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Abstract: Here, we review some results of fractional volatility models, where the volatility is driven
by fractional Brownian motion (fBm). In these models, the future average volatility is not a process
adapted to the underlying filtration, and fBm is not a semimartingale in general. So, we cannot use
the classical Itô’s calculus to explain how the memory properties of fBm allow us to describe some
empirical findings of the implied volatility surface through Hull and White type formulas. Thus,
Malliavin calculus provides a natural approach to deal with the implied volatility without assuming
any particular structure of the volatility. The aim of this paper is to provides the basic tools of
Malliavin calculus for the study of fractional volatility models. That is, we explain how the long and
short memory of fBm improves the description of the implied volatility. In particular, we consider
in detail a model that combines the long and short memory properties of fBm as an example of the
approach introduced in this paper. The theoretical results are tested with numerical experiments.

Keywords: derivative operator in the Malliavin calculus sense; fractional Brownian motion; future
average volatility; Hull and White formula; Itô’s formula; Skorohod integral; stochastic volatility
models; implied volatility; skews and smiles; rough volatility

MSC: 60G22; 91G20

1. Introduction

It is well-known that the classical Black-Scholes model [1] describes the current market
behavior when it is assumed that the volatility process σ is a constant. However, despite its
simplicity, empirical observations show that some important features of option prices are
not represented by this model. Hence, the Black-Scholes model (11) has to be extended to
the case where the volatility σ is a stochastic process. A simple method to achieve this is to
allow the volatility σ to be a process independent of the noise governing the stock prices
(see Renault and Touzi [2], Stein and Stein [3], and Scott [4], amongst others). Under this
model, some features, such as the smile, are analyzed using the Hull and White formula [5]
(see (15) below), which can be obtained via the Itô’s formula and states that the price of the
European option is given by a conditional expectation of the Black-Scholes option pricing
formula where the constant volatility is changed by the future average volatility

t 7→
√

1
T − t

∫ T

t
σ2

s ds, t ∈ [0, T]. (1)

where T is the maturity time.
The study of the financial data showed that correlation exists between the volatility σ

and the price process (see, for instance, Bates [6], Heston [7], and Johnson and Shanno [8]).
Consequently, we need to consider extensions of model (11). In order to fix ideas, we now
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suppose that the asset price follows the dynamics of the stochastic differential equation (in
the Itô’s sense)

dSt = rStdt + σtSt(ρdWt +
√

1− ρ2dBt), t ∈ [0, T], (2)

where W and B are two independent Brownian motions and σ is a process adapted to the
filtration generated by W. So, in order to analyze the properties of the market represented
by the model for stock prices (2), we have to identify a Hull and White type formula for
this model. However, in this case, we cannot apply the classical Itô’s calculus techniques
since the future average volatility (1) is not an adapted process to the filtration generated
by W and B. So, it is necessary to deal with a stochastic integral that allows us to integrate
processes that are not adapted to the underlying filtration. As such, Malliavin calculus
becomes a useful tool for the study of models with stochastic volatility. In particular, this
theory does not require the volatility to be either a diffusion or a Markov process. Thus, it is
now possible to work with fractional volatilities, which satisfy long and short dependence,
as conducted by Alòs et al. [9] in 2007. In this paper, we briefly describe the analytical
approach used in the literature to deal with the problem of establishing Hull and White
type formulas for different financial markets with stochastic volatilities (see Alòs [10] for
the original idea), and introduce the techniques of Malliavin calculus to provide methods
for analytical and numerical approaches to examine option pricing problems.

It is also well-known that the stochastic volatility models with diffusion as a volatility
process capture the important features of the implied volatility as the smile (or skew) and
term structure (see Barndorff-Nielsen and Shephard [11,12], Bates [6], Fouque et al. [13],
and Renault and Touzi [2], amongst others). The implied volatility is the process that fits
the Black-Scholes price formula with the market price of an observed European call. The
Hull and White type formula provides a useful tool for calculating the derivative of the
implied volatility with respect to log-strike, which depends on the derivative of σ in the
Malliavin calculus sense, asexplained in this paper. Thus, the Hull and White formula
becomes an important technique for studying the at-the-money short-term behavior skew
slopes, even for fractional volatilities (see Alòs et al. [9]).

The main purpose of this paper is to provide a brief introduction of the tool needed to
obtain and understand some results of fractional volatility models. We explain how these
models improve the description of some empirical findings of the implied volatility using
the long and short memory of the underlying driving fractional process σ.

The paper is organized as follows: The fractional Brownian motion is introduced in
Section 2. In Section 3, we describe the framework that we use in this paper, namely the
basic tools of the Malliavin calculus that we need to establish the results ofinthe paper.
In Section 4, we consider several volatility models. The implied volatility is reviewed in
Sections 4 and 5. The analytical study of the Hull and White formula and its consequences
on the implied volatility are explained in Section 6. Finally, in Section 7, we consider mixed
fractional Bergomi models, whose volatility σ combines long and short memories.

2. Fractional Brownian Motion

It is well-known that Itô’s calculus [14] for Brownian motion W = {Wt : t ∈ [0, T]} has
a wide range of applications in the fields of human knowledge via stochastic differential
equations. This calculus is based on two important tools: Itô’s integral and Itô’s formula,
which allow us to deal with stochastic processes. The Itô’s integral is not, in general, a
Riemann–Stieltjes integral due to W having non-bounded variation paths; Itô’s formula is a
type of fundamental theorem of calculus. The construction of these two tools uses either the
martingale property or the independence of increases in W. However, a natural restriction
for Itô’s calculus is that the integrands have to be adapted to the filtration (information)
FW generated by W. So, by the Doob–Meyer decomposition theorem, the classical Itô’s
calculus is extended to semimartingales as integrators. Among the applications of classical
Itô’s calculus is the Black-Scholes formula in mathematical finance [1].
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Despite the number of applications of Itô’s calculus for Brownian motion, we cannot
consider phenomena that exhibit long-range dependence [15]. That is, the covariance
of the increases in the involved process on intervals is non-zero and decays slowly as a
negative power of the distance between the intervals. As examples, the long dependence
appears in stock price changes (see Greene and Fielitz [16]), hydrology (see Mandelbrot
and Wallis [17]), rainfall (see Mandelbrot [18], and Mandelbrot and Wallis [19]), amongst
others). In volatility modeling, Comte and Renault [20] observed that the long-maturity
behavior of the implied volatility can be explained by long-memory volatilities, pioneering
the use of the fractional Brownian motion in volatility modeling.

Some other processes are observed to satisfy short memory. That is, the correlation
between increments is negative and has a fast decay as a function of the distance between
intervals. Even though these short-range properties are less studied, short-memory pro-
cesses have been proved to be of interest in the modeling of volatility process in finance
(see Alòs et al. [9] and Gatheral et al. [21]).

