniques
that causes PINNs to often struggle to accurately learn the underlying DE solution [9].
It is well known that gradient-based methods may diverge when multiple competing
objectives are present or may eventually get stuck in limit cycles [10,11]. In [9], in order
to overcome this issue, the authors developed a learning rate annealing algorithm that
employs gradient statistics to adaptive assign appropriate weights to different terms (e.g.,
DE residuals within the domain and DE residuals on the boundaries) in the PINNs loss
function during the network training. Here, we propose to employ a different and more



Mathematics 2021, 9, 996 3 of 23

robust PINN model, as developed by the authors, which merges NN and TFC [12,13]. That
is, we will use a PINN-TFC based model called X-TFC. This PINN-TFC based framework
approximates the latent solution of the DEs via the so-called Constrained Expressions
(CEs). The CEs are the critical ingredient of the Theory of Functional Connections or TFC,
developed by Mortari [14], which is a method for functional interpolation where functions
are approximated using these CEs. A constrained expression is a functional that is made
up of the sum of two terms. The first term is a free-function, while the second term is a
functional that analytically fulfils the constraints independently from the choice of the
free-function [14,15]. Thanks to the CEs analytically embedding the constraints, TFC has
many applications. In particular, TFC is widely used for the solution of DEs, because
the CEs remove the “curse of the equation constraints” [16–18]. Additionally, TFC has
already been used to solve several classes of optimal control space guidance problems
such as energy optimal landing on large and small planetary bodies [19,20], fuel optimal
landing on large planetary bodies [21], and energy optimal relative motion problems
subject to Clohessy–Wiltshire dynamics [22]. For solving DEs, the standard TFC method
uses a linear combination of orthogonal polynomials, such as Legendre or Chebyshev
polynomials [16,17], as a free function. Using orthogonal polynomials as a free-function
makes the standard TFC framework suffer from the curse of dimensionality, especially
when solving large-scale PDEs. In order to overcome this limitation, X-TFC uses a single
layer NN trained via the Extreme Learning Machine (ELM) algorithm [23] to represent
the free-function. This is the reason why X-TFC can be labeled as a PINN framework.
Although, in this work, X-TFC is used to learn the state-costate solution that solves the
TPBVP arising from the application of the PMP solely in a physics-driven fashion, being a
PINN framework, it can also be used for the data-driven solution of DEs, data-driven DE
parameter discovery, and data-driven discovery of DEs [8]. The manuscript is organized,
as follows. First, we explain how PoNNs are modeled and trained to learn control actions
for optimal control problems tackled via the indirect method. PoNNs are then employed
to learn optimal control actions for the minimum time-energy optimal intercept problem,
both with unbounded and bounded control. Finally, the results will be discussed in the
remaining sections.

2. Pontryagin Neural Networks for Optimal Control Problems

PoNNs represent a particular family of PINNs specifically designed to tackle optimal
control problems via the Pontryagin Minimum Principle (PMP) application (e.g., indirect
method). The term “Pontryagin Neural Networks” (PoNNs) is coined here by the authors
to refer in a more compact form to “PINNs designed to learn optimal control via indirect
method”. The PMP provides first-order necessary optimality conditions, which result in a
Two-Point Boundary Value Problem (TPBVP). More precisely, PoNNs learn the optimal
control actions from the unknown solutions of the arising TPBVP, modeling them with
Neural Networks (NNs). That is, PoNNs model a NN representation of functions for
which the residuals of the TPBVP are as close to zero as possible, i.e., the solutions of the
TPBVP. This NN representation of the TPBVP unknown solutions is done combining PINNs
with TFC. Together, PINNs and TFC form the so-called PINN-TFC based framework. A
generic differential equation’s unknown solutions are modeled via the TFC’s constrained
expressions using NNs as free functions, according to this framework. When Deep NNs
(DNNs) are used as free function, the PINN-TFC framework is known as Deep-TFC [12].
When shallow NNs, trained via Extreme Learning Machine (ELM) algorithm, are used
as free function, the PINN-TFC framework is known as Extreme TFC (X-TFC) [13]. In
particular, PoNNs uses the X-TFC approach.

In this section, all of the key elements of the PoNNs will be explored in detail. First,
how OCPs are faced using the indirect method is presented. Moreover, bounds on the
control will also be taken into consideration. We will then explain how standard PINNs
and X-TFC are employed to learn the unknown solutions of the arising TPBVP, which
consequently lead to retrieve the optimal control actions.
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2.1. Optimal Control Problems via Indirect Method

In this section, Unconstrained Optimal Control Problems are first introduced and
then the extension to Constrained Optimal Control Problems is presented following the
procedure that was proposed in [24]. UOCPs are generally based on a cost function, whose
expression is given by:

J = Φ(x(t0), t0, x(t f ), t f ) +
∫ t f

t0

L (x(t), u(t), t) dt (1)

subject to the dynamic constraints, expressed as,

ẋ = f (x(t), u(t), t) (2)

and the boundary conditions,

Φ(x(t0), t0) = Φ0 (3)

Φ(x(t f ), t f ) = Φ f (4)

where x(t) is the state vector, u(t) is the control vector, t is the independent variable, t0 is the
initial time, and t f is the final time. The terms Φ and L , appearing in Equation (1) are the
end-point cost and Lagrangian, respectively [2]. If the Pontryagin Maximum (or Minimum)
Principle (PMP) [25] is employed within the indirect method, then the Hamiltonian of the
problem needs to be defined as

