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Abstract: In this paper, we consider the development of the two-dimensional discrete velocity Boltz-
mann model on a nine-velocity lattice. Compared to the conventional lattice Boltzmann approach
for the present model, the collision rules for the interacting particles are formulated explicitly. The
collisions are tailored in such a way that mass, momentum and energy are conserved and the H-
theorem is fulfilled. By applying the Chapman–Enskog expansion, we show that the model recovers
quasi-incompressible hydrodynamic equations for small Mach number limit and we derive the closed
expression for the viscosity, depending on the collision cross-sections. In addition, the numerical
implementation of the model with the on-lattice streaming and local collision step is proposed. As
test problems, the shear wave decay and Taylor–Green vortex are considered, and a comparison of
the numerical simulations with the analytical solutions is presented.

Keywords: discrete velocity method; lattice Boltzmann method; computational fluid dynamics

1. Introduction

In the kinetic theory, the distribution function of a rarefied gaseous system is governed
by the Boltzmann equation or its models [1]. In the applications, the discretization of
these equations in the velocity (and physical) space is usually performed. One of the
most popular discretization approaches is the Lattice–Boltzmann (LB) method [2–5] which
was initially developed as an alternative to the continuum fluid methods like Navier–
Stokes equations [6]; furthermore, the method has been extended to the rarefied flows
modeling [7–19]. The conventional LB model has the following form

d fi
dt

=
1
τ
( f eq

i − fi), i = 1 . . . N,

where fi(t, x) is the distribution function related to the particles with the velocity ci,
i = . . . N, τ is the relaxation time, f eq

i is the local equilibrium, N is the number of the
discrete velocities, d

dt =
∂
∂t+ ci

∂
∂r , r is the spatial variable. In this approach, the collisions

between the particles are described in a phenomenological way, i.e., it is postulated that,
due to the collisions, the distribution function tends to the local equilibrium state at a
rate proportional to f eq

i − fi. For LB models, the local equilibrium is usually taken as
a finite-order polynomial on the bulk velocity, and the conservation laws for mass and
momentum are satisfied by construction. On the other hand, for this form of the local
equilibrium, the H-theorem does not exist [20–22]. To overcome this issue, models with
non-polynomial equilibria have been proposed [23–26].

Another possible discretization technique is the discrete velocity (DV) Boltzmann
method [27–30], the general DV Boltzmann model reads as

d fi
dt

=
N

∑
jkl

Aij
kl( fk fl − fi f j) ≡ Ii[ f1, . . . fN ], i = 1 . . . N, (1)
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where Aij
kl = Akl

ij ≥ 0 are the transition probabilities.
Compared to the LB method, the DV models have some attractive properties. Similarly

to the Boltzmann equation, the binary collisions are described explicitly. Moreover, by
construction, the H-theorem is valid for these models [28], i.e.,

dH
dt
≤ 0, H(t) =

∫
dr

N

∑
i

fi log( fi).

Moreover, the local equilibrium for DV kinetic Boltzmann models can be obtained
as an exponential function of the macroscopic variables. The DV Boltzmann approach
attracted the attention of many researchers several decades ago, but, at present, is sig-
nificantly less popular than the LB method. For instance, the well-known four velocity
Broadwell equation in two dimensions has been investigated thoroughly [31–36], this
model has correct collision invariants, but its discrete velocity set is too small and lacks
isotropy [37]; therefore, the correct description of the hydrodynamics is impossible in the
framework of this model. In addition, another subtle feature should be mentioned: for the
discrete velocity models, the molecular chaos hypothesis can be violated, i.e., the particles
can be correlated before the collision [38]. This is undesirable, but the influence of this
effect on the flow properties in applications is not clear. Furthermore, one should con-
struct the DV Boltzmann models in such a way that the only conserved variables are mass,
momentum and energy. The equilibrium state is obtained as minimum of the H-function
under the constraint that these variables are not changed by collisions. The presence of
other conserved quantities (spurious invariants) changes the form of the local equilibrium
state, this, in turn, leads to a distortion of the hydrodynamic equations. The construction of
DV Boltzmann models without excessive invariants is a non-trivial procedure [39–42].