Hence, we need to consider processes satisfying long- and short-range dependence, as
does fractional Brownian motion (fBm). However, fBm is not a semimartingale in general
(see Roger [22]). Therefore, it is necessary to develop techniques of stochastic calculus
for fBm that cannot be obtained from classical Itô’s calculus. Among the authors who
have dealt with this problem are Alòs et al. [23], Biagini et al. [24], León [25], León and
Nualart [26], Nualart [27] (and references therein), Nualart and Tindel [28], Mishura [29],
and Zähle [30].

Let T > 0. A fractional Brownian motion BH = {BH
t : t ∈ [0, T]}with Hurst parameter

H ∈ (0, 1) is a centered Gaussian process with covariance function

E
(

BH
t BH

s

)
=

1
2

(
s2H + t2H − |t− s|2H

)
, s, t ∈ [0, T].

FBm was first considered by Kolmogorov [31], who called it a Wiener spiral, and then
studied by Mandelbrot and van Ness [32]. BH is the only finite-variation process that is
self-similar with index H and has stationary increments, and was established by Man-
delbrot and van Ness [32]. B1/2 is Brownian motion and, consequently, has independent
increments, and BH and H 6= 1/2 exhibit long- and short-range dependence. Namely, for
t− s = nh,

E
{(

BH
t+h − BH

t

)(
BH

s+h − BH
s

)}
=

1
2

h2H
(
(n + 1)2H + (n− 1)2H − 2n2H

)
≈ h2H H(2H − 1)n2H−2.

Mandelbrot and van Ness provided the following integral representation of fBm

BH
t =

1
Γ(H + 1

2 )

(∫ 0

−∞

[
(t− s)H−1/2 − (−s)H−1/2

]
dBs

+
∫ t

0
(t− s)H−1/2dBs

)
, t ∈ [0, T]. (3)

where B = {Bt : t ∈ (−∞, T]} is a Brownian motion on (−∞, T]. Furthermore, Molchan
and Golosov [33], Decreusefond and Üstünel [34], and Norros et al. [35] introduced other
integral representations. We call the last integral in (3)

WH
t :=

∫ t

0
(t− s)H−1/2dBs, t ∈ [0, T], (4)

a Riemann–Liouville fractional Brownian motion (RLfBm) with index H (see, for example,

Lifshits and Simon [36]). It is a self-similar Gaussian process (i.e., WH
a·

(d)
= aHWH· , for all

a > 0), W1/2 is Brownian motion and, for H 6= 1/2, WH has non-stationary increments,
unlike fBm.
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Because of the simplicity of its representation, the RLfBm has been widely used in the
modeling of long- and short-range volatilities in finance (see, for example, Alòs et al. [9,37],
Bayer et al. [38], Comte and Renault [20], Gatheral et al. [21], and El Euch and Rosen-
baum [39], amongst others).

Some simulations of the fBm with H = 0.7, 0.5 and 0.3 are shown in Figure 1.

Figure 1. Simulated fBm paths with H = 0.7, 0.5, and 0.3.

3. Malliavin Calculus for Brownian Motion

Malliavin calculus was introduced by Malliavin [40] and has become an important tool
in stochastic analysis because the range of its applied and theoretical applications has been
increased enormously. In particular, using Malliavin calculus, we can determine if a random
variable has a smooth density, which was its original motivation, providing an explicit
expression of Clark’s formula, which is now known as the Clark–Haussmann–Ocone
formula (see (9)), and dealing with problems related to quantitative finance (see Alòs and
García-Lorite [37], Malliavin and Thalmaier [41], and Di Nunno et al. [42], amongst others).

Malliavin calculus is mainly based on three operators: the derivative operator and
its adjoint (divergence operator), and the number operator. In Wiener space, Gaveau and
Trauber [43] proved that the divergence operator agrees with the Skorohod integral [44],
which is an extension of Itô’s integral, which allows us to integrate processes that are not
necessarily adapted to the filtration generated by the Brownian motion W. So, Malliavin
calculus also becomes an important tool for considering problems where Itô’s calculus is
not able to be applied since the integrands are not necessarily adapted to the underlying
filtration, as shown by the analysis in León et al. [45] of a financial market with an insider.
Hence, we might think that Malliavin calculus only serves to analyze phenomena that
are modeled by anticipating systems or stochastic differential equations with anticipating
integrals that integrate non-adapted processes; however, Malliavin calculus is useful in
several applied problems in several areas, in particular, in finance. The Clark–Haussman–
Ocone representation in Formula (9), the integration by parts (6), and anticipating Itô’s
Formula (10) have proved useful in financial applications as the computation of hedging
strategies, the efficient computation of the Greeks (the sensitivity of derivative prices with
respect to the market parameters), and the analysis of the at-the-money implied volatility
(see [37] and the references therein).

Now, we introduce the derivative operator (in the Malliavin calculus sense) and the
divergence operator in order to establish the notation that we use in the remainder of this
paper. Let S be the set of all smooth random variables of the form

F = f (Wt1 , . . . , Wtn), (5)
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with t1, . . . , tn ∈ [0, T] and f ∈ C∞
b (Rn) (i.e., f and all its partial derivatives are bounded).

The derivative of the smooth functional F described by (5) is defined as the stochastic
process, in L2(Ω× [0, T]),

DsF =
n

∑
j=1

∂ f
∂xj

(Wt1 , . . . , Wtn)1[0,tj ]
(s), s ∈ [0, T].

In general, the iterated derivative operator of a random variable F (as in (5)) is
defined by

Dm
s1,...,sm F = Ds1 . . . Dsm F, s1, . . . , sm ∈ [0, T].

Nualart [46] stated that these operators are closable from Lp(Ω) into
Lp(Ω; L2[0, T]) for any p ≥ 1, and we denote by Dn,p the closure of S with respect to
the norm

||F||n,p =

(
E|F|p +

n

∑
i=1

E||DiF||pL2([0,T]i)

) 1
p

.

Sometimes D and Dn,p are denoted by DW and Dn,p,W , respectively, if we are dealing
with another Brownian motions.

The adjoint of the derivative operator D : D1,2 ⊂ L2(Ω) → L2(Ω × [0, T]) is the
divergence operator δ, also called the Skorohod integral in this case. That is, the domain
of δ, denoted by Dom δ, is the set of processes u ∈ L2(Ω× [0, T]) such that there exists
δ(u) ∈ L2(Ω) satisfying the duality relation

E(δ(u)F) = E
(∫ T

0
(DsF)usds

)
, for every F ∈ S . (6)

Sometimes, we use the notation δ(u) =
∫ T

0 usdWs. Let L2
a,T be the family of all the

square and adapted process to the filtration FW generated by W. It is known that δ is
an anticipating integral in the sense that L2

a,T is included in Dom δ and δ agrees with the
Itô integral on L2

a,T . We also know that the space L1,2 = L2(0, T;D1,2) is included in the
domain of δ. For details, the reader can consult Nualart [46].