H = L + λT f (5)

where λ represent the costate (or adjoint variables). According to the first-order optimality
conditions of the PMP, the optimal control is derived, as follows,

∂H
∂u

= 0 (6)

Once the Equation (6) is solved for u, the result is plugged into (5), and the remain-
ing first-order necessary conditions for the state and costate variables can be obtained
are derived,

ẋ =
∂H
∂λ

(7)

λ̇ = −∂H
∂x

(8)

Finally, the transversality conditions have to be applied, if any (e.g., when the corre-
sponding state variable is free). The possible transversality conditions are the following,

λ(t0) = − ∂J
∂x0

(9)

H(t0) =
∂J
∂t0

(10)

λ(t f ) =
∂J
∂x f

(11)

H(t f ) = −∂J
∂t f

(12)

Equations (7) and (8), along with the transversality conditions on the Hamiltonian,
represent a BVP, which, in the proposed method, is solved using PINNs, in particular
X-TFC. One should note that the transversality conditions on the costate will be a priori
satisfied with the X-TFC approach, as will be explained below. Thus, they do not explicitly
appear in the BVP.



Mathematics 2021, 9, 996 5 of 23

To consider control constraints for COCPs, some modifications should be introduced
to the previous formulation (see [24] for more detail). First, we need to define a new
unconstrained control variable wi for each control constraint that is present in the problem
di(u) belonging to the interval [d−i , d+i ], with i = 1, . . . , q. The idea is to replace the
constraint di with a saturation function, as follows

di = φi(wi) (13)

φi(wi) = d+i −
d+i − d−i

1 + exp (swi)
with s =

c
d+i − d−i

(14)

where φi is a smooth and monotonically increasing function and c is a constant value,
which useful for modifying the slope of φi at wi = 0. The advantages of using a saturation
function is that it is defined within the range ui ∈ [d−i , d+i ] and it approaches the saturation
limits asymptotically for wi → ±∞. Other saturation function, such as tanh, can also be
employed. One can note that control constraints represent input constraints in the sense
that the order of derivative in which the saturation function appears in the Hamiltonian is
zero, as shown by Equation (16). Because a new control variable is introduced, a new term
in the cost function, called the regularization term, is added, as follows,

J̄ = J + ε
∫ t f

t0

||wi||2 dt (15)

where ε is the regularization parameter. Having a low value of ε means that the new control
problem with the new unconstrained control becomes similar to the original constrained
control problem, as desired. However, this parameter can affect either the saturation
function or its derivative, according to the order of the constraint. Indeed, decreasing ε
results in higher values of the augmented control w, which would approach the asymptotic
limits. Therefore, if ε approaches 0, w could tend to infinity, leading to numerical problems.
To summarize, even if ε close to 0 leads to having the solution of the new UOCP closer
to the one of the original COCP, one should be careful to set the value of ε. For more
information about the influence of ε on the control and the other optimization parameters,
the reader can refer to Ref. [26]. In order to obtain accurate solutions, a continuation
procedure on ε is usually exploited to bring the new UOCP control problem to match the
original COCP. According to Equation (15), the new Hamiltonian of the problem is,

H = L + λT f + ε||wi||2 +
q

∑
i=1

νi(di(u)− φi(wi)) (16)

where νi represents additional multipliers that take the new equality constraints into
account. It is worth to note that it can happen that the optimality condition on the control
u ( ∂H

∂u = 0) is represented by a trascendental form and is no longer able to provide a closed
form solution for u. Because a new unconstrained control has been added, another equation
should be added to the optimality condition on the control,

∂H
∂wi

= 2εwi − νiφ
′
i(wi) = 0 (17)

where φ
′
i indicates the derivative of the saturation function with respect to wi. Moreover,

the following constraint equation has to be added to the BVP,

di(u)− φi(wi) = 0 (18)

Finally, the new UOCP is totally defined and the lower the value of ε is, the more the
solution of the new UOCP approaches the solution of the original COCP.
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2.2. Physics-Informed Neural Networks and Functional Interpolation

Raissi et al. have defined PINNs [7], following the original idea that was introduced by
Lagaris et al. [27], to tackle two main problems categories: data-driven discovery and data-
driven solution of PDEs. Even though, in [7], PINNs were introduced to tackle problems
governed by PDEs, the same methodology is also used to solve problems involving ODEs.
PINN uses a single neural network (either shallow or deep) to approximate the solution
of DEs. In particular, the training set is represented by points randomly sampled from
the full high-resolution data-set and by collocation points that were randomly chosen to
enforce the BCs, the DE, and its related constraints. Once the network’s output is obtained,
it is substituted in the residual of both the DE and BCs. The weights and bias parameters
are learned through the training process that minimizes the physics-based loss function
via gradient-based methods. Hence, the main characteristic of PINNs is to include the
DEs and BCs describing the physics of the problem in their cost functions.The theoretical
formulation to learn a generic TPBVP is reported below in order to better understand how
a PINN works.