In this paper we consider a DV Boltzmann model on a nine velocity, two-dimensional
lattice. As a starting point, we consider the local equilibrium for the general DV Boltzmann
model and its expansion at the vicinity of the absolute Maxwell distribution. Next, the
Chapman–Enskog expansion for the DV Boltzmann model is performed in order to derive
the hydrodynamic equations. In addition, we show that the model does not have invariants
without physical meaning. The considered model has four different possible transition
probabilities. In terms of the LB theory, this model can be considered as a scheme with
multiple relaxation times. For viscosity, we obtain a closed expression depending on the
values of the transition probabilities. If the viscosity is fixed, we obtain a constraint on the
transition probabilities, but three of them can be chosen as free parameters; for instance,
they can be adjusted to improve stability properties. As benchmark problems, we consider
the shear wave decay and Taylor–Green vortex. The numerical experiments show excellent
agreement between the numerical simulation results and analytical solutions.

2. Equilibrium for DV Boltzmann Kinetic Model and the Euler Equations

The local equilibrium of the model (1) is obtained as a minimum of the H functional
with the constraints corresponding to the conservation laws; it has the following form
(Formula (5) in [43])

f eq
i = exp(a + b · ci + dc2

i ), i = 1 . . . N, (2)

where the coefficients ai, bi, di depend on the density, flow velocityand temperature ρ, u, θ
and “·” defines scalar product. In this paragraph, we consider the particle’s dynamics
in D spatial dimensions. We assume that the local equilibrium is close to the absolute
equilibrium with the density ρ0 = 1 flow velocity u0 = 0 and the temperature θ0; then, one
can write down the absolute equilibrium denoted as wi in the form

wi = exp(a0 + d0c2
i ), i = 1 . . . N,
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where a0 = a0(ρ0, θ0), d0 = d0(ρ0, θ0), we also term wi as lattice weights. The conservation
laws for mass, momentum, energy yield the following equations for the lattice velocities
and the lattice weights

∑
i

wi = 1, ∑
i

wici = 0, ∑
i

wicici = θ0δ, (3)

note that cici is a tensor with elements ci,αci,β, α, β = 1 . . . D, and that D is the number of
spatial dimensions. For the coefficients, we have the expression

ai = a0
i + ∆a, bi = ∆b, di = d0

i + ∆d,

where ∆a, ∆b, ∆d are small quantities. Similarly to the previous studies [43] we expand the
expression (2) on ∆a, ∆b, ∆d, and one has

f eq
i = wi

(
1 + ∆a +

1
2

∆a2 + o(∆a2)

)
×

×
(

1 + ∆b · ci +
1
2

∆b∆b : cici + o(∆b2)

)(
1 + ∆dc2

i +
1
2

∆d2c4
i + o(∆d2)

)
=

= wi
(
1 + ∆a + ∆b · ci + ∆dc2

i +

+
1
2

∆a2 + ∆a∆b · ci + ∆a∆dc2
i +

1
2

∆b∆b : cici + ∆d∆b · cic2
i +

1
2

∆d2c4
i
)
+ o(∆2) (4)

where o(∆2) stands for o(∆a2), o(∆b2), o(∆d2), also the operator ":" is tensor convolution.
Next, we assume that

ρ = 1 + ∆ρ, u = ∆u, θ = θ0 + ∆θ,

where ∆ρ, ∆u, ∆θ are small. Taking (4) into account, for the first local equilibrium moments,
we derive the following equations

∑
i

f eq
i = 1 + ∆ρ = 1 + ∆a + Dθ0∆d +

1
2

∆a2 + Dθ0∆a∆d +
θ0

2
∆b2 +

m4

2
∆d2, (5)

∑
i

f eq
i ci = ∆u + ∆ρ∆u = θ0∆b + θ0∆a∆b + D−1m4∆d∆b, (6)

∑
i

f eq
i c2

i = Dθ0 + Dθ0∆ρ + D∆θ + ∆u2 + D∆ρ∆θ =

= Dθ0

(
1 + ∆a +

1
2

∆a2
)
+ m4

(
∆d + ∆a∆d +

1
2D

∆b2
)
+

m6

2
∆d2, (7)

and we omitted third-order terms and used the definitions

m4 = ∑
i

wic4
i , m6 = ∑

i
wic6

i . (8)

We assume that ∆ρ, ∆u, ∆θ are of the same order of smallness, which we define as
O(∆). Then ,we seek solutions to the Equations (5)–(7) in the form