The Malliavin calculus has been extended to isonormal Gaussian processes (see, for
example, Nualart [46] for details). For completeness of the description, we briefly explain
how this extension of Malliavin calculus includes d-dimensional Brownian motions.

LetH be a real separable Hilbert space and (Ω,F , P) be a complete probability space.

Definition 1. A family W = {W(h) : h ∈ H} defined on (Ω,F , P) is called an isonormal
Gaussian process if it is a Gaussian stochastic process indexed byH such that

E(W(h)) = 0 and E(W(h)W(g)) = 〈h, g〉H, for h, g ∈ H.

Now a random variable F belongs to the family of smooth functional S if it has
the form

F = f (W(h1), . . . , W(hn)), (7)

with hi ∈ H, f is as in (5), and DF is theH-valued random variable

DF =
n

∑
j=1

∂ f
∂xj

(W(h1), . . . , W(hn))hj.

For m ∈ N and F given by (7), the derivative DmF is now anH⊗m. For instance

D2F =
n

∑
i,j=1

∂2 f
∂xjxi

(W(h1), . . . , W(hn))hj ⊗ hi.
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As before, the domain Dm,p ⊂ Lp(Ω) of the close extension of Dm is the closure of S
with respect to the norm

||F||m,p =

(
E|F|p +

m

∑
i=1

E||DiF||pH⊗m

) 1
p

.

Instead of (6), the divergence operator δ : Dom δ ⊂ L2(Ω;H) → L2(Ω) is character-
ized by the duality relation

E(δ(u)F) = E(〈DF, u〉H), for every F ∈ S . (8)

It means that u ∈ L2(Ω;H) is in the domain of the divergence operator if and only if
there exists a square integrable random variable δ(u), such that (8) holds.

Example 1. Let B = (B1, . . . , Bd) = {Bt : t ∈ [0, T]} be a d-dimensional Brownian motion. In
this case, forH = L2

(
[0, T];Rd

)
, we define

W(h) =
d

∑
i=1

∫ T

0
hi(s)dBi

s h ∈ H.

Then, it is easy to show that W = {W(h) : h ∈ H} is an isonormal Gaussian process onH.

The integral representation for functionals of the Wiener process has been an im-
portant tool in hedging contingent claims in mathematical finance. Namely, let B be the
d-dimensional Brownian motion in Example 1 and F ∈ L2(Ω,F B

T , P), where (F B
t )t∈[0,T]

is the filtration generated by B. Then, there exists a unique FB
t -adapted process ψ in

L2(Ω× [0, T];Rd) such that

F = E(F) +
∫ T

0
ψtdBt = E(F) +

d

∑
i=1

∫ T

0
ψi

tdBi
t.

However, in general, it is not easy to determine the Rd-valued process ψ. This process
was first calculated in the case where F has a derivative in the Fréchet sense by Clark [47].
Later, this problem was considered by Haussmann [48] when F is a functional of a solution
of a stochastic differential equation driven by B. In the mid-1980s, Ocone [49] wrote ψ in
terms of the derivative DF. For F ∈ D1,2, we have

F = E(F) +
∫ T

0
E
[

DtF
∣∣F B

t

]
dBt = E(F) +

d

∑
i=1

∫ T

0
E
[

DBi

t F
∣∣F B

t

]
dBi

t. (9)

This formula was extended to random variables in D1,1 by Karatzas et al. [50], and
applied by Ocone and Karatzas [51] to find hedging strategies in complete financial markets
driven by B. The proof of (9) is based in the chaos decomposition of random variables
using multiple Itô–Wiener integrals. In order to provide an idea of the proof and to simplify
the notation, assume that d = 1. So, the chaos decomposition result implies that

F =
∞

∑
n=0

In( fn), in L2(Ω).

Here, fn ∈ L2([0, T]n) is a symmetric function, I0( f0) = E(F) and In( fn) is the iter-
ated integral

In( fn) = n!
∫ T

0

∫ tn

0
· · ·

∫ t2

0
fn(t1, . . . , tn)dBt1 · · · dBtn .
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Then, (9) follows by observing that Dt In( fn) = nIn−1( fn(·, t)), t ∈ [0, T], where δ is
an extension of the Itô integral and

nδ
(

In−1

(
f (t1, . . . , tn−1, t)1{t1∨...∨tn−1≤t}

))
= In( fn), n ≥ 1.

The reader can consult Nualart [46] for details.
From Example 1, we can consider the divergence operator with respect to a d-

dimensional Brownian motion and apply Itô-type formulas for this operator. For instance,
we can follow the ideas of Nualart and Pardoux [52] to deal with processes of the form
t 7→ F(t, Xt, Yt) with F ∈ C1,2,2([0, T]×R2) such that F and its partial derivatives evaluated
at (t, Xt, Yt) are bounded by a constant, Y· =

∫ T
· θsds and

Xt = x +
∫ t

0
usds +

∫ t

0
vs

(
ρdWs +

√
1− ρdBs

)
, t ∈ [0, T].

Here, x ∈ R, W, and B are two independent Brownian motions; u, v, and θ are
three square-integrable and adapted processes to the filtration generated by W with θ ∈
L2([0, T];D1,2,W), and ρ ∈ (−1, 1). In this case, we have

F(t, Xt, Yt) = F(0, x, Y0) +
∫ t

0
∂sF(s, Xs, Ys)ds +

∫ t

0
∂xF(s, Xs, Ys)usds

+
∫ t

0
∂xF(s, Xs, Ys)

(
ρdWs +

√
1− ρdBs

)
−
∫ t

0
∂yF(s, Xs, Ys)θsds +

1
2

∫ t

0
∂2

xxF(s, Xs, Ys)v2
s ds

+ρ
∫ t

0
∂2

xyF(s, Xs, Ys)

(∫ T

s
DW

s θrdr
)

vsds, t ∈ [0, T]. (10)

Note that the stochastic integral with respect to W is in the Skorohod sense and that
we need to use Malliavin calculus in order to state the last Itô formula because process Y is
not adapted to the filtration generated by W and B. We also obtain the classical Itô formula
when θ is a deterministic function since, in this case,

∫ T
· DW

s θrdr ≡ 0, which follows easily
from the definition of the Malliavin derivative. Notably, Malliavin calculus allows us to
consider Itô’s formulas with coefficients not necessarily adapted to the underlying filtration,
which satisfy suitable hypotheses depending on the derivative operator D (see, for instance,
Nualart and Pardoux [52] and Nualart [46,53]). The proof of (10) uses Taylor’s theorem as
that of the classical Itô’s formula. Hence, given a partition π = {0 = t0 < t1 < . . . , tn = T},
we consider the term

∂xF(ti−1, Xti−1 , Yti−1)
∫ ti

ti−1

vs

(
ρdWs +

√
1− ρdBs

)
.