2.2.1. PINN for TPBVPs

The vector differential equation of a generic TPBVP in the time domain can be ex-
pressed, in its implicit form, as follows,

Fi

(
t, yj(t), ẏj(t), ÿj(t)

)
= 0 subject to:


yj(t0) = y0j

yj(t f ) = y f j

ẏj(t0) = ẏj0
ẏj(t f ) = ẏ f j

(19)

where i is the number of differential equations forming the ODEs system, and j is the
number of unknown functions (yj(t)) that are the solutions of the system. The independent
variable is the time t ∈ [t0, t f ]. According to the standard PINN framework, the unknown
solutions of the system (19) are approximated with a NN. Following [28], as we deal with a
system of ODEs, we use a Single Input and Multiple Outputs (SIMO) NN. More precisely,
the input is represented by the time t, and the outputs by the yj’s. That is,

yj(t) = yNN
j (t, θ) (20)

where θ are the NN parameters that are trained via gradient based methods. Equation (20)
represents the PoNN. That is, PoNN is a particular NN that is trained to satisfy the PMP
by learning the solution of the arising TPBVP. To train the PoNN, the Mean Square Error
(MSE) is to be minimized with respect to the NN parameters,

min
θ

MSE (21)

where,
MSE = MSEF + MSEBC0 + MSEBC f (22)

with,

MSEF =
1

NF

Neq

∑
i=1

NF

∑
k=1

∣∣∣Fi

(
tk
F , yNN

j (tk
F ), ẏNN

j (tk
F ), ÿNN

j (tk
F )
)∣∣∣2 (23)

MSEBC0 =
Ny

∑
j=1

∣∣∣y0j − yNN
j (t0)

∣∣∣2 + Ny

∑
j=1

∣∣∣ẏ0j − ẏNN
j (t0)

∣∣∣2 (24)

MSEBC f =
Ny

∑
j=1

∣∣∣y f j
− yNN

j (t f )
∣∣∣2 + Ny

∑
j=1

∣∣∣ẏ f j
− ẏNN

j (t f )
∣∣∣2 (25)
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Here, MSEF , MSEBC0 , and MSEBC f are the MSEs that take the dynamics (e.g., the
ODEs forming the TPBVP, for our purposes), the initial conditions, and the final condi-
tions, respectively, into account. Neq is the number of ODEs in the system (19), Ny is the
number of unknown solutions yj’s, and {tk

F}
NF
k=1 represent the training points for each

{Fi}
Neq
i=1 . Finally, the derivatives of the yNN

j (t, θ)’s with respect to time are computed via
automatic differentiation.

The attentive reader can clearly see how the MSE is made by multiple objects that,
competing during the training, would likely lead to not properly learn the underlying DE
solution. Furthermore, when dealing with a system of ODEs, the number of competing
objectives increases: learning the ODE latent solution within the domain for all of the
equations of the systems, and learning the ODE latent solution on the boundaries for all
the unknowns. As previously mentioned, in this research, all of these issues are removed
thanks to the combination of the classic PINN methods with the TFC.

2.2.2. X-TFC for TPBVPs

As previously stated, in this work we will use the PINN-TFC based methods, called
X-TFC. Here, how to apply X-TFC to solve a generic TPBVP in the time domain is presented
in details. When considering the system that is expressed by (19), the first step of the X-TFC
method follows the derivation of the constrained expressions, and their derivatives, as
developed by TFC,

y(`)j (t) = g(`)j (t) +
nj

∑
k=1

ηkj
s(`)k (t) (26)

where the ` superscripts refers to the `th derivative with respect to the independent variable,
nj is the number of constraints for the jth unknown function and/or its derivatives, ηkj

are some coefficients, and gj(t) is the free function. According to [14], the functions sk(t),
called support functions, can be selected, as following,

sk(t) = tk−1 (27)

Once the constrained expression is defined, substituting the constraints on yj(t)
and/or its derivatives at the time boundary (e.g., t0 and t f ) into the constrained expression
creates a set of linear algebraic equations, which is then solved for the ηkj

coefficients. Once
the ηkj

coefficients are calculated, the boundary constraints of Equation (19) are analytically
embedded within then constrained expression. Now, substituting the constrained expres-
sions into the Fi differential equations transforms them into new set of equations that we
define with F̃i. This new set of equations is now just a function of the free functions gj(t),
and their derivatives, and the independent variable t. That is,

F̃i

(
t, gj(t), ġj(t), g̈j(t)

)
= 0 (28)

This vector differential equation is unconstrained, because the boundary conditions
are embedded within it through the derived ηkj

values. To solve Equation (28), X-TFC uses
as free functions, gj(t), a shallow Single Input Single Output (SISO) NN trained via ELM
algorithm [23]. That is,

gj(z) =
L

∑
q=1

β j,qσ
(
wqz + bq

)
=

σ1
...

σL


T

β j = σT(z)β j (29)

where bq is the bias of the qth hidden neuron, wq ∈ R is the input weights vector connecting
the qth hidden neuron and the input nodes, βq ∈ R with q = 1, . . . , L is the qth output
weight connecting the qth hidden neuron and the output node, L is the number of hidden
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neurons, and σj(·) are activation functions for the gj(z) free chosen function. Equation (29)
represents the X-TFC key difference with respect to the standard TFC, and the reason why
the X-TFC framework belongs to the family of the PINN frameworks. Using a NN as free
function instead of orthogonal polynomials allows the X-TFC approach to (1) highly reduce
the curse of dimensionality in ODE/PDE problems with respect the standard TFC and (2)
be framed as PINN method. Because we are using the ELM algorithm to train the NN,
the only unknowns to compute are the output weights βj =