∆a = ∆alin + ∆anonl , ∆b = ∆blin + ∆bnonl , ∆d = ∆dlin + ∆dnonl ,

where the terms ∆alin, ∆blin, ∆dlin are solutions to the linearized Equations (5)–(7) of order
O(∆) and ∆anonl , ∆bnonl , ∆dnonl are nonlinear corrections of order O(∆2). First, from the
linearized Equations (5)–(7), one has

∆ρ = ∆alin + Dθ0∆dlin, ∆u = θ0∆blin, Dθ0∆ρ + D∆θ = Dθ0∆alin + m4∆dlin,
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these equations have the solutions

∆alin = ∆ρ− D2θ0∆θ

m4 − D2θ2
0

, ∆blin =
∆u
θ0

, ∆dlin =
D∆θ

m4 − D2θ2
0

. (9)

Next, we find the nonlinear corrections ∆anonl , ∆bnonl , ∆dnonl from the Equations (5)–(7).
It would be convenient to start with the Equation (6), which can be rewritten as

∆ρ∆u = θ0∆alin∆blin + D−1m4∆dlin∆blin + θ0∆bnonl ,

from the last equation, we immediately obtain

∆bnonl = −
∆θ∆u

θ2
0

. (10)

Consideration of the Equations (5) and (7) yields

∆anonl + Dθ0∆dnonl +
1
2

∆a2
lin + Dθ0∆alin∆dlin +

1
2

θ0∆b2
lin +

m4

2
∆d2

lin = 0,

Dθ0∆anonl + m4∆dnonl +
Dθ0

2
∆a2

lin + m4∆alin∆dlin +
m4

2D
∆b2

lin +
m6

2
∆d2

lin = ∆u2 + D∆ρ∆θ,

by applying (9) we get the solutions

∆anonl = −
∆ρ2

2
− Dθ0∆u2

(m4 − D2θ2
0)
−

D4θ2
0∆θ2

2(m4 − D2θ2
0)

2
+

(Dθ0m6 −m2
4)D2∆θ2

2(m4 − D2θ2
0)

3
, (11)

∆dnonl = −
∆u2

2Dθ2
0
+

∆u2

(m4 − D2θ2
0)

+
D3θ0∆θ2

(m4 − D2θ2
0)

2
− (m6 − Dθ0m4)D2∆θ2

2(m4 − D2θ2
0)

3
. (12)

The combination of (9) and (10)–(12) leads to the following expression for f eq
i

Proposition 1. The DV local equilibrium f eq
i in the form (2) can be expressed as

f eq
i = wi(k0 + k1 · ci + k2c2

i + k3 : cici + k4 · cic2
i + k5c4

i ) + O(∆3), i = 1 . . . N, (13)

where

k0 = 1 + ∆ρ− Dθ0

(m4 − D2θ2
0)
(D∆θ + D∆ρ∆θ + ∆u2) +

Dθ0m6 −m2
4

2(m4 − D2θ2
0)

3
D2∆θ2, (14)

k1 =
∆u
θ0

+
∆ρ∆u

θ0
− m4

θ2
0(m4 − D2θ2

0)
∆θ∆u, (15)

k2 = − ∆u2

2Dθ2
0
+

1
(m4 − D2θ2

0)
(D∆θ + D∆ρ∆θ + ∆u2)− m6 − Dθ0m4

2(m4 − D2θ2
0)

3
D2∆θ2, (16)

k3 =
∆u∆u

2θ2
0

, (17)

k4 =
D∆θ∆u

θ0(m4 − D2θ2
0)

, (18)

k5 =
D2∆θ2

2(m4 − D2θ2
0)

2
(19)

and ∆ρ, ∆u ∆θ are small density, flow velocity and temperature variations of order O(∆); moreover,
the moments m4 and m6 are defined by (8), and the absolute equilibrium wi satisfies the conditions

∑
i

wi = 1, ∑
i

wici = 0, ∑
i

wicici = θ0δ,
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where θ0 is the reference temperature.

By applying (13)–(19), the pressure tensor P with the components Pαβ, α, β = 1 . . . D
at the local equilibrium can be derived

P = ∑
i

f eq
i (ci − ∆u)(ci − ∆u) = ∑

i
f eq
i (cici − 2ci∆u + ∆u∆u) =

= (θ0k0 + D−1m4k2 + D−1m6k5)δ + k3 : R− ∆u∆u + O(∆3) =

= ρθδ +
2Dθ2

0 −m4

2D2θ2
0

∆u2δ +
∆u∆u

2θ2
0

: R− ∆u∆u + O(∆3),

where ρθ = (1 + ∆ρ)(θ0 + ∆θ) and

R = ∑
i

wicicicici.