Thus, considering Y as independent of B, we obtain

√
1− ρ∂xF(ti−1, Xti−1 , Yti−1)

∫ ti

ti−1

vsdBs

=
√

1− ρ
∫ ti

ti−1

vs∂xF(ti−1, Xti−1 , Yti−1)dBs,
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as in the proof of the classical Itô formula. However,

ρ∂xF(ti−1, Xti−1 , Yti−1)
∫ ti

ti−1

vsdWs

= ρ
∫ ti

ti−1

vs∂xF(ti−1, Xti−1 , Yti−1)dWs

+ρ
∫ ti

ti−1

vsDW
s
(
∂xF(ti−1, Xti−1 , Yti−1)

)
ds

= ρ
∫ ti

ti−1

vs∂xF(ti−1, Xti−1 , Yti−1)dWs

+ρ
∫ ti

ti−1

vs∂2
xyF(ti−1, Xti−1 , Yti−1)DW

s Yti−1 ds

because Y is not an process adapted to the filtration generated by W and the property

FδW(u) = δW(Fu) +
∫ T

0
usDW

s Fds,

which is true under suitable conditions (see Nualart [46] for details). Consequently, the
last integral in the right-hand of (10) is related to the integral ρ

∫ ti
ti−1

vs∂2
xyF(ti−1, Xti−1 , Yti−1)

DW
s Yti−1 ds, which is zero if θ is deterministic.

4. Stochastic Volatility Models and the Implied Volatility
4.1. The Black-Scholes Model and the Concept of Implied Volatility

The most well-known risk-neutral model for asset prices S is the Black-Scholes
model [1]:

dSt = rStdt + σStdBt, t ∈ [0, T], (11)

where T > 0, r denotes the interest rate, σ is the volatility parameter, and B represents a
standard Brownian motion defined in a probability space (Ω,F , P). Notice that this model
assumes that S is a geometric Brownian motion, and then

St = S0 exp
((

r− σ2

2

)
t + σBt

)
, t ∈ [0, T],

due to Itô’s formula. For the sake of simplicity, it is common to work with the log-price
defined as X = ln(S). Notice that X is a Gaussian process, and it satisfies

dXt =

(
r− 1

2
σ2
)

dt + σdBt, t ∈ (0, T].

Under this model, the value V of a European call option with payoff (ST −K)+, where
K is the strike price, is given at every t ∈ [0, T] by

Vt = e−r(T−t)Et[(ST − K)+] = BS(t, Xt, K, σ),

where Et denotes the conditional expectation with respect to the σ-algebra generated by B
and BS represents the price of an European call option under the classical Black-Scholes
model with constant volatility σ, current log stock price x, time to maturity T − t, strike
price K, and interest rate r. That is,

BS(t, x, K, σ) = ex N(d+)− Ke−r(T−t)N(d−),

where N denotes the cumulative probability function of the standard normal law and
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d± :=
x− x∗t

σ
√

T − t
± σ

2

√
T − t,

with x∗t := ln K− r(T − t).

Given an observed market price V of some European call, we define the implied
volatility I as the volatility that fits this empirical price. That is, the implied volatility is
defined by Vt = BS(t, Xt, K, I) (notice that I is well-defined as BS is invertible). Under the
Black-Scholes model (11), these implied volatilities should be constant, not depending on
the parameters K and T. However, empirical implied volatilities are not constant. The
representation of the observed market implied volatility as a function of the strike (or,
more often, as a function of the log-moneyness) and time to maturity is called the implied
volatility surface. As the implied volatility surface is not flat and the implied volatility
depends on the moneyness and time to maturity, the Black-Scholes model (11) is not able
to reflect the complexity of option prices in the market. Because of this, several extensions
of this model have been proposed in the literature. One of the most common is to allow
the volatility to be a stochastic process, adapted to some other Brownian motion W that
can be correlated with B, as we see in the following section. Recently, Fink [54] considered
the Black-Scholes setting to deal with models driven by Molchan–Golosov fractional Lévy
processes. These models are free of arbitrage. Consequently, a version of the fundamental
theorem of asset pricing is stated. Therefore, it is possible to determine explicit formulas
for European call options.

4.2. Stochastic Volatility Models

One of the most common extensions of the Black-Scholes model (11) is to assume that
the volatility is also a random process, that is, asset prices follow a process of the form

dSt = rStdt + σtSt(ρdWt +
√

1− ρ2dBt), t ∈ [0, T], (12)

for some other Brownian motion W independent of B and for some correlation parameter
ρ ∈ (−1, 1), and σ is a process adapted to the filtration generated by W. When σ is a
diffusion process, models of the form (12) are called stochastic volatility models. Classical
popular examples both in theory and practice include:

• The Heston model, where the volatility satisfies

dσ2
t = k(σ2

t − θ)dt + ν
√

σ2
t dWt, (13)

for some positive constants k, θ, and ν;
• The SABR model, with

dσt = νσtdWt, (14)

for some positive ν.

Stochastic volatility models are able to describe some properties of empirical option
prices as skews and smiles (see, for example, Lee [55]). With fixed T, we denote by skew
the plot of the implied volatility as a function of the strike (or, alternatively, as a function of
the log-moneyness Xt − x∗t ) (Figure 2). If this skew is locally convex with a minimum in
the at-the-money strike (U-plotted), we call it a smile (Figure 2). Smiles appear in models
with ρ = 0, whereas in the correlated case ρ 6= 0, this skew has a slope that can be positive
or negative depending on the sign of the correlation parameter.
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Figure 2. Simulated skews and smiles for a Heston model with σ2
0 = 0.05, θ = 0.9, k = 3,

ν = 0.8, T = 0.1, and ρ = −0.7, 0, 0.7.

Moreover, skews and smiles are more pronounced for short maturities and they flatten
as T increases (Figure 3).
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Figure 2. Simulated skews and smiles for a Heston model with σ2
0 = 0.05, θ = 0.9, k = 3,

ν = 0.8, T = 0.1, and ρ = −0.7, 0, 0.7.

Moreover, skews and smiles are more pronounced for short maturities and they flatten
as T increases (see Figure 3).