[
β j,1, . . . , β j,L

]T. The attentive
reader will notice the use of a different independent variable, z. This happens because the
domain of the activation functions z and the problem domain t are usually not coincident.
Therefore, we must map the domain t into the domain z and vice-versa,

z = z0 + c(t− t0) ←→ t = t0 +
1
c
(z− z0) (30)

where c is a mapping coefficient that is,

c = b2 =
z f − z0

t f − t0
(31)

Because c is always a positive number, it is convenient to rewrite it as c = b2. Because
to the mapping, all subsequent derivatives of gj(t) are defined, as follows,

dngj

dtn = βT
j

dnσj(z)
dzn

(
dz
dt

)n
= βT

dnσj(z)
dzn (b2)n (32)

It is to be noticed that, for the optimal control problems where the final time is free,
the mapping coefficient becomes an unknown that must be computed along with all of
the β j’s. Hence, the transformation of the free function and its derivatives between the t
domain to the z domain can be summarized, as follows,

gj(t) = σT
j (z)β j

ġj(t) = b2 σ′Tj (z)β j

g̈j(t) = b4 σ′′Tj (z)β j

(33)

where σ′j(z) is the abbreviation for
dσj(z)

dz . Equation (28) in the z domain then becomes,

F̃i(z, β j) = 0 (34)

The z domain must be discretized into n points in order to numerically solve this
TPBVP. One can note that z is usually discretized with equally spaced points or using the
Chebyshev-Gauss-Lobatto points, but one can use any desired quadrature scheme. The
unconstrained set of differential equations in Equation (34) can then be expressed as loss
functions at each discretization point,

Li(β j) =



F̃i(z0, β j)
...

F̃i(zd, β j)
...

F̃i(zn, β j)


(35)

Now, by combining the differential equation for each dimension, an augmented loss
function can be written, as follows,

L =
[
L1, . . . , Li, . . . , LNeq

]T

(36)
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and imposing that to be a true solution, this vector should be equal to 0. This allows for
the β j coefficients to be learnt via different optimization schemes, e.g., least-square for
linear problems [16] and iterative least-squares for non-linear problems [17]. If the iterative
least-square method is needed, then the estimation of the unknowns is updated at each
iteration, as follows,

Ξk+1 = Ξk + ∆Ξk (37)

where Ξ is the augmented vector containing all the vector β j (and eventually the square
root of mapping coefficient, b) and the k subscript indicates the current iteration. In general,
the ∆Ξk term can be obtained by performing classic linear least-square at each step of the
iterative least-square procedure,

∆Ξk = −
(
J(Ξk)

TJ(Ξk)
)−1

J(Ξk)
TL(Ξk) (38)

where J is the Jacobian matrix containing the derivatives of the losses with respect to
all of the unknowns. The Jacobian matrix can be computed either by hand or by means
of computing tools, such as the Symbolic or the Automatic Differentiation Toolbox. The
iterative process is repeated until the following condition is met,

L2[L(Ξk)] < ε (39)

where ε defines some user prescribed tolerance. Once we are sure that the convergence
is achieved by meeting the criteria L2[L(Ξk)] < ε, the nonlinear DE can be solved using
the following criteria L2[L(Ξk+1)] > L2[L(Ξk)]. Doing so, round-off error causes the
convergence and the use of the user prescribed tolerance ε is completely avoided. Thus,
the solution accuracy is pushed to the limit (e.g., it is possible to reach the best solution
accuracy possible for the specific DE).

Using the X-TFC method for learning the solution of the TPBVP, arising from the PMP,
Equation (26) represents the PoNN. For the convenience of the reader, Figure 1 presents
a schematic summarizing how the PoNNs are modeled and trained for learning optimal
control actions for a generic unconstrained OCP.

Figure 1. Schematic summarizing how the PoNNs are modeled and trained for learning optimal
control actions for a generic unconstrained OCP.

3. Optimal Intercept Problem: Formulations and Results

In this section, we show how PoNNs are modeled and trained to learn optimal control
actions for the minimum-time energy optimal intercept problem [19]. Unbounded and
bounded control actions will both be considered.
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All of the problems tackled in this manuscript have been coded in Matlab R2020a, and
ran with an Intel Core i7 - 9700 CPU PC with 64 GB of RAM.

3.1. Unconstrained Problem

The optimal control problem that is considered here is the minimum time-energy
optimal intercept problem. This problem describes the motion of an interceptor (M) chasing
a target (T) both subjected to the same gravitational acceleration. The equations of motion
in an inertial reference frame can be written, as follows,

ṙ = v (40)

v̇ = aT − aM (41)

where r = rT − rM and v = vT − vM are, respectively, the relative distance and velocity
between the target and the interceptor, while aT and aM are the thrust accelerations. The
optimization problem to be addressed is a minimum time-energy optimal problem,

min J = Γt f +
1
2

∫ t f

t0

(aT
MaM) dt (42)

subject to

ṙ = v

v̇ = aT − aM

t0 ≤ t ≤ t f

r(t0) = r0

v(t0) = v0

r(t f ) = 0

(43)

where Γ is a non-negative coefficient, t f is the free final time to be optimized, and the final
relative velocity is chosen to be free. The Hamiltonian for this problem is,

H(t) =
1
2

aT
MaM + λT

r v + λT
v (aT − aM) (44)

The control optimality comes from,

∂H
∂aM

= 0 → aM = λv (45)

By plugging Equation (45) into Equation (44), the Hamiltonian can be rewritten as,

H(t) = −1
2

λT
v λv + λT

r v + λT
v aT (46)

The first-order necessary conditions for the state and costate are,

ṙ = ∂H
∂λr

= v (47)

v̇ = ∂H
∂λv

= aT − λv (48)

λ̇r = − ∂H
∂r = 0 (49)

λ̇v = − ∂H
∂v = −λr (50)

In addition, two transversality conditions need to be imposed,

H(t f ) + Γ = 0 (51)

λv(t f ) = 0 (52)
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The system that is expressed by Equations (47)–(52) is a TPBVP, representing the
physics constraints that drive the PoNN training.