Now, let us assume that R is isotropic tensor; in such a case, its components can be
written in the form (Formula (69) in [37])

Rαβλγ =
m4

D(D + 2)
(δαβδλγ + δαγδβλ + δαλδβγ), (20)

one can see that the tensor P equalling ρθδ + O(∆3) is obtained, if

m4 = D(D + 2)θ2
0 . (21)

Compared to P for the local Maxwell distribution, in the DV approach, the error O(∆3)
is observed; therefore, we can conclude that the hydrodynamics (mass and momentum
equations) at the Euler level of accuracy is recovered with the errors of order O(∆3) if the
conditions (3), (20) and (21) are satisfied.

Finally, we consider the heat flow q at the level of the Euler equations

2q = ∑
i

f eq
i (ci − ∆u)2(ci − ∆u) = ∑

i
f eq
i c2

i ci − 2∆u · P− 2ρE∆u + O(∆3),

where E = (ρ/2)(Dθ + ∆u2), θ = θ0 + ∆θ, ρ = 1 + ∆ρ, applying (13)–(19) we obtain

2q =
1

Dθ0

(
m4 + m4∆ρ +

Dθ0m6 −m2
4

θ0(m4 − D2θ2
0)

∆θ

)
∆u−

−2(θ0 + ∆θ + θ0∆ρ)∆u · δ− (Dθ0 + Dθ0∆ρ + D∆θ)∆u + O(∆3) =

=
1

Dθ0
(m4 − D(D + 2)θ2

0)(∆u + ∆ρ∆u) +

(
Dθ0m6 −m2

4
Dθ2

0(m4 − D2θ2
0)
− (D + 2)

)
∆θ∆u + O(∆3),

one can see that the terms proportional ∆u, ∆ρ∆u are eliminated if m4 satisfies (21), in
addition, the second term can be removed if m6 = D(D + 2)(D + 4)θ3

0 or we are restricted
by the isothermal flows ∆θ = 0; in such a case, the heat flow (which equals zero for
the Euler equations) is only of order O(∆3). In the present study, we assume that the
temperature variations are negligible, ∆θ = 0.

3. Navier–Stokes Equations

In order to obtain the Navier–Stokes equations, one needs to find the corrections
to the pressure tensor corresponding to the viscous terms. This can be performed by
applying the Chapman–Enskog expansion for DV Boltzmann model [29]. Then, following
the previous results [29], we assume that the solution to (1) can be expressed in the form
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fi = f eq
i + f (1)i + O(Kn2), where f (1)i are of order O(Kn) and Kn is the Knudsen number.

At the limit of small Mach numbers, the equations for f (1)i read as (Equation (19) in [43])

d f eq
i

dt
=

N

∑
jkl

Aij
kl(wk f (1)l + wl f (1)k − wi f (1)j − wj f (1)i ), i = 1 . . . N, (22)

one can see from (22) that the solutions f (1)i are determined by the concrete DV Boltzmann

model, i.e., f (1)i depend on Aij
kl . The solution to the linear Equations (22) can be obtained as

(Formula (22) in [43])

f (1)i = aiQi :
∂

∂r
∆u + bidiv(∆u), (23)

where Qi is a second-order tensor whose exact form we will discuss further, and ai, bi are
numerical coefficients.

4. Spurious Invariants

For a collision, in which the particles with the velocities ci, cj turn into the particles
with the velocities ck, cl , we introduce the following reaction vector [40,41,44]

e = (. . . ,

k︷︸︸︷
1 , . . . ,

i︷︸︸︷
−1 , . . . ,

l︷︸︸︷
1 , . . . ,

j︷︸︸︷
−1 , . . .) ∈ RN , Aij

kl > 0,

where the entries denoted by dots equal zero. Assume that we have p linearly independent
reaction vectors es, s = 1 . . . p . We denote a matrix consisting of all reaction row vectors es
as the collision matrix

C = (e1; e2; . . . ; ep) ∈ Rp ×RN .