Figure 3. Simulated similes for a Heston model with σ2
0 = 0.05, θ = 0.9, k = 3, ν = 0.8, ρ = 0 and

T = 0.1, 0.5, 1, 5.

Even when stochastic volatility models can describe skews and smiles for a fixed
maturity, they are not able to reproduce the empirical term structure of implied volatilities.
That is, they cannot replicate all these smiles at the same time and they cannot reproduce
the whole implied volatility surface. In general, the empirical skew and smile effects are
more pronounced for short and intermediate maturities than those predicted by stochastic
volatility models (see Lee [54]). For example, in Figure 4 we can see the classical short-end
of the implied volatility skew. In fact, the empirical skew slope uses to be of order O(T−

1
2 )

(see again [54]), a phenomenon that is not explained by classical volatility models, where
the volatility is assumed to be a diffusion process.

Figure 3. Simulated similes for a Heston model with σ2
0 = 0.05, θ = 0.9, k = 3, ν = 0.8, ρ = 0 and

T = 0.1, 0.5, 1, and 5.

Even when stochastic volatility models can describe skews and smiles for a fixed
maturity, they are not able to reproduce the empirical term structure of implied volatilities;
that is, they cannot replicate all these smiles at the same time and they cannot reproduce
the whole implied volatility surface. In general, the empirical skew and smile effects are
more pronounced for short and intermediate maturities than those predicted by stochastic
volatility models (see Lee [55]). For example, Figure 4 shows the classical short-end of
the implied volatility skew. The empirical skew slope used to be of order O(T−

1
2 ) (see

again [55]), a phenomenon that is not explained by classical volatility models, where the
volatility is assumed to be a diffusion process.

There have been many attempts to overcome this issue. For example, adding jumps
in (12) allows the creation of skews in the implied volatility that are stronger for short
maturities (see, for example, Cont and Tankov [56]). Another approach proposes diffusions
with parameters that depend on the maturity date (see Fouque et al. [57]). In this paper,
we focus on the fractional volatility models, where the driven process is not a Brownian
motion, but a fBm, as given in Section 2. We introduce the intuition behind these models in
the following section. This intuition is based on the properties of the volatility process that
are linked to the empirical implied volatility surface. Even when we focus on the origin of
the use of the fBm in volatility modeling, we notice that it has recently found interesting
applications in other financial problems, such as in the joint calibration of the S&P and the
VIX indexes. In particular, fractional volatilities can reproduce a positive VIX skew (see,
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for example, [58,59]), being a study of other volatility indexes (such as the VSTOOXX and
OVX), which is an interesting research line.

Figure 4. Stock: Apple; expiration: 16 April 2010; data courtesy of Rafael De Santiago (IESE, Barcelona).

5. Intuition behind Fractional Volatility Models
5.1. An Expansion for the Implied Volatility

In order to propose a model, we have to deeply understand the behavior of the implied
volatility. We stated that in the Black-Scholes case (11), the volatility is constant. What
happens exactly if the volatility is not constant?

5.1.1. The Deterministic Case

Let us assume first the case where the volatility σ = {σt, t ∈ [0, T]} is a deterministic
function of time. Then, a direct application of Itô’s formula gives us, for every t ∈ [0, T], that

ST = St exp
(∫ T

t

(
r− 1

2
σ2

s

)
ds +

∫ T

t
σsdBs

)
,

which implies that, conditioned to F B
t , XT := ln(ST) is Gaussian, with mean

Xt +
∫ T

t

(
r− 1

2 σ2
s

)
ds and variance

∫ T
t σ2

s ds. That is, fixed t asset prices have the same

distribution as in a Black-Scholes model (11) with volatility
√

1
T−t

∫ T
t σ2

s ds. Then, the price
Vt of a European call with maturity T and strike K is given by

Vt = BS

t, Xt, K,

√
1

T − t

∫ T

t
σ2

s ds

.

Thus, it follows that the implied volatility It does not depend on the strike, and is
equal to

It =

√
1

T − t

∫ T

t
σ2

s ds.
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5.1.2. The Stochastic Volatility Case with ρ = 0

Now, what happens if the volatility is random? Let us assume for the sake of simplicity
that ρ = 0. Then, conditioned to the σ-algebra generated by W, we are in the same scenario
as in the deterministic case, that is,

Vt = Et

BS

t, Xt, K,

√
1

T − t

∫ T

t
σ2

s ds

, (15)

where Et(·) = E(·|FW
t ∨ F B

t ). The above formula is known as the Hull and White formula
(see, for example, Fouque et al. [57]). Notice that, again, the behavior of the implied

volatility depends on the behavior of
√

1
T−t

∫ T
t σ2

s ds. Let us now denote

vt =

√
1

T − t

∫ T

t
σ2

s ds

and

v̂t =

√
1

T − t

∫ T

t
Et(σ2

s )ds.

A direct Taylor approach and the delta–vega–gamma relationship

∂BS
∂σ

(t, x, K, σ)
1

σ(T − t)
=

(
∂

∂x2 −
∂

∂x

)
BS(t, x, K, σ)

show us that the expression in the Hull and White formula can be expanded as

Et(BS(t, Xt, K, vt))

= BS(t, Xt, K, v̂t)

+
1
2

Et

[(
∂

∂x2 −
∂

∂x

)
BS(t, Xt, K, v̂t)

(∫ T

t
σ2

s ds−
∫ T

t
Et(σ

2
s )ds

)
+

1
8

(
∂

∂x2 −
∂

∂x

)2
BS(t, Xt, K, v̂t)

(∫ T

t
σ2

s ds−
∫ T

t
Et(σ

2
s )ds

)2

+ ...

]

Notice that the second term in the right-hand-side in the above equation is zero. Then,
we can write

Et(BS(t, Xt, K, vt))

= BS(t, Xt, K, v̂t) (16)

+

[
1
8

(
∂

∂x2 −
∂

∂x

)2
BS(t, Xt, K, v̂t)Et

((∫ T

t
σ2

s ds−
∫ T

t
Et(σ

2
s )ds

)2
)
+ · · ·

]
=: (BS(t, Xt, K, v̂t)) + At + · · ·.

Now, we can obtain a Taylor expansion for the implied volatility:

It = BS−1((BS(t, Xt, K, v̂t) + At + · · ·)

= v̂t +
1

∂BS
∂σ (t, x, K, v̂t)

At + · · ·. (17)

Then, as
∂BS
∂σ

=
ex
√

2π
exp

(
−d2

+(σ)

2

)
√

T − t
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and (
∂

∂x2 −
∂

∂x

)2
BS(t, Xt, K, v̂t) (18)

=
ex√

2π(T − t)
exp

(
−d2

+(v̂t)

2

)
d2
+(v̂t)− v̂td+(v̂t)

√
T − t− 1

v̂3
t (T − t)

,

Equality (17) reads as

It = v̂t +
d2
+(v̂t)− v̂td+(v̂t)

√
T − t− 1

v̂3
t (T − t)2

Et

(∫ T

t
σ2

s ds−
∫ T

t
Et(v̂2

t )ds
)2

(19)

+ · · · .