The transversality condition (51) is necessary because the problem is final time free
(e.q., the final time is in the cost function). This means that the Hamiltonian at the converged
final time must be equal to Γ. As the system is autonomous (e.g., there is no explicit
dependency on time in the dynamics), the Hamiltonian must be constant over time (e.g.,
H(t) = −Γ). Because H(t f ) = −Γ (from the transversality condition), then H(t) + Γ = 0.

By writing the equations in components (j = 1, 2, 3), one can obtain

v̇j = aT,j − λv,j (53)

λ̇r,j = 0 (54)

λ̇v,j = −λr,j (55)

H(t f ) + Γ = 0 (56)

where Equation (47) is removed since it is redundant when employing the CEs approxima-
tion and Equation (52) is also removed as the boundary conditions are analytically satisfied
by the CEs. Thus, the states and costates are approximated using the TFC’s CEs, as follows

rj =
(

σ −Ω1σ0 −Ω2σ f −Ω3σ′0

)T

β j + Ω1r0j + Ω2r f j
+

Ω3v0j

b2

vj = b2

[(
σ′ −Ω′1σ0 −Ω′2σ f −Ω′3σ′0

)T

β j + Ω′1r0j + Ω′2r f j
+

Ω′3v0j

b2

]

aj = b4

[(
σ′′ −Ω′′1 σ0 −Ω′′2 σ f −Ω′′3 σ′0

)T

β j + Ω′′1 r0j + Ω′′2 r f j
+

Ω′′3 v0j

b2

]

λr,j = σTβr,j

λ̇r,j = b2σ
′T βr,j

λv,j =
(

σ − σ f

)T

βv,j + λv f ,j

λ̇v,j = b2σ
′T βv,j

where Ωk(z) are called switching functions and they are reported in the Appendix A.
Hence, the PoNN’s parameter to be learned is,

Ξ =
[
βr,1 βr,2 βr,3 βλr,1 βλr,2 βλr,3 βλv,1 βλv,2 βλv,3 b

]T

An iterative least-square approach can be used to learn the PoNN’s parameter that
minimizes the following losses,

La,j = aj − aT,j + λv,j (57)

Lλr,j = λ̇r,j (58)

Lλv,j = λ̇v,j + λr,j (59)

LλH =
3

∑
j=1

(
λr,jvj

)
+ Γ (60)

where j = 1, 2, 3, aj = v̇j, and the last equation is meant to be computed at the final time.
For what concerns the derivatives of the losses with respect to the unknowns (e.g., the
Jacobian matrix), it can be computed either analytically, thanks to symbolic computation,
or numerically, by automatic differentiation.
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Results

The initial conditions for this problem are taken from Furfaro and Mortari [19]. The ini-
tial relative position and velocity vectors are chosen to be respectively r0 = [500,−600, 500]m
and v0 = [−50, 60, 5] m/s, whereas the initial absolute velocity of the target is equal to
vT,0 = [100, 100, 10] m/s. The target is supposed to be located at the origin of the abso-
lute frame at the initial time instant and is subjected to a constant acceleration command
aT = [1,−2, 0.1] m/s2. The activation function that is used in this problem is the hyperbolic
tangent. The weights and bias are sampled from U (−1; 1). Because the problem is non-
linear, an initial guess on the unknowns is required to initialize the iterative least-square.
In this work, as a first guess, the PoNN’s parameters Ξ have been randomly sampled from
U (0; 1). Figure 2 shows the trajectories of target and intercept learnt by the PoNN, and the
time history of state and costates, with Γ = 1. For these results, we set N = 20 and L = 16.
The training’s convergence is achieved in nine iterations, with a training time of 0.01 s. The
average loss and Hamiltonian are 1.3× 10−9 and 2.5× 10−8, respectively. The Hamiltonian
at the final time is 7.3× 10−13. Moreover, Figure 3 shows that H(t) + Γ is approximately
equal to zero, as expected. The learnt time of flight is 45.54 s, and the associated cost
function is J = 65.30. In Table 1, it can be seen that the average error on the dynamics
and the optimality of the learnt solutions improve via increasing N and L, at the expense
of the training time, always for Γ = 1. It is worth noting that the learned trajectories are
still accurate and optimal when low N and L hyperparameters are chosen. Furthermore,
the training time is such that the algorithm could be used for real-time application (e.g.,
a closed control loop made by a series of open control loops that were computed instant
by instant). A major difference in the formulation of the minimum time-energy intercept
problem that we are reporting here and what was solved by Furfaro and Mortari [19] is
that they fixed the final time to 50 s, while, in this work, we are also optimizing the final
time, which is another parameter to be learnt by the PoNN.

Table 1. Summary of the performances of PoNNs in learning the solutions for the minimum time-
energy optimal intercept, with Γ = 1.