Note that the collision invariants ϕ(c1, . . . cN) ∈ RN are defined by the relation [28]

ϕi + ϕj = ϕk + ϕl , Aij
kl > 0,

this condition can also be rewritten in the following form [44,45]

ϕ · es = 0, s = 1 . . . p, (24)

i.e., the linear subspace spanned by the invariants is orthogonal to the subspace spanned by
the reaction vectors. The condition (24) can be applied for the detection of spurious invariants:

Proposition 2. Assume that, for some DV Boltzmann models, the number of linearly independent
physical collision invariants equals q, then additional invariants do not exist if [40,41,44,45]

rank(C) = N − q,

where N is the number of the discrete velocities.

5. Nine Velocity DV Boltzmann Model for D2Q9 Lattice

We consider the DV Boltzmann model on a nine-velocity lattice (Figure 1). This lattice
is popular in LB theory [3], since the corresponding LB model recovers hydrodynamics at
small Mach numbers limit and, in addition, its numerical implementation is very simple.
For this model, we have three types of discrete velocities: zero velocity c0 = (0, 0) with the
weight w0 = 16/36; four velocities, parallel to x, y axes, i.e., c±1 = (±1, 0)c, c±2 = (0,±1)c
with the weight w0 = 4/36; four diagonal velocities c±3 = (±1,±1)c, c±4 = (±1,∓1)c
with the weight w0 = 1/36—here, c is the positive constant. The lattice velocity magnitudes
for these three groups are 0, c,

√
2c. Moreover, θ0 = ∑i wic2

i = c2/3.
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3

1

4

−4

−1

−3

2

0

−2

x

y

Figure 1. Two-dimensional nine-velocity lattice (D2Q9). Lattice velocities are labeled by red color.

It is well-known that these lattice velocities and weights satisfy the conditions (3), (20)
and (21); therefore, if it is possible to construct the collisions in such a way that the mass
and momentum are conserved then the Euler equations are satisfied. We mention that the
lattices and collision rules for DV Boltzmann models, which can potentially recover the
hydrodynamics, have been considered previously [46,47]—for instance, the model with
single-relaxation time describing Navier–Stokes equations has been proposed [46,47]. In
here we consider only the collisions for the nine-bit lattice in a more detailed way; the
considered model is of the multiple-relaxation-time type:

a. Broadwell type collision is the reaction between the particles 1 and −1, which turn
into the particles 2 and −2 (Figure 1); schematically, we can denote this reaction as
(1,−1) −→ (2,−2). The contribution of this collision to right side of (1) denoted as J0
is as follows

J0 = f−2 f2 − f−1 f1; (25)

b. the collisions linking all three different energy states, they define transitions be-
tween the particle’s states with different kinetic energies, and evidently can not
be excluded. We have four different reactions (1, 2) −→ (0, 3), (1,−2) −→ (0, 4),
(−1,−2) −→ (0,−3), (−1, 2) −→ (0,−4). The corresponding contributions to the
collision kernel are

J1 = f0 f3 − f1 f2, J2 = f0 f4 − f1 f−2,

J3 = f0 f−4 − f−1 f2, J4 = f0 f−3 − f−1 f−2;
(26)

c. Broadwell type collision between the particles with the velocity magnitudes
√

2c
is defined by the reaction (3,−3) −→ (4,−4), the contributions to the collision
kernel are

J5 = f−4 f4 − f−3 f3; (27)

d. the collisions between the particles with the velocity magnitudes
√

2c and c, we
have four different reactions (−4, 1) −→ (−1, 3), (−3, 1) −→ (−1, 4), (−3, 2) −→
(−4,−2), (4, 2) −→ (−2, 3), the contributions to the collision kernel are

J6 = f3 f−1 − f−4 f1, J7 = f−1 f4 − f−3 f1,

J8 = f−4 f−2 − f−3 f2, J9 = f3 f−2 − f4 f2.
(28)
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The collisions (25)–(28) conserve mass, momentum and energy; the corresponding
D2Q9 DV Boltzmann model reads as

∂ f1

∂t
+ c

∂ f1

∂x
= αJ0 + β(J1 + J2) + λ(J6 + J7), (29)

∂ f−1

∂t
− c

∂ f−1

∂x
= αJ0 + β(J3 + J4)− λ(J6 + J7), (30)

∂ f2

∂t
+ c

∂ f2

∂y
= −αJ0 + β(J1 + J3) + λ(J8 + J9), (31)

∂ f−2

∂t
− c

∂ f−2

∂y
= −αJ0 + β(J2 + J4)− λ(J8 + J9), (32)