Notice that this expansion writes the implied volatility as the sum of the term v̂t, which
does not depend on the strike, and a second term that is quadratic on the log-moneyness
and it appears multiplied by the variance of the integrated variance

∫ T
t σ2

s ds. Then, smiles
and skews are more pronounced when the variability of this integrated volatility is higher,
that is, for high-variance volatilities.

5.1.3. The Stochastic Volatility Case with ρ 6= 0

Let us consider now the correlated ρ 6= 0. Again, taking conditional expectations with
respect to the σ-algebra generated by W, we obtain

Vt = Et

BS

t, Xtψt, K,

√
(1− ρ2)

1
T − t

∫ T

t
σ2

s ds

,

where ψt = ρ
∫ T

t σsdWs (see Romano and Touzi [60] and Willard [61]). Then, a similar
Taylor expansion as in the uncorrelated case shows us that the skews in this case are
directly connected to the variability in the integrated variance

∫ T
t σ2

s ds, as well as to the
covariance between this integrated variance and the random variable ψt. More precisely,
the delta–vega–gamma relationship allows us to write

∂2BS
∂σ∂x

(t, x, K, σ)
1

σ(T − t)
=

∂

∂x

(
∂

∂x2 −
∂

∂x

)
BS(t, x, K, σ)

and then, after taking expectations, the second-order Taylor expansion reads as

Vt = BS(t, Xt, K, v̂t)

+
1
2

[
∂

∂x

(
∂

∂x2 −
∂

∂x

)
BS(t, Xt, K, v̂t)

×Et

((∫ T

t
σ2

s ds−
∫ T

t
Et(σ

2
s )ds

)
ψt

)
(20)

+
1
8

(
∂

∂x2 −
∂

∂x

)2
BS(t, Xt, K, v̂t)

× (1− ρ2)Et

(∫ T

t
σ2

s ds−
∫ T

t
Et(σ

2
s )ds

)2

+ ...

]
.
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Now, since

∂

∂x

(
∂

∂x2 −
∂

∂x

)
BS(t, x, K, σ)

=
ex

σ
√

2π(T − t)
exp

(
−d2

+(σ)

2

)(
1− d+(σ)

σ
√

T − t

)
,

similar arguments as before allow us to write

It = v̂t (21)

+
1

(T − t)

(
1− d+(v̂t)

v̂t
√

T − t

)
Et

((∫ T

t
σ2

s ds−
∫ T

t
Et(σ

2
s )ds

)
ψt

)
+

d2
+(v̂t)− σd+(v̂t)

√
T − t− 1

v̂3
t (T − t)2

(1− ρ2)Et

(∫ T

t
σ2

s ds−
∫ T

t
Et(σ

2
s )ds

)2

+ · · ·
(22)

From the above, we deduce that the covariance between
∫ T

t σ2
s ds and ψ introduces a

linear term in the correlation expansion.

5.2. The Clark Ocone Formula for the Integrated Variance

Now the question is how to construct a volatility model so that the variance of
∫ T

t σ2
s ds

is higher for long and short maturities, where classical diffusion models fail in reproducing
the implied volatility surface. Let us study the variability in this random variable. Due to
the Clark–Ocone–Haussman Formula (9)

σ2
s = Et(σ

2
s ) +

∫ s

t
Er(DW

r σ2
s )dWr,

for t < s. Fubini’s theorem for the Itô integral leads to∫ T

t
σ2

s ds =
∫ T

t
Et(σ

2
s )ds +

∫ T

t

(∫ s

t
Er(DW

r σ2
s )dWr

)
ds

=
∫ T

t
Et(σ

2
s )ds +

∫ T

t

(∫ T

r
Er(DW

r σ2
s )ds

)
dWr. (23)

Thus, the variability in the integrated variance is provided by the term

∫ T

t
Et

(∫ T

r
Er(DW

r σ2
s )ds

)2

dr

Consider now the case where σ2
t = f (WH

t ),for some deterministic function f and some
RLfBm WH adapted to the filtration generated by W. Then, DW

r σ2
s = f ′(WH

s )(s− r)H− 1
2 . If

f ′ is bounded, the above term behaves like (T − t)2H+2. In the classical Brownian motion
case, this quantity behaves like (T − t)3. If T − t < 1, this variability can be increased by
taking H < 1/2. If T − t > 1, this variability can be increased by taking H > 1/2.

Following these ideas, the first fractional volatility model in the literature was pre-
sented in Comte and Renault [20], where the authors considered a Hurst parameter
H > 1/2 to describe the slow flattening of smiles and skews as time to maturity in-
creases. In Alòs et al. [9], these models, but with H < 1/2, were introduced to better
describe the short-end of the implied volatility surface. We notice that both approaches
are not contradictory: the volatility can be composed of terms with H > 1/2 and terms
with H < 1/2, with the terms with H > 1/2 (H < 1/2) being more relevant at long
(short) scales.
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6. Some Analytical Results

Consider the stochastic volatility model (12). The log-price X = log(S) has the form

Xt = x + rt− 1
2

∫ t

0
σ2

s ds +
∫ t

0
σs(ρdWs +

√
1− ρ2dBs), t ∈ [0, T]. (24)

Remember that the volatility process σ is an FW
t -adapted process and, from now on,

we assume that it is a square-integrable stochastic process with right-continuous paths
bounded below by a positive constant. Note that (24) is a general stochastic volatility model
that includes the Heston model [7] and that no particular dynamics are assumed for the
volatility process σ. So, we can even consider rough volatilities (i.e., stochastic volatilities
driven by an RLfBm, with H ∈ (0, 1)).

6.1. An Extension of the Hull and White Formula

An important application of the anticipating Itô Formula (10) is the study of the
extensions of the Hull and White Formula (15) when the volatility and the noises driven
the prices are correlated (i.e., ρ 6= 0). In particular, it can be proved (see Alòs [10]) that

Vt = Et(BS(t, Xt, vt)) +
ρ

2
Et

(∫ T

t
e−r(s−t)∂xG(s, Xs, vs)Λsds

)
, (25)

with t ∈ [0, T], G(t, x, σ) = (∂2
xx − ∂x)BS(t, x, σ), and Λt := (

∫ T
t DW

t σ2
r dr)σt, and where v is

defined as in Section 5.1.2. It means that this price depends on the derivative of the volatility
in the Malliavin calculus sense if ρ 6= 0. Note that the above representation decomposes
option prices as the sum of two terms: the Hull and White term, which coincides with the
price in the case ρ = 0, and a second term due to the correlation.