N L # of Iterations Training Time [s] Mean(|L|) Mean(|H + Γ|) |H(t f ) + Γ| t f [s] J

20 8 8 0.005 2.2× 10−6 2.5× 10−6 1.3× 10−9 45.54 65.30
20 12 5 0.006 1.7× 10−7 3.9× 10−5 6.6× 10−12 45.54 65.30
20 16 9 0.01 1.3× 10−9 2.5× 10−8 7.3× 10−12 45.54 65.30
30 16 9 0.02 2.6× 10−9 2.1× 10−7 6.2× 10−13 45.54 65.30
30 30 7 0.03 2.0× 10−10 7.4× 10−8 2.8× 10−10 45.54 65.30
30 30 7 0.03 2.0× 10−10 7.4× 10−8 2.8× 10−10 45.54 65.30
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(a) Trajectories of Target and Intercept
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(b) Time history of state and costates

Figure 2. Unconstrained intercept problem with penalty Γ = 1 (N = 20 and L = 16).
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Figure 3. Hamiltonian loss for the unconstrained intercept problem with penalty Γ = 1 (N = 20 and
L = 16).

Table 2 also reports the solutions with different values of the penalty Γ. As expected,
increasing the penalty, the time of flight decreases at the expense of a higher commanded
accelerations (see Figure 4b). Even for the case of Γ = 10, Figure 5 shows that H(t) + Γ is
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approximately equal to zero, as expected, proving the optimality of the results. In order
to test the reliability of our results, the software GPOPS-II [29] has been run, just for this
example, with Γ = 1 and Γ = 10. The results obtained with GPOPS-II are the following,

• Γ = 1: CPU time = 1.48 s, mean(|H + Γ|) = 2.35× 10−6, |H(t f ) + Γ| = 2.35× 10−6,
t f = 45.54, J = 65.27

• Γ = 10: CPU time = 15.41 s, mean(|H + Γ|) = 1.27× 10−6, |H(t f ) + Γ| = 1.27× 10−6,
t f = 18.63, J = 294.97

(a) Trajectories of Target and Interceptor
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Figure 4. Unconstrained intercept problem with penalty Γ = 10 (N = 20 and L = 16).

Table 2. A summary of the performances of PoNNs in learning the solutions for the minimum
time-energy optimal intercept, with N = 20 and L = 16.

Γ # of Iterations CPU Time [s] Mean(|L|) Mean(|H + Γ|) |H(t f ) + Γ| t f [s] J

0 9 0.01 1.0× 10−8 2.8× 10−7 3.6× 10−8 61.63 12.53
1 9 0.01 1.3× 10−9 2.5× 10−8 7.3× 10−12 45.54 65.30
5 7 0.01 1.5× 10−9 1.1× 10−7 1.5× 10−9 23.8 191.75

10 6 0.009 3.7× 10−9 5.7× 10−8 9.6× 10−8 18.62 295.11
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Figure 5. Hamiltonian loss for the unconstrained intercept problem with penalty Γ = 10 (N = 20
and L = 16).

As can be seen, the cost function and time of flight are comparable, while the accuracy
on the quantity |H(t) + Γ| is higher for PoNNs.

3.2. Constrained Problem

Here, the optimization problem to be addressed is a minimum time-energy optimal
problem with bounded control. The OCS is cast as follows,

min J = Γt f +
1
2

∫ t f

t0

(aT
MaM) dt + ε

∫ t f

t0

wTw dt (61)

subject to

ṙ = v

v̇ = aT − aM

t0 ≤ t ≤ t f

r(t0) = r0

v(t0) = v0

r(t f ) = 0

umin,i ≤ aM,i ≤ umax,i

(62)

where Γ is a non-negative coefficient, umin,i and umax,i are the bounds of the control accel-
eration vector components, t f is the free final time to be optimized, and the final relative
velocity is chosen to be free. In particular, w = [wx, wy, wz] is the new fictitious control
acceleration vector that is required to transform the original constrained OCP into its
unconstrained version. The Hamiltonian for this problem is,

H(t) =
1
2

aT
MaM + εwTw + λT

r v + λT
v (aT − aM) + νT(aM −φ(w)) (63)

with ν = [νx, νy, νz] and φ(w) = [φ(wx), φ(wy), φ(wz)] being the additional multipliers
vector and the saturation functions vector, respectively. One can note that, in this case,
one equality constraint is added for each component of aM. The first-order necessary
conditions for the state and costate equations and the control optimality are given by,

∂H
∂aM

= aM − λv + ν = 0 (64)

∂H
∂w

= 2εw− ν�φ
′
(w) = 0 (65)
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ṙ =
∂H
∂λr

= v (66)

v̇ =
∂H
∂λv

= aT − aM (67)

λ̇r = −
∂H
∂r

= 0 (68)

λ̇v = −∂H
∂v

= −λr (69)

aM −φ(w) = 0 (70)

where the symbol ′ indicates the derivatives with respect to the new fictitious control and
the symbol � identifies the Hadamard product (e.g., element-wise multiplication). In
addition, two transversality conditions need to be imposed,

H(t f ) + Γ = 0 (71)

λv(t f ) = 0 (72)

The system of equations, along with the transversality condition on the Hamiltonian
at the final time, forms the TPBVP, which represent the physics constraints that drive the
PoNN’s training.