∂ f3

∂t
+ c

∂ f3

∂x
+ c

∂ f3

∂y
= γJ5 − βJ1 − λ(J6 + J9), (33)

∂ f−3

∂t
− c

∂ f−3

∂x
− c

∂ f−3

∂y
= γJ5 − βJ4 + λ(J7 + J8), (34)

∂ f4

∂t
+ c

∂ f4

∂x
− c

∂ f4

∂y
= −γJ5 − βJ2 + λ(−J7 + J9), (35)

∂ f−4

∂t
− c

∂ f−4

∂x
+ c

∂ f−4

∂y
= −γJ5 − βJ3 + λ(J6 − J8), (36)

∂ f0

∂t
= −β(J1 + J2 + J3 + J4), (37)

where α, β, λ, γ in (29)–(37) are positive transition probabilities. Now, we can consider the
analogs of the Navier–Stokes equations for the model (29)–(37).

Proposition 3. The Equations (29)–(37) lead to Navier–Stokes equations for nearly incompressible
flows with errors of order O(∆3) if

4α = γ + 4β + 4λ, (38)

the shear viscosity ν equals

ν =
3

4α
. (39)

Proof. From (22), one can deduce that the corrections to the DV distribution function f (1)i

corresponding to the viscous terms can be represented as a linear combination of d f eq
i

dt terms.
In the case of nearly incompressible flow, these terms can be represented as (Formula (2.12)
in [2])

d f eq
i

dt
= wi

cici

θ0
:

∂

∂r
∆u, (40)

where ∂
∂r = ( ∂

∂x , ∂
∂y ). According (23) we can try add the terms proportional div(∆u), but

they equal zero for the incompressible limit; then, we seek the solution in the form

f (1)i = aiQi, Qi = wi
cici

θ0
:

∂

∂r
∆u, (41)

where the coefficients ai are equal for the indexes i corresponding to the discrete velocities ci
with the same kinetic energy. The substitution of (41) into (29)–(37) leads to three algebraic
equations for the coefficients ai, (29)–(32) yield the first equation

3w1
∂

∂x
∆ux = 2αw1a1

(
∂

∂y
∆uy −

∂

∂x
∆ux

)
=

= 2αw1a1

(
∂

∂y
∆uy −

∂

∂x
∆ux − div(∆u)

)
= −4αw1a1

∂

∂x
∆ux,
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from which we obtain
a1 = − 3

4α
,

(33)–(36) yield the second equation

3w2

(
∂

∂x
∆uy +

∂

∂y
∆ux

)
= −(4γw2 + βw0 + 4λw1)a2

(
∂

∂x
∆uy +

∂

∂y
∆ux

)
,

then
a2 = − 3w2

4γw2 + βw0 + 4λw1
.

The third equation, which can be obtained from (37) is satisfied automatically. Now,
with the exact expressions for a1, a2, we can evaluate f (1)i and the viscous corrections to

the pressure tensor P(1) = ∑i f (1)i cici. Then, the Navier–Stokes viscous terms can be
evaluated as

−∑
σ

∂

∂rσ
P(1)

ησ = −∑
σ

∂

∂rσ

(
∑

i
f (1)i ci,ηci,σ

)
,

where σ, η equal x or y. For instance,

− ∂

∂x
P(1)

xx −
∂

∂y
P(1)

xy =
3

2α

∂2

∂x2 ∆ux +
12w2

4γw2 + βw0 + 4λw1

(
∂2

∂x∂y
∆uy +

∂2

∂y2 ∆ux

)
we require 4α = γ + 4β + 4λ, then by applying div(∆u) = 0 we finally obtain

− ∂

∂x
P(1)

xx −
∂

∂y
P(1)

xy =
3

4α

(
∂2

∂x2 +
∂2

∂y2

)
∆ux,

therefore ν = 3/4α.

For the model (29)–(37), there are ten collisions. If we consider all reaction vectors and
the corresponding collision matrix, one can convince that rank(C) = 5, the number of the
discrete velocities N = 9. This means that we do not have any collision invariants except
mass, momentum, energy (Proposition 2). We can exclude up to five reactions from the
model; for instance, we can keep only the Broadwell collisions (type a.) and the collisions
of type b., i.e., we set γ = λ = 0. On the other side, the numerical simulations show that
the addition of the collisions from the group c. or d. enhances the stability properties.