The idea of the proof of (25) is as follows: From one side, BS(T, XT , K, vT) = VT , where
vT is defined as in Section 5.1.2, which allows us to write

e−rtVt = Et

(
e−rT BS(T, XT , K, vT)

)
.

Now, the key point is to apply the anticipating Itô formula given by (10) to the process

e−r·BS(·, X·, K, v·).

This allows us to find a representation for the difference

Vt − Et(BS(t, Xt, vt))

as the sum of several terms. Thus, due to the Black-Scholes equation(
∂t +

1
2

σ2∂2
xx +

(
r− 1

2
σ2
)

∂x − r
)

BS(t, x, K, σ) = 0

and the relations among the gamma, vega, and delta, all the terms in this representation
cancel, except that related to the Malliavin derivative of the non-adapted process v. This
term corresponds to the last term in (25).

The above approach can be extended to the case of models with jumps using the Itô
formula for Lévy processes developed by Solé et al. [62]. This allows us to consider models
of the form

Xt = x + (r− λk̂)t− 1
2

∫ t

0
σ2

s ds

+
∫ t

0
σs(ρdWs +

√
1− ρ2dBs) + Zt, t ∈ [0, T]. (26)
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(see Alòs et al. [9,63]). Here, Z is a pure jump Lévy process. Thus, we have an extension
of some classical models such as the Bates [6] and Heston [7] ones. The reader can con-
sult Barndorff-Nielsen and Shephard [11,12], Cont and Tankov [56], and Medvedev and
Scaillet [64] to observe the convenience of including jumps in the price asset dynamics.

An extension of the Hull and White formula under the model (26) was developed by
Alòs et al. [9] when σ is a stochastic process and Z is a compound Poisson process with
intensity λ, Lévy measure ν, independent of W and B, and with k̂ = 1

λ

∫
R(e

y− 1)ν(dy) < ∞.
In this case, after proving a suitable Itô formula that allows us to deal with X in (26), it can
be proved that (25) becomes an extension of th Hull and White formula given by

Vt = E(BS(t, Xt, vt)|Gt) +
ρ

2
E
(∫ T

t
e−r(s−t)∂xG(s, Xs, vs)Λsds

∣∣Gt

)
+E
(∫ T

t

∫
R

e−r(s−t){BS(s, Xs + y, vs)− BS(s, Xs, vs)}ν(dy)ds
∣∣Gt

)
(27)

−λk̂E
(∫ T

t
e−r(s−t)∂xBS(s, Xs, vs)ds

∣∣Gt

)
, t ∈ [0, T],

with G = FW ∨ FB ∨ FZ.
Note that if ν ≡ 0, then (28) is (25). When Z is a pure Lévy process and σ is an adapted

process to the filtration generated by W and Z, the above formula takes the form

Vt = E(BS(t, Xt, vt)|Gt) +
ρ

2
E
(∫ T

t
e−r(s−t)∂xG(s, Xs, vs)Λsds

∣∣Gt

)
+E
(∫ T

t

∫
R

e−r(s−t){∆yBS(s, Xs, vs)

−(ey − 1)∂xBS(s, Xs, vs)}ν(dy)ds
∣∣Gt

)
+E
(∫ T

t

∫
R

e−r(s−t)DZ,−
s,y ∆yBS(s, Xs, vs)yν(dy)ds

∣∣Gt

)
.

Here, ∆yBS(s, Xs, vs) = BS(s, Xs + y, vs)− BS(s, Xs, vs) and DZ is the two-parameter
operator defined via the chaos decomposition approach on the canonical Lévy space.
Roughly, DZ

·,0 agrees with the derivative operator with respect to the continuous part
(Brownian part) of the involved Lévy process and Dt,x, x 6= 0 is the quotient operator
given by

Dt,xF(ω) =
F(ωt,x)− F(ω)

x
,

where ωt,x means that we have added a jump of size x at time t. Finally,

DZ,−u(t, y) = L2(P⊗ dt⊗ xν(dx))− lim
r↑t,x↑y

DZ
t,yu(r, x).

We observe that DZ,−
s,y ∆yBS(s, Xs, vs) = 0 for (s, y) ∈ [0, T]× (R \ {0}), if the volatility

process σ is only FW
t -adapted (i.e., it is independent of Z). For details, the reader is referred

to Alòs et al. [63], Jafari and Vives [65], and Solé et al. [62]. This decomposition approach
can be extended to the study of exotic options (see, for example, Alòs and León [66],
Alòs et al. [67], Merino and Vives [68], and Alòs and León [69]) .

6.2. The Derivative of the Implied Volatility

Once we have a Hull and White type formula for a suitable stochastic volatility model,
we can determine the derivative of the implied volatility (with respect to the log-strike) in
terms of the derivative operator in the Malliavin calculus sense and study the at-the-money
short-time behavior of skew slopes. Remember that in our analytical study, we do not
assume that the volatility is either a diffusion or a Markov process. We can even consider
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volatilities driven by an RLfBm introduced in (4). In the following, we briefly explain how
the Hull and White type formulas can be used to analyze the short-time behavior of the
implied volatility.

Roughly, the Hull and White type formulas established in this section have the form

Vt = Et(BS(t, Xt, vt)) + Et(
∫ T

t
F(s, Xs, vs)ds), t ∈ [0, T].

Consequently,

∂Vt

∂Xt
= Et(∂xBS(t, Xt, vt)) + Et(

∫ T

t
∂xF(s, Xs, vs)ds), t ∈ [0, T]. (28)

Now, let I·(X·) be the implied volatility, which satisfies Vt = BS(t, Xt, K, It(Xt)) by
definition. So, (28) leads us to

∂It
∂Xt

(x∗t )

=
Et(∂xBS(t, x∗t , vt)|Ft)− ∂xBS(t, x∗t , It(x∗t )) + Et(

∫ T
t ∂xF(s, Xs, vs)ds)

∂σBS(t, x∗t , It(x∗t ))

∣∣∣∣∣
Xt=x∗t

(29)

=
Et(
∫ T

t (∂xF(s, Xs, vs)− 1
2 F(s, Xs, vs))ds)

∂σBS(t, x∗t , It(x∗t ))

∣∣∣∣∣
Xt=x∗t

, w.p.1.