The transversality condition (71) is necessary, because the problem is final time free
(e.q., the final time is in the cost function). This means that the Hamiltonian at the converged
final time must be equal to Γ. Because the system is autonomous (e.g., there is no explicit
dependency on time in the dynamics), the Hamiltonian must be constant over time (e.g.,
H(t) = −Γ). As H(t f ) = −Γ (from the transversality condition), then H(t) + Γ = 0.

The equations then are,

La = v̇− aT + φ(w) (73)

Lλr = λ̇r (74)

Lλv = λ̇v + λr (75)

Lu = φ(w)− λv + ν (76)

Lw = 2εw− ν�φ
′
(w) (77)

H(t f ) + Γ = 0 (78)

where Equation (66) is removed, since it is redundant and the control aM is substituted by
φ(w). The unknown solutions are approximated with the TFC’s CEs,

rj =
(

σ −Ω1σ0 −Ω2σ f −Ω3σ′0

)T

β j + Ω1r0j + Ω2r f j
+

Ω3v0j

b2

vj = b2

[(
σ′ −Ω′1σ0 −Ω′2σ f −Ω′3σ′0

)T

β j + Ω′1r0j + Ω′2r f j
+

Ω′3v0j

b2

]

aj = b4

[(
σ′′ −Ω′′1 σ0 −Ω′′2 σ f −Ω′′3 σ′0

)T

β j + Ω′′1 r0j + Ω′′2 r f j
+

Ω′′3 v0j

b2

]
λr,j = σTβr,j

λ̇r,j = b2σ
′T βr,j

λv,j =
(

σ − σ f

)T

βv,j + λv f ,j

λ̇v,j = b2σ
′T βv,j

wj = σTβw,j

νj = σTβν,j
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Even for this case, the switching functions Ωk(z) are reported in the Appendix A.
Hence, the parameters of PoNN to be learnt are,

Ξ =

{
βr,1 βr,2 βr,3 βλr,1 βλr,2 βλr,3 βλv,1 βλv,2 βλv,3 βw,1
βw,2 βw,3 βν,1 βν,2 βν,3 b

}T

An iterative least-square approach can be used for minimizing the losses and train
the PoNN.

Results

The initial conditions and target constant acceleration command for this problem
are the same of the previous unconstrained version. For what concerns the boundaries
for the components of the control acceleration vector, they have all been set equal to
umin,i = d−i = −0.7 m/s2 and umax,i = d+i = 0.7 m/s2. The coefficient c for the saturation
function appearing in Equation (14) has been set to 0.005 after a trial and error procedure
in order to achieve a good accuracy. Moreover, a continuation procedure on the parameter
ε has been carried out to increase the accuracy of the solution as the unconstrained OCP
approaches its constrained version. In particular, the value of ε is decreased by a factor
of 0.1 at each iteration starting from 0.5 and arriving at 5× 10−11. The activation function
that is used in this problem is the logistic function. The weights and bias are sampled
from U (−1; 1). Even for this case, all of the PoNN’s parameters have been initialized by
randomly sample them from U (0; 1). For this problem, we set L = 16 and N = 100, where
the discretization points employed are the Chebyshev–Gauss–Lobatto points, represented
by the equation zi = cos(iπ), where i is equally spaced from −1 to 0. The results are
reported here just for Γ = 1 and they are shown in Figures 6–8. It is actually bounded
within the defined boundaries, as can be seen from the control in Figure 6b. As expected
from Equations (67) and (68), the position and velocity costates have a constant and linear
trend, respectively, proving the feasibility of the proposed solution. In addition, the
precision on the dynamics is shown in the time history of all the losses that are reported in
Figure 7, for which the mean value corresponds to 4.89× 10−6. Finally, the cost function
that is learnt by the PoNN is 67.807 with a time of flight of 51.946 s.
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Figure 6. Constrained intercept problem with penalty Γ = 1 (N = 100 and L = 16).
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Figure 7. Losses for the constrained intercept problem with penalty Γ = 1 (N = 100 and L = 16).

The optimality of the results is proved by the Hamiltonian loss (namely |H(t) + Γ|),
whose mean and final value are 4.95× 10−7 and 1.76× 10−6, respectively.

As can be observed, the PoNN is able to learn the optimal control action, even for this
case of bounded control, with a good accuracy.
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Figure 8. Hamiltonian loss for the constrained intercept problem with penalty Γ = 1 (N = 100 and
L = 16).

4. Discussions

The results that are presented in this paper show that PoNNs can effectively learn the
optimal control for the class of optimal intercept problems with the integral quadratic cost.
In particular, the framework converges to the solution, even for a random initialization of
the PoNN’s parameters, which is an important advantage, since we know how the training
can be significantly affected by the initial guesses when more traditional deterministic
algorithms are used.

Importantly, once the optimal control is learned on the training points, its analytical
representation is automatically obtained with the NNs. Therefore, it can be evaluated
in points unseen during the training (e.g., test points) without recurring to interpolation
techniques and/or no additional computational efforts.

Although the PoNN was solely trained in a physics-driven fashion to generate the
results, the training could also be carried out in a data-physics-driven fashion. This becomes
of extreme importance if the DEs do not precisely model the physics of the problem. For
instance, when perturbations are present and/or when uncertain dynamical systems are
considered, which is common when dealing with OCPs for space applications. Thanks
to this unique feature, the proposed PoNNs could be used solo or in synergy with other
states of the art methods for OCPs. For instance, one, in principle, could use PoNNs with
GPOPS-II, where the problem to tackle is sufficiently complex and both of the methods
alone would struggle. Within this scenario, optimal trajectories could be generated with
GPOPS-II and then sampled to generate data, which can be added as additional terms
in the PoNNs’ loss function to better drive the training in a data-physics-driven manner.
The same approach could be used with real data that intrinsically own information about
perturbations and/or unmodeled terms of the real dynamics that were not accounted for
in the modeled one.