Finally, we emphasize that, for the model (29)–(37), all the collisions conserve energy
(elastic). Generally speaking, this is not necessary because we are focused on the correct
reproduction of the mass and momentum equations. For instance, it is possible to construct
the model of DV Boltzmann type in one spatial dimension with inelastic collisions [26]
(quasi-chemical model with three discrete velocities) which leads to the correct Navier–
Stokes equation at small Mach limit.

6. Numerical Implementation and Test Problems

The model is implemented similarly to the conventional LB D2Q9 model [3]. Firstly,
we perform the collision step, then post-collision distribution functions are streamed at
appropriate directions. It is well-known from the LB theory that the discretization of
space–time affects the viscosity. The DV Boltzmann model discretized in a similar form as
LB model reads as

fi(t + δt, r + ciδt)− fi(t, r) = Ii[ f1, . . . fN ](t, r)δt, (42)
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by applying the Taylor expansion this equation can be rewritten as(
∂

∂t
+ ci

∂

∂r

)
fi(t, r)δt +

1
2

(
∂

∂t
+ ci

∂

∂r

)2
fi(t, r)δt2 + O(δt3) = Ii[ f1, . . . fN ](t, r)δt,

then (
∂

∂t
+ ci

∂

∂r

)
fi(t, r) = Ii[ f1, . . . fN ](t, r)− 1

2

(
∂

∂t
+ ci

∂

∂r

)2
fi(t, r)δt + O(δt2),

therefore, we can conclude that the scheme (42) led to the hydrodynamic equations in

which the contributions from − 1
2

(
∂
∂t + ci

∂
∂r

)2
fi(t, r)δt + O(δt2) = − δt

2
d2

dt2 fi + O(δt2) are
present. The additional terms for the Navier–Stokes equations can be obtained with the
application of the Chapman–Enskog expansion [3]. Note that the terms O(δt2) do not
affect the Navier–Stokes equations, since they contain third order derivatives, which, in the
Chapman–Enskog multiple-scale expansion, enter the equations for the moments at the
Burnett level. For the Navier–Stokes equation, the additional viscosity terms result from
− δt

2
d2

dt2 f eq
i , its contribution to ∂

∂r · P
(1) is δt

2 ∑i cici · d
dr

d
dt f eq

i , remembering that d
dt f eq

i can be

expressed by (40), we eventually obtain δt
6 (

∂2

∂x2 +
∂2

∂y2 )u.
Then, for the DV D2Q9 Boltzmann model in the form (42), the viscosity is given by

ν =
3

4α
− δt

6
.

In the simulations, the parameters are taken as follows

α =
3

4(ν + δt
6 )

, β = 0.25α, γ = 4α− 4β = 3α, λ = 0, (43)

i.e., we have six different collisions.
To validate the second-order convergence of the presented scheme, we estimate the

simulation error defined as

error =
√

∑z(um(z)− ubench(z))2√
∑z ubench(z)2

, (44)

where z denotes the spatial variable, um, ubench are the modeled variable (velocity) and
the benchmark solution, respectively. The convergence rate is evaluated by fitting the
values of log(error) for the various log(h) = log( 1

N ) (N is the number of the lattice nodes,
h is proportional to the lattice spacing) using the linear regression, the second-order
convergence is achieved if the regression slope coefficient is close to 2.

Compared to LB D2Q9 model, the scheme (29)–(37) differs only in the collision term
and the expression for the viscosity. This means that the computation time for (29)–(37)
implemented in the form (42) is approximately the same as for LB D2Q9 model.

6.1. Shear Wave Decay

We consider the dynamics in terms of the time of the sinusoidal velocity wave in a
square domain. The initial flow velocity in x direction is dependent on y coordinate and is
given by

ux(x, y, t = 0) = U0 sin(ky), k =
2π

L
,

where L is the length of the domain equals N lattice nodes and U0 = 0.01. The periodic
boundary conditions are applied for the present problem. This problem has the following
analytical solution

ux(x, y, t) = U0 sin(ky)e−νk2t.
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In the present case, we consider ν = 0.001 and N = 101, the time step δt = 1. We compare
the analytical solutions with the velocity profiles obtained by the application of the model
(29)–(37) (implemented in the form (42)). The peak velocity time history and the velocity
profiles for the different moments of time are plotted, Figure 2. One can see that the
simulation results are very similar to the analytical profiles.