Here, the last equality follows from (28) and that

∂x(BS(t, x, I0
t (x))

∣∣
x=x∗t

= ∂xBS(t, x∗, I0
t (x∗)),

where I0
t (Xt) is the implied volatility in the uncorrelated case (see Renault and Touzi [2]),

that is, ρ = 0.
From the derivative (30), we are able to deal with the short-time behavior of the

implied volatility. In order to fix ideas, suppose that we are considering model (24) and the
Hull and White Formula (25). Thus, Malliavin calculus allows us to work with a volatility
σ such that there exists a constant η > − 1

2 satisfying that, for all 0 < t < s < r < T,

Et

(
(Dsσr)

2
)
≤ C(r− s)2η ,

and
Et

(
(Dθ Dsσr)

2
)
≤ C(r− s)2η(r− θ)2η .

In this case, the Itô formula applied to the process

t 7→ (∂2
xx −

1
2

∂x)G(t, Xt, vt)
∫ T

t
Λsds

implies the two following claims are satisfied:

1.
∂It

∂Xt
(x∗t ) ≈ −

ρ

2σt
DtσT . (30)

2.
∂It

∂k
(k∗t ) ≈

ρ

2σt
DtσT , (31)

where k := ln K denotes the log-strike and k∗t is the at-the-money log-strike.

Note that for classical volatility models such as the Heston and the SABR, the above
conditions hold with η = 0 (see Alòs et al. [9]). In the fractional volatility case, these
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conditions hold with η = H− 1
2 , inheriting the properties of the Malliavin derivative of the

RLfBm, which satisfies DW
s WH

t = (t− s)H− 1
2 . For example, consider a stochastic volatility

model with a fractional volatility of the form

Yr = m + (Yt −m)e−α(r−t) + c
√

2α
∫ r

t
e−α(r−s)dWH

s , r ∈ [t, T],

with f ∈ C1
b (R) and WH· =

∫ ·
0 (· − u)H− 1

2 dWu (i.e., it is an RLfBm). Therefore, (30) implies

lim
T→t

∂It

∂Xt
(x∗t ) = 0, for H > 1/2,

and (31) yields

lim
T→t

(T − t)
1
2−H ∂It

∂Xt
(x∗t ) = −c

√
2α

ρ

σt
f ′(Yt), for H < 1/2.

Hence, fractional volatility models are able to reproduce short-date sews of the order
O(T − t)H− 1

2 with H > 0. (see [9] again).

Remark 1. Similar techniques can be used to study the short term of the implied ATM curvature
(see Alòs and León [70]).

7. A Simple Fractional Model

Fix H ∈ (0, 1). In order to provide a simple model to describe the ideas in this paper,
we define a fractional Bergomi model (fBergomi) as

(σH
t )2 = (σH

0 )2 exp
(

νH
√

2HWH
t − ν2

H
1
2

t2H
)

, (32)

where WH denotes an RLfBm as defined in Section 2, and (σH
0 )2 and νH are positive

constants. In the case H < 1
2 , this model is known as the rough Bergomi (rBergomi) model,

which was introduced by Bayer et al. [38]. The rBergomi model can also be defined taking
an fBm instead of an RLfBm, but because of the simplicity of its representation, the RLfBm
is more usually considered in volatility modeling.

The Malliavin derivative of the above process is given by

Ds(σ
H
t )2 = νH

√
2H(t− s)H− 1

2 (σH
t )2

and then (31) implies that in the short-end

∂It

∂k
(k∗t )

≈ ρ

4(σH
t )2

[νH
√

2H(T − t)H− 1
2 (σH

t )2]

=
ρνH
√

2H
4

(T − t)H− 1
2 . (33)

Now, a volatility process σ follows a mixed fractional Bergomi (mfBergomi) if

σ2
s =

1
2
[(σH

s )2 + (σH′
s )2].

where H < 1
2 and H′ > 1

2 ; that is, here, the volatility process is a combination of long- and
short-memory fBergomi models. Note that it is realistic to assume that the volatility is
the sum of several market components, some of them with long-memory properties and
some of them with short-memory properties. According to Comte and Renault [20] and
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Alòs et al. [9], we expect the skew of this model to decay more slowly than in the classical
case H = 1

2 , and, at the same time, to blow up for short maturities.

The Malliavin derivative of the above process is given by

Dsσ2
t =

1
2
[νH
√

2H(t− s)H− 1
2 (σH

t )2 + νH′
√

2H′(σH′
t )2(t− s)H′− 1

2 ].

Then (31) implies that in the short end

∂It

∂k
(k∗t )

≈ ρ

8σ2
t
[νH
√

2H(T − t)H− 1
2 (σH

t )2 + νH′
√

2H′(σH′
t )2(T − t)H′− 1

2 ] (34)

≈ ρ

8σ2
t
[νH
√

2H(T − t)H− 1
2 (σH

t )2].

Let us observe this phenomenon in Figures 5 and 6. In Figure 5, we show the ATM
skew slope as a function of time to maturity for

• an mfBergomi model with H = 0.1, H′ = 0.9, νH = νH′ = 0.5, ρ = −0.6 and σ2
0 = 0.25

and
• an rBergomi model with H = 0.1, νH = 0.5, ρ = −0.6 and σ2

0 = 0.25.

We see that both models have skew slopes that blow up at short maturities, but the
decay (in absolute value) is slower for the mfBergomi.

Figure 5. Slope skew for an mfBergomi model and an rBergomi model with H < 1
2 .
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Figure 6. Slope skew for an mfBergomi model and an fBergomi model with H′ > 1
2 .

We see that both models have a different short-term behavior. Note that the fBergomi
model with H > 0.9 increases the long-term skew, but it has no effect on the short end.

8. Conclusions

We showed that the fBm is a useful tool for modeling the long- and the short-term
properties of the implied volatility surface because it allows us to increase the variability
in the volatility both in short intervals (taking a Hurst parameter H < 1

2 ) and in long
intervals (taking H > 1

2 ). This behavior is explicit in the short-end via Malliavin calculus
techniques. The long- and short-memory properties of the volatility are not contradictory
processes, as we showed in the numerical experiments. Fractional volatility models are
more realistic volatility models. In particular, they can replicate the short-end blow-up of
the empirical skew slope of the implied volatility. If we consider classical volatility models,
where the volatility is a diffusion process, this phenomenon cannot be described and then
the whole implied volatility surface cannot be calibrated. As a consequence, the classical
methodology consists of calibrating the model for every fixed time to maturity, obtaining
a different set of parameters for every maturity time. Fractional volatilities can be a first
step in the simplification of calibration in real market practice. Moreover, we showed that
fractional volatilities can be of interest in the joint modeling of the S&P index and the VIX,
as well as other volatility indexes in the market such as the VSTOOXX and the OVX.
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