5. Conclusions

Pontryagin Neural Networks (PoNNs) are introduced and tested to learn optimal
control actions for instances of an optimal intercept problem. PoNNs represent a particular
family of PINNs, specifically designed to learn control actions while satisfying the physics
constraints coming from the PMP application. PoNNs are based on a newly developed
PINN framework, named Extreme Theory of Functional Connections (X-TFC). PoNNs are
SISO NNs, which are modeled and trained to satisfy the PMP via learning the solution
of the arising TPBVP. In particular, the use of the Constrained Expressions (CEs), defined
within the TFC, enables the boundary conditions’ analytical satisfaction. This removes the
issues that are related to having competing objects in the loss function, representing the
major drawback of the original PINNs methods. The Extreme Learning Machine (ELM)
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algorithm is employed to train the NN within the CEs. Thanks to the ELM, the network’s
training is reduced to a simple least-squares, reducing the training time significantly when
compared to gradient-based methods. The results show how PoNNs successfully learn
optimal control actions for the optimal intercept problem, with unbounded and bounded
control. Although the training is always initialized with random initial guesses for both the
unknown coefficients of the CEs and final time, the algorithm can still converge to a feasible
solution in all the cases, proving the proposed method’s reliability. Furthermore, the results
have shown good accuracy for the precision of the dynamics and the results’ optimality.

Future works will focus on applying PoNNs to other classes of OCPs for space appli-
cations involving discontinuities in control, such as for the bang-bang type of solutions.
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Appendix A. Switching Functions

The detailed derivation of the switching functions is reported in the work of Johnston
et al. [21]. Here, for the convenience of the reader we just report them. We define
∆z = z f − z0 and z∗ = z− z0. The switching functions for a constrained expression with
one constraint on f are given in Table A1. The switching functions for a constrained
expression with one constraint on f ′ are given in Table A2. The switching functions for
a constrained expression with two constraints on f are given in Table A3. The switching
functions for a constrained expression with two constraints, one on f and one on f ′, are
given in Table A4. The switching functions for a three constraints constrained expression,
with two constraints on f and one on f ′, are given in Table A5. The switching functions for
a four constraints constrained expression, with two constraints on both f and f ′, are given
in Table A6.

Table A1. Switching functions for a one constraint constrained expression, with the constraint of f ,
defined on domain of z ∈ [z0, z f ].

Initial/Final Value
Ω1(z)

(·) 1

d
dz

(·) 0

Table A2. Switching functions for a one constraint constrained expression, with the constraint of f ′,
defined on domain of z ∈ [z0, z f ].

Initial/Final Value
Ω1(z)

(·) z

d
dz

(·) 1



Mathematics 2021, 9, 996 22 of 23

Table A3. Switching functions for a two constraints constrained expression, with both constrains on
f , defined on domain of z ∈ [z0, z f ].

Initial Value Final Value
Ω1(z) Ω2(z)

(·)
z f − z

∆z
z− z0

∆z
d
dz

(·) − 1
∆z

1
∆z

d2

dz2 (·) 0 0

Table A4. Switching functions for a two constraints constrained expression, with one constraint on f
and one on f ′, defined on domain of z ∈ [z0, z f ].

Initial Value Final Value
Ω1(z) Ω2(z)

(·) 1 z− z0

d
dz

(·) 0 1

d2

dz2 (·) 0 0

Table A5. Switching functions for a three constraints constrained expression, with two constraints on
f and one on f ′, defined on domain of z ∈ [z0, z f ].

Initial Value Final Value Initial Derivative
Ω1(z) Ω2(z) Ω3(z)

(·)
(z f − z)(z− 2z0 + z f )

∆z2
(z− z0)

2

∆z2

(z− z0)(z f − z)
∆z

d
dz

(·) −2(z− z0)

∆z2
2(z− z0)

∆z2

−2z + z0 + z f

∆z
d2

dz2 (·)
−2
∆z2

2
∆z2

−2
∆z

Table A6. Switching functions for a four constraints constrained expression, with two constraints on
f and two constraints on f ′, defined on domain of z ∈ [z0, z f ].

Initial Value Final Value Initial Derivative Final Derivative
Ω1(z) Ω2(z) Ω3(z) Ω4(z)

(·) 1 +
2z3
∗

∆z3 −
3z2
∗

∆z2 − 2z3
∗

∆z3 +
3z2
∗

∆z2 z∗ +
z3
∗

∆z2 −
2z2
∗

∆z
z3
∗

∆z2 −
z2
∗

∆z
d
dz

(·) 6z2
∗

∆z3 −
6z∗
∆z2 − 6z2

∗
∆z3 +

6z∗
∆z2 1 +

3z2
∗

∆z2 −
4z∗
∆z

3z2
∗

∆z2 −
2z∗
∆z

d2

dz2 (·)
12z∗
∆z3 −

6
∆z2 − 12z∗

∆z3 +
6

∆z2
6z∗
∆z2 −

4
∆z

6z∗
∆z2 −

2
∆z
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