It is worth mentioning that it is possible to shorten the model and take γ = λ = 0,
in this case α = β, and we have only five different collisions. The numerical experiments
show that this model becomes unstable for ν < 0.1, while the setting (43) allows to model
the flow with small viscosity and no instabilities are observed.
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Figure 2. Shear wave decay. The logarithm of the peak velocity time histories obtained numerically and analytically are
presented (first slide); velocity profiles at different moments of time (t = 105, t = 2× 105, t = 3× 105) obtained numerically
and analytically are presented (second slide), the spatial variable y is normalized on the domain length L.

6.2. Taylor-Green Vortex

Similarly to the previous problem, we consider a square domain, and the initial
velocity field is given by the formula

ux(x, y, t = 0) = −U0 cos(kx) sin(ky), uy(x, y, t = 0) = U0 sin(kx) cos(ky),

where the size of the domain is L× L (or N × N in lattice units, where N is the number
of the lattice nodes) and k = 2π

L . The periodic boundary conditions are applied. For the
present problem we set U0 = 0.01, ν = 0.001, N = 51, the time step δt = 1. The analytical
solution to the problem is as follows

ux(x, y, t) = −U0 cos(kx) sin(ky)e−2νk2t, uy(x, y, t) = U0 sin(kx) cos(ky)e−2νk2t,

one can see that the initial structure of the velocity field persists in time, and only uniform
decay of the velocity amplitudes is observed. The numerical simulations for the model
(29)–(37) (implemented in the form (42)) show that the form of the velocity field does
not change. We also present the behavior of the velocity ux(x, y = L/2, t) over time,
obtained analytically and numerically for three different moments of time; obviously, both
approaches give very similar profiles (Figure 3).
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Figure 3. Taylor–Green vortex. The velocity streamlines are presented in the (first slide). The velocity profiles ux(x, y =

L/2, t) for three different moments of time t = 2× 104, t = 4× 104, t = 6× 104 obtained analytically and numerically are
presented (second slide), and the spatial variables x, y are normalized on the domain length L.

Finally, we consider the convergence rates of the numerical simulation results to
the benchmark solutions. This can be performed by considering the logarithms of the
simulation errors (44) for the different values of log(h) = log(1/N). In the present case,
we take N = 25, 49, 73, 101. In Figure 4, the logarithms of the errors of the velocities are
presented for DV and the conventional LB D2Q9 models; the results are very similar for
both models. One can see that the estimated slope values are close to 2; this indicates that
the proposed scheme is accurate in the second-order.
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Figure 4. Convergence rates for the shear wave decay and Taylor–Green vortex problems are shown. The results are
obtained by applying DV and the conventional LB D2Q9 models. In the (first slide) (shear wave decay), the logarithms of
the errors (44) for the velocity ux(y, t) computed at the moment of time t = 1/(νk2) are presented; in the (second slide)
(Taylor–Green vortex), the logarithms of the errors of the velocity ux(x, y = L/2, t) computed at the moment of time
t = 1/(2νk2) are presented, where the variable h is proportional to the lattice spacing. The slope estimates are obtained by
fitting the values of log(error) using the linear regression.

7. Results and Discussion

In this paper, we have considered the DV Boltzmann model applicable to the modeling
of viscous quasi-incompressible flows at a small Mach number limit. The presented model
has the same discrete velocity structure and absolute equilibrium as LB D2Q9, but the
collision rules for the particles are postulated exactly. There are four types of collision
and ten possible different collisions; the unique transition probability corresponds to all
possible reactions in the group. Moreover, these collisions conserve only mass, momentum
and energy (spurious invariants do not exist). In terms of LB theory, this model can be
considered as a scheme with multiple relaxation times. Note that the H-theorem is valid
for the model by construction (at least for the continuous space–time variables).
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We have demonstrated that DV Boltzmann equations can be a viable tool in modeling
of hydrodynamic flows. The shear wave decay and Taylor–Green vortex have been consid-
ered as benchmark problems. The comparison of the simulation results with the analytical
solutions has shown good accuracy.

One of the most intriguing problems is the evaluation of the stability properties of the
presented DV Boltzmann system and the optimal choice of transition probabilities. One
can expect that the DV Boltzmann model for D2Q9 lattice has a better stability than the
conventional LB D2Q9 model, since the H-theorem is satisfied. In order to elucidate this
issue, one can consider additional problems like Sod shock tube, double shear layer and
lid-driven cavity. These problems are left for future study.
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